On the global classical solutions to some classes of semilinear wave equations

福岡大 理 蛯原 幸義 (Yukiyoshi Ebihara)

1. Introduction

In this paper we are concerned with the initial-boundary value problem for the following semilinear wave equation :

$$\left\{ \begin{array}{l} u_{tt} + (\gamma - \Delta)u + f(x, t, u, u_t) = 0 \;,\; x \in \Omega, \; t > 0 \;, \\ \\ u(x, 0) = u_0(x) \;,\; u_t(x, 0) = u_1(x), \;\; x \in \Omega \;, \\ \\ u(\xi, t) = 0 \;,\; \xi \in \partial \Omega, \;\; t \geq 0 \;, \end{array} \right.$$

where Ω is a bounded domain in \mathbb{R}^n with smooth boundary $\partial\Omega$, γ is a nonnegative constant and f(x, t, u, v) is a polynomial in u, v more precisely,

$$f(x, t, u, v) \equiv c_0 v + f_0(x, t, u, v),$$

 $f_0(x, t, u, v) \equiv g(x, t) \{c_1 u^{p_1} + c_2 v^{p_2} + c_3 u^{q_1} v^{q_2}\},$

here c_i are constants, p_i , q_i are positive integers and g(x, t) satisfies following condition: Let m be an integer with $m \geq [\frac{n}{2}] + 1$. ① If $p_1 \geq m + 1$, $p_2 \geq m + 1$, $q_1 + q_2 \geq m + 1$, then $g(x, t) \in C^2(0, \infty; C^{m+3}(\Omega))$. ② If, $p_1 \leq m + 1$ or $p_2 \leq m + 1$ or $q_1 + q_2 \leq m + 1$, then $g(x, t) \in C^2(0, \infty; C_0^{m+3}(\Omega))$. Our purpose is to find a sufficient condition to initial data

and f(x, t, u, v) under which the problem (*) admits a classical solution existing for all t > 0. We know some examples of equations which have such global solutions under so-called monotonicity conditions, small initial data conditions and so on, though we do not report them here. For the purpose, we construct (m)-solution, modified (m)-solution defined in this paper. Then we show that (*) has modified (m)-solution and it satisfies a certain variational inequality. And for the special cases:

$$u_{tt} + (\gamma - \Delta)u + c_0 u' + g(x)(u')^{2p+1} = 0$$

$$u_{tt} + (\gamma - \Delta)u + c_0u' + g(x)u^{2p}u' = 0$$

we show that there exists a set $W \subset V^{m+3} \times V^{m+2}$ such that if the initial values belong W, then the above equations admits (m)-solutions, where V^k are so-called escalated energy spaces (See the definitions in section 2). The interesting point of the set W is that it is not bounded in the space $V^{m+3} \times V^{m+2}$. Roughly speaking, the above equations admit global classical solution giving special initial data in $V^{m+3} \times V^{m+2}$ which are not bounded in this class.

Apart from this section, in Section 2, we prepare some notations of function spaces and make definitions of solutions of (*) and state main theorems, in Section 3, we make approximating equations, approximating solutions and make some lemmas, in final section 4 we give the sketch of proofs of Theorems.

2. Preliminaries

Let us put

(u, v)
$$\equiv \int_{\Omega} uv \, dx$$
, $|u|^2 \equiv (u, u)$,
(u, v)_k $\equiv ((-\Delta)^{\frac{k}{2}}u, (-\Delta)^{\frac{k}{2}}v)$, $|u|_{k}^2 \equiv (u, u)_{k}$, $k = 1, 2, \cdots$.

Let $\{\phi_j\}$ be a system of eigen functions of $(-\Delta)$ considered on $\mathring{\mathrm{H}}^1(\Omega) \cap \mathrm{H}^2(\Omega)$. Then, we put V as a set of all finite linear combinations of $\{\phi_j\}$ and put V_k as a completion of V by the norm $|\cdot|_k$. Then we know that $V_k \subset \mathring{\mathrm{H}}^1(\Omega) \cap \mathrm{H}^k(\Omega)$ and the norm $|\cdot|_k$ is equivalent in the space V_k to the standard norm of $H^k(\Omega)$. We now make definitions of solutions of (\star) .

[Def. 1] A function u(x, t) is said to be an (m)-solution of (*)

$$\iff$$
 (1) $u(x, t) \in C^1(0, \infty; V_{m+1}) \cap C^2(0, \infty; V_m)$

(2) u(x, t) satisfies for any $\phi \in V$

$$\begin{cases} \frac{d^2}{dt^2}(u(t), \phi) + (\nabla u(t), \nabla \phi) + \gamma(u(t), \phi) \\ + (f(\cdot, t, u(t), u'(t)), \phi) = 0 \end{cases}$$

$$u(0) = u_0, u_t(0) = u_1$$

Note. If there exists such (m)-solution u(x, t), then it is a global classical solution of (*) since $m \ge \left[\frac{n}{2}\right] + 1$.

- [Def. 2] Let $K(t) \in C^0[0, \infty)$, K(t) > 0 ($t \ge 0$). A function u(x, t) is said to be a modified (m)-solution controlled by K(t)
- \iff (1) $u(x, t) \in C^1(0, \infty; V_m),$
 - (2) $u(0) = u_0$, $u_t(0) = u_1$,
 - (3) $|u_1|_m^2 < K(0), |u_+(t)|_m^2 \le K(t) (t > 0),$
- (4) if there exists $[\tau_1, \tau_2] \subset [0, \infty)$ such that $|u_t(t)|_m^2 < K(t)$, $t \in [\tau_1, \tau_2]$, then u(t) satisfies the equation classically in the interval $[\tau_1, \tau_2]$.

We next define :

- [Def. 3] A set $W \subset V_{m+3} \times V_{m+2}$ is said to be an (m)-admissible set for (*) if it holds that for any $(u_0, u_1) \in W$ there exists an (m)-solution whenever (u_0, u_1) is chosen as an initial value of (*).
- [Def. 4] A set $W \subset V_{m+3} \times V_{m+2}$ is said to be an unbounded (m)-admissible set for (*) if W is an (m)-admissible set for (*) and further it is not bounded in $V_{m+3} \times V_{m+2}$.

We now state our main assertions.

[Th. 1] For any $(u_0, u_1) \in V_{m+3} \times V_{m+2}$, we have a modified (m)-solution controlled by K(t) \equiv K, where K is a constant

with $|u_1|_m^2 < K$. Further, the function u(x, t) satisfies,

- (i) $u(x, t) \in C^{0}(0, \infty; V_{m+2}) \cap C^{1}(0, \infty; V_{m+2})$ $u(x, t) \in L_{loc}^{\infty}(0, \infty; V_{m+3}), \quad u_{t}(x, t) \in L_{loc}^{\infty}(0, \infty; V_{m+2})$ $u_{tt}(x, t) \in L_{loc}^{\infty}(0, \infty; V_{m+1}),$
- (ii) $|u_{t}(\tau_{1}) u_{t}(\tau_{2})|_{m} \le C(t_{1}, t_{2})|\tau_{1} \tau_{2}|$, $0 < t_{1} < \tau_{1} < \tau_{2} < t_{2} < \infty$.
- [Th. 2] We can construct the function u(x, t) in Theorem 1 which satisfies the following modified variational inequality,

$$\int_{0}^{T} (u_{tt} + (\gamma - \Delta)u - g(\cdot, t, u, u_{t}), v(t) - u_{t})_{m} dt \ge 0,$$

$$\{u_{tt}(t) + (\gamma - \Delta)u(t) - g(\cdot, t, u(t), u_{t}(t))\}u_{t}(t) \le 0,$$
a. e. $t \ge 0$.

for any T>0 and $v(t)\in D\cap L^\infty(0,\ T;V_m)$, where D is an arbitrary bounded set in V_m . Further, if $D\equiv \{v\in V_m; |v|_m^2 < K\}$ and $|u_1|_m^2 < K$, where K is large enough, then a function which satisfies above inequality is uniquely determined in the class if we put the condition $u_t(t)\in D$, $t\geq 0$.

[Th. 3] If
$$m \ge [\frac{n}{2}] + 2$$
, and $f(x, t, u, v)$ is the form
$$f(x, t, u, v) = c_0 v + g(x) v^{2p+1}$$

or

$$f(x, t, u, v) \equiv c_0 v + g(x) u^{2p} v$$
,

then we can construct unbounded (m)-admissible set for (*).

3. Approximate equations and the solutions

Let F(y) be a function which satisfies

(i)
$$F(y) \in C^{2}(0, \infty)$$
, (ii) $F(y) \geq A/y^{\beta}$, $y \in (0, \alpha]$, $A > 0$ $\alpha > 0$, $\beta \geq 1$ (iii) $F'(y) \leq 0$, $y \in (0, \infty)$, (iv) $F(y) \equiv 1$ $y \in [1, \infty)$.

Now we consider the following problems :

$$\left\{ \begin{array}{l} \mathcal{L}_{\epsilon}(u) \equiv u'' + (\gamma - \Delta)u + f(x, t, u, u') + \epsilon F(\frac{K - E(t)}{\epsilon})u' = 0 \\ \\ t > 0, x \in \Omega \end{array} \right.$$

$$\left\{ \begin{array}{l} u(x, 0) = u_0(x), u'(x, 0) = u_1(x) \\ \\ u'(\cdot, t) \in V_m, t \geq 0, \end{array} \right.$$

where $\varepsilon > 0$, $E(t) = |u'(t)|_m^2$, $u' = D_t u$, and K > 0 is a constant with $|u_1|_m^2 < K$. Let $u_j^{\varepsilon}(t) = \sum_{i=1}^{j} \lambda_{j,i}^{\varepsilon}(t) \phi_i(\cdot)$ be a unique solution of the problem :

$$(\star)_{\epsilon j} \begin{cases} (\mathcal{L}_{\epsilon}(u_{j}^{\epsilon}(t)), \phi_{i}) = 0, t > 0, i = 1, 2, \cdots, j \\ u_{j}^{\epsilon}(0) = u_{0j} \equiv \sum_{i=1}^{j} a_{i}\phi_{i}, (u_{j}^{\epsilon}(0))' = u_{1j} \equiv \sum_{i=1}^{j} b_{i}\phi_{i}, \end{cases}$$

where, $(u_{0j}, u_{1j}) \longrightarrow (u_0, u_1)$ strongly in $V_{m+3} \times V_{m+2}$. Then we

have the following lemmas.

[Lemma 1] Suppose the above assumptions. Then there exists \mathbf{j}_0 such that

$$E_{j}^{\varepsilon}(t) \equiv \left| \left(u_{j}^{\varepsilon}(t) \right|_{m}^{2} < K, t \in [0, \infty) \right|$$

for each $j \ge j_0$, $\epsilon > 0$. (See lemma 2.1 in [1].)

[Lemma 2] Under the same assumptions, we have

(i)
$$\sup_{t \in [0,T]} \{ |u_j^{\varepsilon}(t)|_{m+3} + |(u_j^{\varepsilon}(t))'|_{m+2} + |(u_j^{\varepsilon}(t))''|_{m+1} \} < C,$$

(ii)
$$\epsilon F(\frac{K-E_{j}^{\epsilon}(t)}{\epsilon}) \leq C$$
,

for each fixed T > 0, where C are not depend on ε , j. (See lemma 2.3~2.4 in [1].)

[Lemma 3] Under the same assumptions, if we have

$$\sup_{\substack{\varepsilon \to 0 \\ t \in [\tau_1, \tau_2]}} \lim_{\substack{\varepsilon \to 0 \\ j \to \infty}} E_j^{\varepsilon}(t) < K$$

for an interval $[\tau_1, \tau_2]$, then we obtain a function u(t) belonging to $C^1(\tau_1, \tau_2; V_{m+1}) \cap C^2(\tau_1, \tau_2; V_m)$ and satisfying our equation in $[\tau_1, \tau_2]$. (See lemma 2.5 in [1])

[Cor. 1] If $\limsup_{\epsilon \to 0} E_j^{\epsilon}(t) < K$ for any t > 0, then we can $j \to \infty$

construct (m)-solution of (*).

[Cor. 2] If K > 0 is large enough for u_0 , u_1 and g(x, t), then by these approximate solutions $\{u_j^{\epsilon}(t)\}$, we can construct a local classical solution of (*).

4. Proofs of Theorems

4.1. Proof of Theorem 1

Apply to the results of Lemma $1 \sim 3$, then with the use of standard compactness argument we have the assertion.

Q.E.D.

4.2. Proof of Theorem 2

Since D is bounded in V_m , we can find a positive number K large enough such that K > max $\{|u_1|_m^2, \sup_{u \in D} |u|_m^2\}$ and which guarantees the condition of Corollary 2. Using this number K, we can construct modified (m)-solution u(x, t) by Theorem 1. Then, from (ii) of Lemma 2, we know that

$$\varepsilon F\left(\frac{K-E_{j}^{\varepsilon}(t)}{\varepsilon}\right) \longrightarrow \chi(t) \equiv \frac{-1}{E(t)} \left\{ (u'', u')_{m} + \gamma(u, u')_{m} + (u, u')_{m} + (u, u')_{m+1} - (g(\cdot, t, u, u'), u')_{m} \right\}$$

$$(\varepsilon \to 0, j \to \infty),$$

this implies that u(t) should satisfy

$$u'' + (\gamma - \Delta)u + g(x, t, u, u') + \chi(t)u' = 0$$

for a.e. $t \ge 0$ and $x \in \Omega$. Here we know that $\chi(t) \ge 0$ a.e. $t \ge 0$ and further $\chi(t_0) = 0$ for every t_0 with $E(t_0) < K$. Because, if $E(t_0) < K$, then we can prove that for some $\delta > 0$

$$\sup_{\substack{t-t_0 | \leq \delta \\ j \to \infty}} \lim \sup_{\substack{\xi \to 0}} E_j^{\varepsilon}(t) < K$$

holds. Then from Lemma 3, $\chi(t)=0$ should follow for $t_0-\delta \leq t \leq t_0+\delta$. Thus, for every T>0, u(t) satisfies

$$0 = \int_0^T (u'' + (\gamma - \Delta)u - g(\cdot, t, u, u') + \chi(t)u', v - u')_m dt$$

for $v(t) \in D \cap L^{\infty}(0, T; V_m)$.

This shows

$$\int_{0}^{T} (u'' + (\gamma - \Delta)u - g(\cdot, t, u, u'), v - u')_{m} dt$$

$$\geq \int_{0}^{T} \chi(t)\{|u'|_{m}^{2} - |u'|_{m}|v|_{m}\} dt \geq 0.$$

And

$$\{u'' + (Y - \Delta)u - g(\cdot, t, u, u')\}u' \leq 0$$
 a.e. $t \geq 0$

is obvious.

The final assertion of this theorem follows by setting w(x, t) as another function in this class and

$$v_{1}(s) \equiv \begin{cases} w'(s) & (0 \le s \le t) \\ u'(s) & (0 < s \le T) \end{cases}$$
 $v_{2}(s) \equiv \begin{cases} u'(s) & (0 \le s \le t) \\ w'(s) & (0 < s \le T) \end{cases}$

In fact, since $v_1(s)$, $v_2(s) \in D \cap L^{\infty}(0, T, V_m)$, we get

$$\int_{0}^{T} (u'' + (\gamma - \Delta)u - g(\cdot, t, u, u'), v_{1} - u')_{m} dt \ge 0$$

$$\int_{0}^{T} (w'' + (\dot{\gamma} - \Delta)w - g(\cdot, t, w, w'), v_{2} - w')_{m} dt \ge 0.$$

Therefore, $U(s) \equiv u(s) - w(s)$ should satisfy

$$\int_{0}^{T} (U'' + (\gamma - \Delta)U - g(\cdot, s, u, u') + g(\cdot, s, w, w'), U')_{m} ds \leq 0.$$

From this, we can lead to the Gronwall type inequality.

Q.E.D.

4.3. Proof of Thoerem 3

Suppose that

$$f(x, t, u, v) \equiv c_0 v + g(x) v^{2p+1}$$

where $c_0 > 0$ and g(x) is a function with our fundamental conditions in section 1 and further assume $g(x) \ge 0$ in Ω . Then, the modified (m)-solution u(x, t) satisfies

$$\frac{1}{2}\{|u'|_{0}^{2} + \gamma|u|_{0}^{2} + |u|_{1}^{2}\}' + c_{0}|u'|_{0}^{2} + \int_{\Omega} g(x)(u')^{2p+2} dx \leq 0.$$

$$\frac{1}{2} \{ |u'|_{m}^{2} + \gamma |u|_{m}^{2} + |u|_{m+1}^{2} \}' + c_{0} |u'|_{m}^{2} + (g(\cdot)(u')^{2p+2}, u')_{m} \leq 0$$

for a.e. $t \ge 0$.

From the first inequality, we get

$$|u'|_0 \longrightarrow 0 \quad (t \to \infty).$$

And since we have for some $\rho > 0$

$$|(g(\cdot)(u')^{2p+2}, u')_{m}| \le c|u'|_{m}^{2}|u'|_{m-1}^{2p}$$

$$\le cK^{p-\rho}|u'|_{0}^{2\rho}|u'|_{m}^{2},$$

Applying this to the second inequality, we have

$$\frac{1}{2}\{|u'|_{m}^{2} + \gamma|u|_{m}^{2} + |u|_{m+1}^{2}\}' \leq |u'|_{m}^{2}\{-c_{0} + cK^{p-p}|u'|_{0}^{2p}\}.$$

This implies $E(t) \equiv |u'|_m^2 \to 0 \ (t \to 0)$. Thus, for any $(u_0, u_1) \in V_{m+3} \times V_{m+2}$, we have the time $T \ge 0$ such that

$$|u_1|_m^2 = |u'(T)|_m^2$$
, $|u'(t)|_m^2 < |u_1|_m^2$ (t > T).

Then, the modified (m)-solution u(t) becomes genuine in $[T, \infty)$ and therefore if we write the correspondence as

$$X_{_{\mathbf{T}}}$$
 : $(u_{_{\mathbf{0}}}, u_{_{\mathbf{1}}}) \rightarrow (u(\mathbf{T}), u'(\mathbf{T}))$

and set

$$W = \{X_m(u_0, u_1) ; (u_0, u_1) \in V_{m+3} \times V_{m+2} \}$$

then we know W is an unbounded (m) admissible set for (*).

In the next, differentiating by t the equation

$$u'' + (Y - \Delta)u + c_0u' + g(x)(u')^{2p+1} = 0$$

we obtain

$$u^{(3)} + (\gamma - \Delta)u' + c_0 u'' + (2p + 1)g(x)(u')^{2p}u'' = 0$$
.

Then setting $U \equiv u'$, we have

$$U'' + (\gamma - \Delta)U + c_0U' + (2p + 1)g(x)U^{2p}U' = 0.$$

Therefore, applying previous result, we should have an unbounded (m)-admissible set in this case.

Q.E.D.

Note. This speech is based on the speaker's papers: [1] On solutions of semilinear wave equations, Nonlinear Analysis, T.M.A., 6, 467 - 486 (1982), [2] Modified variational inequalities to semilinear wave equations, ibd., 7, 821 - 826 (1983).