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On the global classical solutions to some classes of

semilinear wave eqguations

@A 32 R 5?4§Q_(Yukiyoshi Ebihara)

1. - Introduction

In this paper we are concerned with the initial-boundary

value problem for the following semilinear wave equation :

u, + (v —8)u + £(x, £, u, u ) =0, x EQ{‘t >0 ,
u(x, 0) = uo(x) R ut(x, 0) =u, (x), x €Q ,
u(a; t) =0 > EEBQ, t ; 0 5

where € is a bounded domain in R" with smooth boundary 3%,
Y 1is a nonnegative constant and £(x, t, u, v) 1is a polynomial

in u, v more precisely,

fix, t, u, v) = c,v + £,(x, t, u, v),

P b q, 9

£,(x, £, u, v) T g(x, t){cju ' +c v +cu v 2}

here c¢; are constants, p,;, ¢

i are positive integers and

i
g(x, t) satisfies following condition : Let m be an integer
with m;[g—]+l.®1f p,z2m+1, p,2m+ 1, g, +qg, 2
m + 1, then g(x, t) €c?(0, =; ™3 ). @ 15, p, <m+ 1 or

p, <m+1 or g, +g, <m+ 1, then g(x, t) ECZ(O, © . Cﬂ+3(9)).

Our purpose is to find a sufficient condition to initial data
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and f(x, t, u, v) under which the problem (*) admits a classi-
cal solution existing for all t > 0. We know some examples of
equations which have such global solutions under so-called
monotonicity conditions, small initial data conditions and so on,
though we do not report them here,’ For the purpose, we construct
(m)—éolution, modified (m)-solution defined in this paper. Then
we show that (*) has modified (m)-solution and it satisfies a

certain variational inequality. And for the special cases :

2p+1

u + (y = A)u + cou' + g(x)(u') =0

tt

’ 2p _
u ., t (y = AM)u + cyu + g(x)u "u =0 >

Vm+3 va+2

‘we show that there exists a set W C such that if the
initial values belong W, then the above equations admits (m)~
solutions, where Vk are so-called escalated energy spaces (See
the definitions in section 2). The interesting point of the set
W is that it is not bounded in the space V™3 xv®*?2, Roughly
speaking, the above equations admit global classical solution
giving special initial. data in V*3 xv™*2  which are not bounded
in this class.

Apart from this section, in Section 2, we prepare some nota-
tions of function spaces and make definitions of solutions of
(*) and state main theorems, in Section 3, we make approximating

equations, approximating solutions and make some lemmas, in

final section 4 we give the sketch of proofs of Theorems .
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2. Preliminaries

Let us put

(u, v) = J uv dx , |ul® = (u, w),
Tk x
(w, v, = (0%, 0%, Jul? = (w, W, , k=1, 2,---

Let {¢j} be a system of eigen functions of (- 4) considered
on HI(Q)fﬁHZ(Q). Then, we put V as a set of all finite linear
combinations of {¢j} ‘and put Vi as a completion of V by the

Then we know that VC H! (Q) nHk(Q) and the norm

norm |-|, .
| -1 is equivalent in the space V to the standard norm of
k A k
Hk(Q). We now make definitions of solutions of (*).
[Def. 1] A function wu(x, t) 1is said to be an (m)-solution
of (%)

1 © - 2 o -
& (1) u(x, t) €C (0, »; V__ ) NC™ (0, »; V)

(2) u(x, t) satisfies for any ¢ €V

2

Trwe), 9 + (vult), v0) + y(u(v), 9)

) + (£(-, t, ult), u'(£)), ¢) =0

u(0) = ug, ut(O) = u,

-

Note. If there exists such (m)-solution u(x, t), then it

is a global classical solution of (*) since m 2 [ %] + 1.
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[Def. 2] Let K(t) € Cc’[0, »), K(t) >0 (t >0). A func-
tion u(x, t) is said to be a modified (m)-solution controlled

by K(t)

— (1) u(x, t) € Cl (0, ©; V ):

m

(2) u(0) =u ut(O) = u

0° 12

(3) lu |2 < kO, Ju (®)]2 < K(t) (&> 0),

(4) if there exists [t,, t,] C [0, ») such that

[ut(t)li < K(t), telr,, T2], then u(t) satisfies the equation;

classically in the interval ([T,, T,].

We next define :

va is said to be an (m)-admi-

[Def. 3] A set W CV +2

m+3

ssible set for (%) if it holds that for any (u u )Je W there

o,

exists an (m)-solution whenever (u,, u;) 1is chosen as an

initial value of (%).

[Def. 4] A set W C Vm+3 XVm+2 is said to be an unbounded

(m)-admissible set for (%) if W 1is an (m)-admissible set for

(*) and further it is not bounded in V x .
m+3 m+2

We now state our main assertions.

[Th. 11 For any (u,, u,) €V v we have a modified

X
m+3 m+2°

(m)-solution controlled by K(t) = K, where K 1is a constant
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with Iull; < K. Further, the function u(x, t) satisfies,

) NC1 (0, © ;V_..)

(1) u(x, t) ec’(o, 2

® ;Vm+2

u(x, t) €LY (0, = ;Vo,), u.(x, t) €Ly (0, = ;V_, )
u, (%, £) €ELG (0, © 5V 1),
(i1)  Jug () - (r )| 2 cle,s ) T, - 1,0 »
0 <t1 <T1 <T2 <t2 < o,

[Th. 2] We can construct the function u(x, t) in Theorem
1 which satisfies the following modified variational inequality,

T
J (e + (v =8)u - g, & v, u), v(t) - u)dt 20,
0

{fu  (8) + (v = B)u(t) - gl t, ult), u (t))lu (t) 20,
a. e. t 2 0.

for any T > 0 and v(t)E D an(O, T;Vy), where D 1is an

arbitrary bounded set in Vy. Further, if D = {v€ Vg |v|2 < K}

2

n < K, where K is large enough, then a function which

and |u |
satisfies above inequality is uniquely determined in the class

if we put the condition wu, (t) €D, t 2 0.

[Th. 3] If m >[3] +2, and f(x t, u, v) is the form
2p+1

f(x, t, u, v) Zc,v +gx)v

or
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2
fi{x, t, u, v) = c,v + g(x)u Py

3

then we can construct unbounded (m)-admissible set for (x).

3. Approximate equations and the solutions
Let F(y) be a function which satisfies

(1) F(y) €c’(0, »), (ii) F(y) 2 A/yB, ye(0, al, A > 0
a>0, B21 (iii) F'(y) <0, y€(0, =), (iv) F(y) =1
y €1, =»).

Now we consider the following problems :

L) =u” + (v - Mu+ £(x, £, u, u) + eF(EEEL G <0

t >0, x€EQ

(%) 9
u(x, 0) = uy(x), u (x, 0) = u,(x)
\u'(-’ t)Evm,t;O,
where € > 0, E(t) = |u'(t)|; , u =Du, and K >0 is a

. j €
constant with Iullrfl < K. Let ug(t) Zg=l >‘j ; (B, (+)  be.
3

a unigue solution of the problem

(ia(u§(t)), ) =0, £t>0, i=1,2, ---, j
o] '

> _ 3 € r_ - 3
ul(0) = ugs = Jig ae; , (ug(0))" =ugy = Qi) bydy

i

where, (qu’ ulj)—)(uo, ul) strongly in Voes Vioeo- Then we
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have the following lemmas.
Then there exists

[Lemma 1] Suppose the above assumptions.

such that

3o
|(u§(t)’|; <K, tE€E[0,®)

€ -
E.(t) =
J( )
for each j > j, , € > 0. (See lemma 2.1 in [1].)
[Lemma 2] Under the same assumptions, we have
: € € 7 c ”
(i) sup {luj(t)[m+3 + I(uj(t)) lm+2 + I(uj(t)) |m+1} <G,
tE[0,T]
€]
K-ES (t)
(ii) eF(—2—) <c,
for each fixed T > 0, where C are not depend on €, j. (See
lemma 2.3~ 2.4 in [1].)
[Lemma 3] Under the same assumptions, if we have
sup lim sup ES(t) < K
€0 J
telt,,T,] jroo
be-

for an interval [t , T,], then we obtain a function u(t)
R ;Vm+l) ﬂCZ(Tl, T, sV,) and satisfying our

longing to Cl(tl, T
(See lemma 2.5 in [11])

equation in [t,, T,].
[Cor. 1] If 1lim sup E?(t) < K for any t > 0, then we can
€0 ]
j-)-co



133

construct (m)-solution of (x).

[Cor. 2] If K > 0 is large enough for u,, u; and
g(x, t), then by these approximate solutions {ui(t)}, we can

construct a local classical solution of (*).

4. Proofs of Theorems

4.1. Proof of Theorem 1

Apply to the results of Lemma 1~ 3, then with the use of

standard compactness argument we have the assertion.

4.2. Proof of Theorem 2

Since. D is bounded in V_, we can find a positive number
K large enough such that K > max {|ull;, igg [uié} and which
guarantees the condition of Corollary 2. Using this number K,
we can construct modified (m)-solution u{x, t) by Theorem 1.
Then, from (ii) of Lemma 2, we know that

K-E%(t)
3 -1 " r r
-——E(t){(u >ou ) +toyl(u, u)

eF ( ) >x (t)

€

+ (u, u')m+l - (g(-, t, u, u'), u')m}

(e >0, j »>x),

this implies that wu(t) should satisfy
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u + (y - A)u + gix, t, u, a’) + X(t)u' =0

for a.e. t > 0 and x €Q. Here we know that x(t) > 0
a.e. t > 0 and further Xx(t,) = 0 for every t;, with E(t,) <
K. Because, if E(to) < K, then we can prove that for some
§ >0
sup lim sup E€(t) < K
lt-t, <8 e>0 J
holds. Then from Lemma 3, x(t) = 0 should follow for t, - § <

t<t, +38. Thus, for every T > 0, u(t) satisfies

T

0 = f (" + (y - A)u - g+, £, u, u’) + X(t)u', v - u')mdt
0

for v(t) €DNL”(0, T ; V).

This shows

T I/

W + (y - Mu - g, t, u, u'), v - u')mdt

—

0

T
2 J x (&) {|u"|2 - |u'|_|v]| }at > o.

n

(u + (Y =Mu -g, t, u u)lu 20 a.e. t

v
(o]

is obvious.
The final assertion of this theorem follows by setting

w(x, t) as another function in this class and

11

w (s) (0<s<t) | u’(s) (0<s<t)
v, (s) { vz(s)EE{

u’'(s) (0<sZ<T) w'(s) (0<s<T).
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[o o]
In fact, since v (s), v,(s) eDNL (0, T, Vp), we get

T
J (u" + (y - Mu - g(-, t, u, u’), v, - u')mdt >0
0

v

T
J W'+ (f - 8w =g, £, w, w), v, - w)pdt 20 .
0 .

Therefore, U(s) = u(s) - w(s) should satisfy

T
L)(U" + (y - MU - g(-, s, u, u') + g(-, s, W, w'), U’)mds < 0.

From this, we can lead to the Gronwall type inequality.

Q.E.D.

4.3. Proof of Thoerem 3

Suppose that

2p+l
f(x, £, u, v) = cyv + g(x)v

where c, >0 and g(x) 1is a function with our fundamental
conditions in section 1 and further assume g(x) 20 in .

Then, the modified (m)}-solution u(x, t) satisfies

1 : f 2p+2

E{Iu'|: + Yluls + fuli}' + colu'|: + Jgg(x)(u') P™%ax < 0,

1 - 2p+2
S22+ ylul2 + Jul2, 3 +cplu’[2+ (@) @), uh 20

for a.e. t 2 0.

From the first inequality, we get

lu'l, —0 (t>x).

10
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And since we have for some p > 0

2p
m=-1

[(g(-)(u')2P+2, u’)

fin

ol 2 elulfzlu’]

A

CKP—Dl 'IZDI e
0 m
Applying this to the second inequality, we have

1 ' ’ ' P-p 1 2p
5{[u }; + yIuI; + ]u|;+l} < |u l;{-c0 + cK lu’| P},

This implies E(t) = ]u'l; -0 (t - 0). Thus, for any (uy, u;)€
\Y xV , we have the time T > 0 such that
m+3 m+2 =
2 _ ' 2 ’ 2 2
lu 12 = Ju"(m|2, (o' (&)]2 < lull (>,

Then, the modified (m)-solution u(t) becomes genuine in [T, «)

and therefore if we write the correspondence as

X, (u,, u,) — (u(T), u' (7))

T 0

and set

W= X (ug, uy) 5 (u,, ug) €V, xV .} s

3

then We know W 1is an unbounded {m) admissible set for (x).

In the next, differentiating by t the equation

n

u’ + (Y - Au +cu’ + g(x) (u")2P*?

=0

we obtain

u'® 4 (v - mu’ + cu” + (2p + Lgx) (u)*Pu” =0 .

11
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Then setting U = u', we have

u” ¢ (v - MU + ¢, U’ + (2p + 1)gx)UPu’ =0 .

Therefore, applying previous result, we should have an unbounded

(m) ~admissible set in this. case.
Q.E.D.

Note. This speech is based on the speaker's papers : [1l] On

solutions of semilinear wave equations, Nonlinear Analysis.,
T.M.A., 6, 467 - 486 (1982), [2] Modified variational inequali-

ties to semilinear wave equations, ibd., 7, 821 - 826 (1983).

12



