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§1. Introduction.

There are important and interesting inverse problems in geo-
phisics. Among others, reflection seismology attempts. to deter-
mine the inside structure of the earth, from the seismographic
profiles on the surface.

In the one-dimensional model, this problem is governed by

the hyperbolic equation
(1.1) p(z)ato - 9 (u(2)3 y) = 0 (250, £>0),

with the displacement y=y(z,t). The variables z and t stands
for the space and the time, and p=p(z) and u=u(z) are the
rock density and the elastic coefficient, respectively. The co-
efficients (p,u) represent the inside structure of the earth,
and are assumed to be unknown. We consider the boundaryscon-

dition
(1.2) - u(O)SZy|Z=O = g(t) (t>0)

with the initial condition



(1.3) 0 (z>0),

V|t=0 = %Y |t=0 =

where g=g(t) 1is the excitation communicated to the medium sur--
face, supposed to be known. Our task is to determine the un-
known coefficients (p,u) by the inhomogeneous term g(t) as

well as by the "seismogram"

(1.4) f(t) (0<t<T),

= ylz=0

which means the recording of the vibratory state of the surface.
—— That is the problem which Bamberger-Chavent-Lailly [1]

studied, and we want to start with its review.

§2. Identification and identifiability.

For each (p,u) and g , there exists a unique solution

y=y(z,t) of (1.1)-(1.3). We put
(2.1) Y(p,ust) = Y| z=0"

Bamberger-Chavent-Lailly [1] suppose that the upper and the low-

er bounds Pys My of p,u are given:
O<5_;p(Z)iD+<W, O<u_su(z)<u, <=,
and specifies a set of admissible parameters (p,u) by ZI:
L= {(p,u)eL”(0,)° | p_2p(2z)2p,, u_;y(z);u+, a.e. zl}.
Their ultimate purpose is to construct (p¥*,u¥)eX such that

(2.2) Y(p¥*,u*;t) = £(%) (0<t<T),



for given seismogram f=f(t).

‘They formulate this problem as the optimization problem

(2.3) Min  J(p,u),
(p,u)el
where
T 2
(2.4) J(p,u) = [ (Y(p,ust) - £(t)) 4¢.
0

To show the solvability of (2.3), they introduce a topology T
in ¥ , which is strong enough to make J continuous and is
simultaneously weak enough to make ¥ compact. Therefore, the
optimization problem (2.3) has a solution (p¥,u*¥)eX. If J(p¥,
u¥)=0 , the equality (2.2) is satisfied. |

Ill-posedness, the lack of stability, has been reported
both theoretically and numerically. See the references of [1].
Consequently, the topology T is rather weak compared with the
ordinary ones, for example, Lp'topology.

This kind of constructive approach 1s called the "identifi-
cation". While there is the "idendifiability" problem, stated
as follows. Let (po,uo) be the genuine coefficients whose

seismogram is f=f(t). Then,
(1) (uniqueness) Does J(p¥,u*)=0 1mply (p*,u*)=(p0,uo) ?

(2) (stability) Is (p¥,u¥) near from (po,po), if J(p¥*,u¥*)

is small ?

In thils way, identification concerns with the existence of the

unknown coefficients (p¥,u¥) such that (2.2), while identifia-



bility examines their uniqueness and stability. We want to
study the latter in this article.

The approach [1] gives some kind of stability. In fact, if
the uniqueness (1) is satisfied, the stablility (2) holds in the
T-topology by the compactness of ¥ . However, our approach 1s
quite different. Without assuming that the upper br the lower
bounds of (p,u) are given, we want to derive an estimate to
show the stability (2). Consequently, we don't use the compact-

ness argument.

§3. Formulation of the problem.

The equation which we study here is slightly differenf from
that of [1]. As is noted in [1], it is impossible to determine
both (p,u) from (f,g) . Namely, the uniqueness (1) doesn't
hold for any (f,g). By the Liouville transformation (e.g. [31),

we transform the equation

() e(2)3,y - 3, (u(2)3,y) = 0
into
(b)  3,%u + (=32 + p(x))u = 0
t X 3
and pay attention to only one coefficient p , in stead of
two coefficients (p,u). Furthermore, we consider (b) on

the compact interval [0,1] for the space variable x

2 2

(3.1) 3,

u + (—BX + p(x))u=0 (0<x<1l, =o<t<o),

In stead of the non-homogeneous boundary condition (1.2) and

4._
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the homogeneous initial condition (1.3), we consider the homo-

geneous boundary condition

(3.2) (—3X + h)u|x=0 = (BX + H>uix=l = 0 | (=<t <®)

and the inhomogeneous boundary condition

(3.3) uy = a,(x), IeM|g=0 = a(x) (0<x<1),

t=0

respectively. As before, the coefficient P=(p,h,H)€CO[O,1]XRXR
is unknown. Furthermore, we suppose that the initial value a=
(ao,al)eHi(O,l)XLi(O,l) is also unknown and that instead

two boundary values

(3.4) Ujy=g = fo(t), u) fl(t) (-T<t<T)

x=1 -

are dbserved and known for some T>0.

In this way, our identifiability problem is formulated as
follows: Let P=(p,h,H)€CO[O,1]XRXR and a=(ao,al)eHi(O,l)X
Li(O,l) be the unknown parameters, and let u=u(x,t)€C2((—m,w)
+Hi(0,l))nC%((—m,W)+L§(O,1)) be the solution of (3.1)-(3.3).

De fine fo,f as in (3.4). Now, let

1

2

2
(3.5) 3. v+ (-3

+ q(x))v =0 (0<x<1, —w<t<m)

be another equation with

(3-6) (—BX + j)V]X___O = (EX + J)le=1 = 0 (_co<t<oo)
and
(3.7) vlt=0 = bO(X), 3t lt=0 = bl(X) (O<X<l),

NY



where Q=(q,j,J)€CO[O,l]XRXR and b=(bo,bl)eHi(O,l)XLi(O,l).

The functions €0 € defined by
(3.8) €0(t) = V30 = Y|x=0° AL P Ry P
(-T<t<T)

stand for the errors of identification. .Then, the problems are;

(P1, uniqueness) Does €,=¢€ =0 (-T<t<T) imply (Q,b)=(P,a) *?

1

(P2, stability) Is - (Q,b) near from (P,a), if (eo,el) is

small ¢

Compared with the original equation (1.1)-(1.3), the equa-
tion (3.1)-(3.3) may look simpler. However, our problems con=-

tain the essential difficulties of the original ones.

§4, Summary.
Putting a,=a.=0 in (3.3), we get u=0 for each P=(p,h,H).

Hence 80=€1=O if b0=b1=0, for any Q=(q,j,J). In other words,

the uniqueness (P1l) doesn't hold without any assumptions on the

unknown equation (3.1)-(3.3).

Notation 1. For P=(p,h,H)€CO[O,1]XRXR N A=AP denotes

the realization in L2(O,1) of the differential operator —8X2

+p(x) with the boundary condition (—8X+h)[X=O=(a +H)IX=1=0-

X
The set U(AP)={An}n=O denotes its eigenvalues: —m<l0<xl<---+

o, The L2—normalized eigenfunction corresponding to Xn is de-

noted by ¢n.



Notation 2. For P=(p,h,H)€CO[O,l]XRXR and a=(ao,al)a
H1(0,1)x1°(0,1), the equation (3.1) with (3.2)-(3.3) is denoted

by E(P,a).

Definition 1. We say E(P,a)eG 1if

(4.1) (a)% + (aD)? # 0 (n=0,1,2,+++),
where

0 _ 1_
(b.2) a = (ao,¢n), a, = (a1,¢n).

Henceforth, ( , ) denotes the L2—inner product.

Theorem 1 (Uniqueness). If E(P,a)eG , T>2 and eo(t)=

al(t)=0 (-T<t<T) , then (Q,b)=(P,a) follows.

Remark 1. The condition E(P,a)eG is necessary for the u-
niqueness (Q,b)=(P,a). It is open whether T>2 1is also neces-
sary or not. In view of the property of finite propagatibn of
hyperbolic equations, it is obvious that a sufficient large T>0

must be taken.

In this way, G 1is a class of "good" unknown equations, and pro-

vides us with good data f0=u|X=O, f For E(P,a)eG

1 % x=1"
and only for E(P,a)eG , the uniqueness (P1l) holds.
To establish the stabllity estimate, we furthermore intro-

duce the following

Definition 2. For o>1/2 , we say E(P,a)eGa if pe

c%r0,1] and



2

(5.3) M MDY < (%) (@) + (a)F < m (n"+D) T

(n=0,1:2,o..)
hold for some Ma>0'
1 2 .
By a=(ao,al)€H (0,1)xL"(0,1) , the relation

2 2
+ |]a
1121, L, * el 1P,

2 0.2 1.2
{(n"+1)(a )" + (a) ' ¥ a
n n 4 , 1L°(0,1)

!

n=0

< ®
holds, and 0>1/2 must be satisfied. In fact, we have

D((ap + VP = w0, 1)
for sufficiently large A>0 and also the asymptotic behavior

(4.1 o = xn1/2 = nm + 0(1/n)  (now).

See [3].
The condition E(P,a)eGa assures us of some crucial regu-

larity for the data f Actually, the theory

Fo=% x=0> T17Y|x=1"

of non-harmonic Fourier series [5] gives

(4.5) fys f1 € Hi(—T,T) for 0<B<a+l/2
and
)

(4,.6.1) fO, fl 4 Ht(-T,T),
for

a+1/2 (1f a+l/2 # 1,2,++)
(4.6.2) § = { '

at+l/2 + € (otherwise)
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with €>0. See Lemma 3 of §6.
We assume that at the stage of ‘identification de -
scribed in the. preceeding section, approximation is done

over- this natural regularity.

Theorem 2 (stability). Supposev E(P,a)eGa (a>1/2) and

T>2. Then, for each k>0, there exists C(x)>0 such that

(H.7) q - i —n| + |7 -H
I plng(O,l)_+ |3 |+ ] l
< Cc){|lenl! € }
= ll OI]H%+2(—T,T) + || lliH%+2(—T,T)

for <Q,b>=<q,J,J;bn,b1)800[0,1]xRXRxH1(0,1)XL2(0,1) with

(4.8) Hall » + 3l + 19 2«
L°(

0,1)
It seems to be difficult to realize such an identification as

+ 0, in aspite of ¢

f.
(_T3T> 1

OS

[feq ! eq !l
<0 LG D

Hi(—T,T) (8>a+1/2). 1In this context, Theorem 2 has no practical

meaning. Nevertheless, it does have some sense. Actually, we

can show that the norm |]e is best possi-

t t

ble in (4.7), which proves the significant ill-posedness of the
problem. Furthermore, we can emphasize the importance of the

irregularity of the data fO’ fl in the identification. Hyper-

bolic equations preserve the irregularity of initial values, and
the gap of the exponents of the Sobolev spaces between the er-

rors €.,€ in (4.7) and the data f0=u f in (4.5)

0°f1 |x=0° *17%|x=1

is only ’3/2 + € (e>0). In this connection, we would like to

call (4.7) the "semi-wellposedness". —— We cannot expect such
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an estimate any more for parabolic equations because of their

smoothing property.

§5. Deformation formula.

The solution u=u(x,t) which we handle with is rather ir-
regular, and we must be careful in later caluculations. In any
case, u=u(x,t)eCO((—M,W)+H1(O,l))ncl((—w,W)+L2(O,

t X t X
1)) is continuous by Sobolev's imbedding.

Let Qc(0,1)x(-w,») Dbe a domain.

Definition 3. A continuous function wu=u(x,t) satisfies

2
(5.1.1) Bt u + (—BX

2 4 p(x))u = 0

(5.1.2) (<3, + h)u| o =0

in the generalized sense in Q if

[o0]

1
(5.2) f dtfodx u(x,t){¢tt(x,t) - ¢XX(X,t) + p(x)o(x,t)}

- 0O

[oe]

=f at u(0,t){¢,(0,t) - h¢(0,t)}
holds for each ¢=¢(x,t)eCS(R2) with supp ¢:n [0,11x(-o,®) c @

n [O’l))((_.oo,oo) .-

Obviously, the solution u=u(x,t) of E(P,a) satisfies (5.1)
in the generalized sense.

For T>0 , let
(5.3) Qg = {(x,t) | O<x<min(1,T), -T+x<t<T-x}.

We then have
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Proposition 1. For given f=f(t)€CO[-T,T], there exists a

unique u=u(x,t)sco(§f) such that (5.1) in the generalized
sense in QT and
(5.4) ulx=0 = £(t) (-T<t<T).
For the proof, see [4], for instance.

Our basic idea is to combine two solutions wu=u(x,t) of
E(P,a) and v=v(x,t) of E(Q,b) through the Gel'fand-Levitan

kernel K=K(x,y) ([2]). More precisely, let
(5.5) D = {(x,y) | O<y<x<1l}.-

Lemma 1. For given p,quO[O,1] and h,jeR , there exists

a unique K=K(x,y)=K(x,y;q,j;p,h)eCl(E) such that

(5.6.1) Koy = Kyy + p(y)K = gq(x)K

in the distributional sense in D with

X

(5.6.2)  K(x,x) = (j-h) + Zf (q(s)-p(s))ds  (0gx<1)
0

and

(5.6.3) Ky(x,O) = hK(x,0) (0<x<1).

Lemma 2. If u=u(x,t)eCO([O,IJX(—m,w)) satisfies

2

n 2
(5.7.1) 3 "u+ (=3,

+ p(x))u=0
(577.2) (-3 + h)uIX=O =0

in the generalized sense in QT s then

11
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. .
(5.8) V(x,t) = ulx,t) + / K(x,y39,33p,h)uly,t)dy
0
£ co([o,ljx(-w,w))

satisfies

(5.9.1)  8,°V + (-3 ° + q(x))V = 0

(5.9.2) (=2, + V|, ;=0

in the generalized sense in QT and

(=eo<t<m) .

x=0

(5.10) V.4

= u)

The relation (5.8) is called the deformation formula. The point
is that the kernel K is independent of t . For the proof of

these lemmas and their background, see [4].

§6. Non-harmonic Fourier series.

[ee]
Recall that O(AP)—{An}n=O denotes the eigenvalues of AP

and

(6.1) w, = Anl/e = nm + 0(1/n) (n=»w) .

Since the solution u=u(x,t)802((—W,w)+Hi(O,1))nC%((—w,w)+Li(O,

1)) of E(P,a) is given as

(6.2) u(x,t) = nzo{ag cos wt + alsinwt /o (x),
we have

(6.3.1) fo(t)EulX=O= nzo{agcos wnt + aisin wnt/wn}¢n(0)
(6.3.2) fl<t)5u[x=l= Z {agcos w t + aisin wnt/wn}¢n(1),

o
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where

0 _ 1 |
(6.4) 2 = (a5,0,), an = (a),0,).

Noting the relation ([41])

(6.5) 0 < Inf {[¢_(0)], [¢ (1)]; n=0,1,2,%+-}

A

Sup {|¢n(0)|, |¢n(l)|; n=0,1,2,+++} < +o,

. . S~ 00 N
we consider the following class of seguences aO—{an}n;O’ al—

1
{an}n;O for the exponent £2>0.

Notation 3. We say a=(ao,a1)exB if
= 0)2 +

(6.6) |a]]? (0®+1)P{(n%+1) (0 ()%} < w.
XB n=0

We assume
(6.7) peCY[0,1] for y=max(B-2,0).

Then,

~ A A

Proposition 2. For a=(ao,al)5XB (B>0) and T>0,

A

I\O l .
{an cos wnt + a_ sin wnt / wn}

o~z

(6.8) fN(t) =

n=0

¢onverges in Hz+l(-T,T) as N-oowo,

The 1limit

- 20 A - a0
£(t) = . {an cos w t + a’ sin w t / wn} z o(a)

le~1 8

0

is called the "non-harmonic Fourier series". The operator

® 1 Xy - et (o, m)

13
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is bounded. Set

(6.9) YB = @(XB).

Lemma 3.
(1) If T<1 , & 4is not injective. The relation
(6.10) Y = H§+1(-T,T) (0<B<1/2)

H€+1(—T,T) (1/2<8)

holds.
(ii) If T>1 , we have YB; Hi+l(—T,T). However, ©&: XB -+
YB 1s an isomorphism:
o
o112, = 1 @5DPe®e)? + ah?).
He ~(-T,T) n=0
(iii) If T=1 , ¢: X, » Y is an isomorphism. The relation

8 B
(6.10) holds.

(iv) In any case, the relation

o+l _
(6.11) YB n Ht (-T,T) = Ya
holds, provided
1. 1
(6.12) B—E'# 0,1,2,¢°-, and 0<a-B<3.

For the proof Proposition 2 and Lemma 3, see [51].

§7. Outline of the proof of the uniqueness theorem (Theorem 1).

We suppose E(P,a)eG , T>2 and

(7.1) Eo(t) = VIX:O - L'LIX_O = O_, €l(t) = le=1 - ulX=l =
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(-T<t<T),

where u=u(x,t) and v=v(x,t) are the solutions of E(P,a) and
E(Q,b) , respectively. Let K(x,y)=K(x,y;q,j;p,h) be the ker-

nel of Lemma 1 of §5, and put
X

(7.2) V(x,t) = u(x,t) + f K(x,y)u(y,t)dy.
O .

By virtue of Lemma 2, ;V=V(x,t)€CO([O,l]X(—w,m)) satisfies

2
(7.3.1) 9.7V + (—BX

2 4 q(x)V = 0

(7.3.2) (=3, + DV 4=

in the generalized sense in QT={(X,t)[O<x<min(1,T), -T+x<t<T-x}

and

(7.3.3) V’X=O = uIX=O = V|X=O ("T;t__iT)
by (7.1).

Therefore,
(7.4) V=v (on ﬁT)

holds by Proposition 1 of §5. 1In particular, we have

(-T,<t<T))

(7.5) Vet

- le=l - ulx=1
by (7.1), where

(7.6) T, =T - 1,

Hence by (7.2),
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(7.7) [ K(1,y)uly,t)dy = ) {ag cos wnt + ai sin wnt /wn}

0 n=0

1
x IQK(l,y>¢n<y>dy = 0 (-T,262T ).

Since T =T-121 , (7.7) yields

1 1
(7.8)  adf K(1,y)¢_(y)dy = alf K(1,y)¢_(y)dy = 0 (n=0,1,2,+)
0 | 0 ,
by Lemma 3 of §6, so that
, 1
(7.9) [ (1,306, (y)dy = 0 (n=0,1,2,-*)
0
from the assumption E(P,a)eG . Hence
(7.10) K(1,y) = 0 (0<y<1).

On the other hand, the relation
1

(7.11) (K(1,1)-J+H)u(1,t) + [ Kx(l,y)u(y,t)dy =0
0 ,

follows from (7.2), (7.4),

(7.12) “(aX + H)u|x=l = 0"
and
€7.13) ”(3X + J)le=l = 0",

We should be careful about the regularity of u and

(7.12)-(7.13) must be taken in the generalized sense.

cise proof of (7.11) is given in [4].
Now, in the same way, the equality
1

(K(1,1)-J+H)u(1l,t) + [ K _(1,y)uly,t)dy
0

(

A%

-T ;t;Tl)

1

, and

The pre-
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{agcos w b+ aisin wnt/wn}{(K(l,l)—J+H)¢n(l)

il
Il o~ 8

n=0

1
+ fOKX(l,y)¢n(y)dy} =0 (—Tlét;Tl)
gives

1
(7.14) (K(l,l)—J+H)¢n(l) + f Kx(l,y)¢n(y)dy =0 (n=0,1,2,++).
0

The asymptotic behavior

(7.15) ¢ (1) = Z(-1)™ + 0(1/n) (n>e)
n V2
1s known ([3]). On the other hand, Parseval's relation
I I I :
K_(1,+) = ()] K (1,y)¢6 (y)dy)™ < e
X 12(0,1) n=0 "0 ¥ n
gives
1
lim | K (1,y)¢_(y)dy = 0.
n+e 0
So that (7.14) gives
(7.16) K(1,1) = J +H=0
and
1
J B (138, ()dy = 0 (0=0,1,2,- 1),
Therefore,
(7.17)" Kx(l,y) =0 (0<y<1)
holds.

We now recall that K=K(x,y) satisfies (5.6). It 1s known

that the relations (7.10), (7.17), (5.6.1) and (5.6.3) give K=0

V7
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on D. See [4]. Therefore,

(7-18) (q;J:J) = (psh,H)

follows from (5.6.2) and (7.16). Now, (7.1) and (7.18) yield

(7.19) nzo{cg cos wnt + oi sin wnt / mn}¢n(0) = 0 (-T<t<T)
for

0o _ 1
(7.20) c, = (aO - by ¢n)” c = (al - bl’ ¢n)-

By (6.5), T>2 and Lemma 3, we get

0 1

cn = cr1 =0 (n=0,1,2,°°°),
hence
(7.21) ag = bO’ a; = b1

In this way,

(7.22) (Q.b) = (P,a)

is obtained.

§8. Outline of the proof of the stability theorem (Theorem 2).

Let E(P,a)eGa (a>1/2) , T>2 and

(8.1) EO(t) = VIX=O - ,u|X=0’ El(t) = V!X=1 — UIX=1 (-T;t;T),

where u=u(x,t) and v=v(x,t) are the solutions of E(P,a)
and E(Q,b), respectively. Since EOZO, it is impossible to

combine v with u directly as in (7.2), this time.
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Let

(8.2.1) L(x,y) = K(x,y3;9,33;p,h)

(8.2.2) M(x,y) = K(x,y;p,h3q,J).

By Lemma 2, the continuous function

~ X
(8.3) U(x,t) = v(x,t) + [ M(x,y)v(y,t)dy
0

satisfies

(8.14.1) at25 S p(x))U = 0

(8.4.2) (=3, + M)V 4 =0

in the generalized sense in (0,1)x(-«,), Therefore, again by

Lemma 2, the continuous function
~ X ~
(8.5) V(x,t) = U(x,t) + [ L(x,y)U(y,t)dy
0

satisfies

2

(8.6.1) atgv + (=2 2+ q(x))V = 0

(8.6.2) (=3, + V|, =0

in the generalized sense in (0,1)X(-»,»), Now, we have

(6.7 Vix=0 = Ylx=0 T Y|x=0 (mestee),
so that
(8.8) V= v on [0,1]x(-w, =)

by Proposition 1 of §5.



Let
(8.9) w=U-ue c20,17x(=w,®)).

Then, w=w(x,t) satisfies

(8.10.1) atzw + (_3%2 + p(x))w = 0
(8.10.2) (-3 + h)le=O =0,
as well as
(8.10.3} Wlx=0 = Glx=0 - u]x=0
= Vx=0 T Y|x=0 ~ €y ()

21

(-T<t<T).

Re-exaiming the proof of Proposition 1, we see that the relation

(8.10) yields
Claim 1. The estimate

(8.11) [ Jw(x, ) 1] 40

Ht (=T+x,T-x)

< clleyl]
0 H%+2(-T,T)

holds for each x 1n 0<x<l. The constant

p,h and T.
Next, we note the equality

(8.12) el(t)

i
<

1 ~
= [OL(l,y)U(y,t>dY T Yx=1

] e

HY (=T+x,T-x)

C depends only on

=1 = (V-—U) IX=1 - (U-U.) IX=1
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1 1
= [ L(1L,y)uly,t)dy + [ L(L,y)w(t,y)dy ~ w(l,t),
0 0

derived from (8.5). By means of the proof of Lemma 1 of §5, the

estimate

(8.13) L1, 1120 1) 260
y 3
is shown, providéd

(8.14) [all 5 + 13l 2 <.
L

3
Therefore, the function

1
(8.15) £(t) =/ L(1,y)uly,t)dy
0

satisfies, for T1=T—1,

el s < w0
= ? at+?2
He "(=Tp5 Ty e " (=TpTy)
+ el + L1, ) || .
1 H%+2(-T1,Tl) ~L§(o,1)
x sup [w(y, )| 4o :
Hence we obtain
(8.16) | £]] < )t leyl|
ot+2 = 0 o+2
He (—Tl,Tl) He (-T,T)
+ {leql] }
1 H%+2(—T,T)
by (8.11) and (8.13).
Furthermore, from the relation
~ X ~
(8.17) v(x,t) = U(x,t) + [ L(x,y)U(y,t)dy

0

21



23

X X
= w(x,t) + [ L(x,y)w(y,t)dy + u(x,t) + [ L(x,y)u(y,t)dy,
0 0
we get in the same way as in (7.11) that

Claim 2. The equality

(8.18) g(t)

]

—WX(l,t) - (L(1L,D)+I)w(l,t) - Jf(t)

1

f L (1,y)+IL(1,y) hw(y,t)dy
0

holds, where

1

(8.19) g(t) = J L (1,y)uly,t)dy + (L(1,1)-J+H)u(l,t).
0

Since the estimate

(8.20) L (1,)]] < C(k)
, X L;(O,l)

holds as in (8.13), we obtain

(8.21) e < c) e, »
Hg+l(-T1,Tl) 0 H%+2(—T,T)
+ eyl }s
1 'H%+2(—T,T)
provided
(8.22) [all 5 + 3l + 13 2 x.
L™ (0,
Now, we recall
1
(8.23) £(t) = { L(1,y)uly,t)dy
0
= § (a cos wt + alsinw t / o }I;L(l Yo (y)d
nep D n n n n'’, 2I )P Y IAT

By the assumption E(P,a)eGa , we get
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(8.20) I (%)% P (2 + (a) }(] L(1,y)0(y)dy)®

[ . S 2 N . o5}
] (n +1)(fOL(1,y)¢n(Y)dy) L, >IIH1(O <

n=0 »1)
hence era+l.» So that
(8.25) [L(2, 0 4 N N T
_Hy(O,l) | ¢ (=T5T)
by Lemma 3. Hence
(8.26) ln(1,) ] | < e les]]
1l(0,1) ~ 0 0‘+2( T,T)
+ |leql] }.
1 %+2( T,T)
Similarly, we have
1 S (.0 1. |
(8.27) IOLX(I,y)u(y,t)dy = nzo{an cos w t + a sin ot /v }
1
+1
x foLX(l,y)¢n(y)dy e Y, © “ (-T1,T)

On the other hand, as is noted in (4.6), we have

(8.28) u(l,-) ¢ H “+1< T,T,).

e Ha+2

Since geH ( T, Tl) follows from (8.18) and €5 €7 N (

-T,T) as we have seen, the equality
(8.29) L(1,1) + J -H =0

follows. Hence

8

1
(8.30) L_(1,+)]]2. ~ (L (1,7)6 (y)ay)° =
oy liLi(O,l) nZo jo X n
1
T (2% ((0%41) (22 + (a)21(f L (1,106, (1) ay)?
n=0 0

23



ell® :
Hy (—Tl,Tl)
By (8.21), we have
(8.31) [lL_(1,)]] < ct){] e, '
x 2(0,1) ~ %o lH%+2<—T,T)
+ |e }.

||
1 H%+2(—T,T)

From the proof of Lemma 1, the estimate

(8.32) | |L(z,2) || < c(x){| e~
ul(0,1) = e HOY2 (-7, 1)
+ |leq ]l }
1 H%+2(—T,T)

is shown by (5.6.1), (5.6.3), (8.26) and (8.31). Hence, Theorem

2 follows from (5.6.2), (8.29) and (8.32).
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