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Asymptotic Behaviors of Solutions of
Equation for Viscous Gas Motion
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§ 1 Introduction

Burgers equation

u, + uu_ = Y u , £t 20, x€eR,

(1.1)
u(0,x) = uo(x) ;, X € R .

is a simplest model for system of equations of viscous fluids
motion. It was solved explicitly by Cole and Hopf. In particular
by using the explicit solution Hopf investigated the asymptotic
behaviors of solutions of Burgers equation as time tends to in-
finity when M = [ u,(x) dx 1is finite. By introducing a change

of variables X = x //2ut , € = log t , u = /(t/u) u ,

he obtained the asymptotic convergence

(1.2) lim U(E,X) = - G'(X) / G(X) ,
t>o
where
X [eo)
G(x) = exp(-M/4n) | exp(-y?/2) dy + exp(M/4u) [ exp(-y?/2) dy.
— 00 X

In the rescaled variables the Burgers equation can be written as

follows:

du  _ au 1 3%u 1 3(xu)
(1.3) + U — = — + — .
ot X 2 3x? 2 3%

Thus the limit function (1.2) is a stationary solution of (1.3) with
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[oe]

the moment [ E(E,Q} dx = M/2u , which is a conserved quantity
—
with respect to time.

We do not know in general the asymptotic behavior of
solutions for the system of equations of viscous compressible
fluids motion as time tends to infinity. In [4] and [5] we
treated asymptotic behaviors and equivalences for small solutions
between Boltzmann equation and compressible Navier-Stokes equation
as time tends to infinity. However in this case of more than two
space-dimension the asymptotic behavior is/described by linear
partial differential equations. It is because the decay rate of
solutions is so fast that the nonlinear part decays faster than
the linear part as time tends to infinity . But in the one space-
dimension it is not true and we have to consider the nonlinear
part as well as the linear part for the asymptotic behaviors.

In fact a reductive perturbation method [8] predicts that the
Burgers equation describes the far field i.e., the asymptotic
behavior for the general system of viscous fluid dynamical
equations.

In this note we consider a system of equations of viscous
barotropic gas motion and show that the asymptotic behaviors are
described by two Burgers equations with different propagation
speeds. A detailed proof will be published elsewhere. Similar
asymptotic behaviors are investigated for the inviscid case
yi.e., for the hyperbolic conservation laws in [1] [7] and in the
references in them. Thus the asymptotic forms of the solutions as
time tends to infinity are different each other between the

inviscid and viscous motions as noticed in {2] for the Burgers



equation. The author thanks Mr. T. Ikeda for using his type

writing softwares.

§ 2 Viscous Gas Motion
We consider the viscous barotropic gas motion which is
governed by the following nonlinear system of two equations:
Py + (pu)y = 0,

(2.1)

(pu), + (pu?+p) =wu, ., t>0, xeR,

where p is the density, u is the velocity, p = (az/Y)pY is
the pressure for the barotropic gas, and a , y(ratio of specific
heats) and u(viscosity coefficient) are assumed constants. The

initial data
(2.2) Pp(0,x) = po(x) , u(0,x) = ue(x) , x e R

are given and we want to investigate the asymptotic behavior of
solutions for thr Cauchy problem (2.1)(2.2) as time tends to
infinity. System (2.1) has a hyperbolic-parabolic type i.e., the
first order part is hyperbolic but the velocity satisfies a
parabolic equation. This is a main feature of viscous fluid
dynamical equations. The Cauchy problem (2.1) (2.2) is solved
globally in time by Kanel' for rather general L? initial data by
using the Lagrangian mass coordinate. Hereafter the equilibrium

state is assumed p =1 , u = 0 .

PP T

;g Po(x)-1 , up(x) € Hg y R 2 2, po(x) > 0 , then

~ o~~~

P . - R R e adadad

that p(t,x) > 0 , p(t,x)-1 , u(t,x) € B(0,»; Hz) '
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o (£,%) , u (t,%) & L2(0,=; HY) .

Here Hz denotes the Sobolev space of L? function together with
their x derivatives up to and including #-th order. B(0,T; HQ)
denotes the bounded continuous functions of t € [0,T] with
vector values in HQ. LZ(O,T; H%) denotes the square summable
functions of t £ [0,T] with vector values in H2 . We also use
the space L' of summable functions.

Concerning the decay rate of solutions for Cauchy problem
(2.1)(2.2) we have the following
lemma 2.2
If po(x)-1 , uoe(x) € H’Lr\ L, 2z 12,

~ o~

P L I . - Vo)

(2.3) | 9%(p(t,»)-1 , u(t,)) | ) < ¢/ (1+t)(1/4+a/2) '
L
a =0,1,2,3.
(2.4) I a4+a(p(t’-)_1 ' u(t,.)) ‘ , < C / (1+t)(2—u/4) ,
L

o =0,1,=-,8.
The decay rate (2.3) is best possible if

PV T Y P I TR U

J po(x) -1 dx % O or [ u,dx ¥ 0 .

This is a slight improvement of [4] [5] which is proved by the
linear decay rate obtained by Fourier transform and by the energy
method using the convexity of Sobolev norm.

As in [4] [5] using this decay rate we make a comparison of
solutions represented in the variation of constants formula in the
Fourier transform between system (2.1) and the following uniformly

parabolic system
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01,t + (plul)x = (u/2) pl,Xx

(2.5)
(piuy)y + (prui? + plp1)), = (W/2)(prur),

with the same initial data
01(0,%x) = po(x) , ui(0,x) = uoe(x) .

lemma 2.3

The asymptotic equivalence between © , u and f1 , u:

B e e e I R e ~ o~ o~

I L N e e

(2.6) | 3%p-p1, u-ui)(t,x) | < c / (1+t)(3/4-8+a/2)

@ =0,1,2, for any 6 >0 and for any t z 0 .
Since the decay estimate (2.3) is optimal in general this
estimate for the difference of solutions for systems (2.1) and (2.5) is

meaningful and essential for the further discussion on system (2.5).

§ 3 Asymptotic Behaviors

In order to make a further reduction of our system of
equations we will use the Riemann invariants of hyperbolic part
of systems (2.1) and (2.5), namely the eigenvalues and the

corresponding Riemann invariants given by the following:

Moo= u - apY2 o azi-n et T2 Dy Dy

(3.1)
A = u + ap Y2 o L 2as(v=1) (Y2 gy

By using these Riemann invariants r = r(pi, ui) , s = s(P1, ui)

the parabolic system (2.5) can be written as follows:



ry - (a + (Y+1)xr/4 + (Y—3)s/4)rX

wr /2 + £,

(3.2) ‘

sy - (a + (y+1)s/4 + (y=3)r/4)s, = wu s, /2 +g
ahere £ = (u/16ap V") (7o), ? ¢ 203-v)rs, - (v+1)s P
and g = (u/16ap ") ((7-v)s 2 4 23—y s, - (i) L

Here we have the nonlinear terms rr_ ., SS, 4 ST, IS 4 f and g

which have the decay rate by lemma 2.2 and the definition (3.1):

| rr, , ss, [Ll < Cc/ (1+t) ,
(3.3) | st s | < Cc/ (1+t) ,
Ll
l£,9 ] < c/ )32,
Ll

Since thereris a difference on the decay rate between these
terms, we want to compare the solution of system (3.2) with that
of system (3.2) without ﬁhe terms £ and g ,i.e., system (3.5).
But in so doing the cross terms Sr and rs, have not a
divergent form and prevent us to obtain the estimate for the
difference directly. Thus to get round this difficulty we use the
hyperbolicity of the first order part of system (3.2) following
an idea of Lax [6] after rewriting sr, = (sr)X - rsxr . Let us

introduce the unknown functions

where

(2a + (y-1)r/2 + (Y+1)S/4)(3-Y)/(Y+1)

(2a + (y=1)8/2 + (y+1)r/4) 3=/ 010

>
]

[o9]
]

Then instead of (3.2) the functions R and S satisfy
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R, - (aR + (y+1)R?/8A)_ - (Y-3)(SR/B)_/4

LR../2 +F
(3.4) XX !

S - (as + (Y+1)S*/8B), - (Y-3)(SR/A),/4 = U 5,,/2 + G ,

where F = F(r,s,f,g) and G = G(r,s,f,g) consist of those

terms which decay as fast as f and g ,i.e.,

| v, ¢ | < c/ (1+t)3/2 .
Ll
Using this decay rate and the fact that the quadratic terms R?
S? and RS have the divergent form in system (3.4) we can

compare the solutions of (3.2) and of the following system:

(3.5) rz . - (a + (Y+1)ra/4 + (Y—3)52/4)r2'~X = U rz,XX/Z '
S2 ¢ - (a + (Y+1)s2/4 + (Y—3)r2/4)s;;'X = U 52,XX/2 '

for t 2z T , with the initial data

(3.6) (rz , s2)(T,x) = (r , s)(T,x) .

The corresponding system for R; = R(rz,s2) and S, = S{(r:,sz)

is given by

R2 - (aR2+(Y+1)R22/8A2)X

{

(Y-3)(32R2/B2)X/4

n

't H RZ,XX/z + Fa
(3.7) '

S2 ¢ - (aSz+(Y+1)82°/8B2)

(Y-3)(R282/A2)X/4 = U S Xx/2 + Go

where

Fa F(r;,8,.,0,0) , G, = G(rz,s,,0,0) ,

A A(rz,s2) , B2 = B(rz,sz2) .

lemma 3.1

P N

We have the estimate for the difference of solutions

P I el e e I S
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(R-R,,S-S,) or equivalently for (r-rj,,s-s3)

AR v o ot R o s

(3.8) | 8%r-r2 , s=sa)(t,x) | < c/ (1+t-r) (1/4+0/2) (4 0)1/2
L

a = 0,1,2, for any t z T : fixed.

The estimate (3.8) is not so good as the estimate (2.6) which is

valid for all t

v

0 . But this estimate in this form is expected
best, in fact if we note the special case Yy = 3 , it has the
nonlinear terms in the nondivergent form. Here we arrived at
almost diagonal system (3.5) except for cross terms szr2'X and
rzszlx . These cross terms have had the same decay rate estimate
as (3.3). In order to distinguish these from the main quadratic
terms rzrzlx and SzSzIX we use a property of the finite
propagation speed of exponential decay with respect to x of
parabolic system (3.5) which corresponds to the finite propagation

speed of the hyperbolic system of the first order parts of (3.5).

lemma 3.2

P

I I T e e e R

as X > x% 4, 1l.€.,
| 8%(r(0,x), s(0,x)) | < K/ coshx ,a=0,1,2,3,
then
(3.9) | 3%(r(t,x), s(t,x)) | < min { c/(1+t) (/2402w Bt oen x )

@« =0,1,2,3 , where B is a constant.

~ o~ o~ PNV

This is true for all systems (2.1), (2.5), (3.2), (3.4) and (3.5)
because of maximum principle. Thus the solution decays

exponentially with respect to x for each t . In pafticular the
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initial data (3.6) have the estimate:

(1/2+a)/2

(3.10) | 3%(r2, s2)(T,x) | < min { C/(1+T) kK e®T/cosh x }

4

a =0,1,2,3.

It follows from the maximum principle for system (3.5) along each
characteristic direction we can obtain the exponential decay

estimate:

)(1/2+a)/2, ea(t-T)/z

| 3%, (t,x) | < min { C/(1+t

(3.11)
| 9%, (t,%) | < min { c/(1+t) T/ 240)/2 1y

K, /cosh(x-a(t-T)) 1},

AE-T)/2 ) ch(xsa(t-T)) },

@« =0,1,2,3, for any t z T , where K; = K eBT .

—~—— v~ —~ o~ s o

Now we can distinguish the cross terms by the faster decay than

(3.3) as
| 3%(rz2s2) (£, ) |Ll <
(3.12) < min ( c /(1+t)1¥®)/2 5 g, gmat/2 (lr,sl5) 1+ <
< min { C /(1+t)(1+a)/2 CK o-alt-(28/a+1)T)/2 oL

@ = 1,2,3.

Using this decay rate we compare system (3.5) and the diagonal

system

- (a + (Y+1)r3/4)r3,

[}
=
H
w
~
NS
-

(3.13) X P XX

1]
=
()]
w
~
N
-

+ (a + (Y+1)53/4)53'X xx
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with the initial data
(rs, s3)(T1,x) = (xr,, SZ)(TIIX) ’
where T = (3+2B8/a)T .

lemma 3.4

PP N e

We have the estimate for the difference of solutions between

N e e N L L R i P N - et iV ar el Vv e

(3.14) | 3%(r2-rs, sa-ss)(t, ) | , < cC / {(1+t)(1/4+a/2) 2T

L

a4 = 0,1,2.

This is proved by the representation of solutions in the
variation of constant formula in the Fourier transform for
systems (3.5) and (3.13) and by the decay estimate (3.12).

Theorem

L ot v~~~

in the norm in lemma 2.1 and decay exponentially as x » F° ,

B e e L L et PP P N

P e )
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