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Differential Operators and Congruences

for Siegel Modular Forms of Degree Two

% T R ’fji’ﬁs /ﬂ%%\? ( Takakazu Satoh )

1. Introduction

We study congruences between Siegel modular forms of different

weight by using differential operators in case of degree two,

As an example, we have the following congruence between eigen-
(3)

values of Hecke operators T{(m) on 120 (see §3 for definition)

and on the Eisenstein series [A1BJ attached to A1s:

x(m,x;8’> = m'A(n,[8,,1) nod 7,

which was conjectured in Kurokawa [7]3., In case of classical
elliptic modular forms, such congruences were studied by
Serre [12] and Swinnerton-Dyer [147. We denote by Mk(Fn)
(resp. sk(rn), M:(Fn)) the C-vector space of holomorphic Siegel
modular forms (resp. holomorphic cusp forms, ¢”-modular forms):
of degree n and weight k. Let Hn be the Siegel upper halé

plane of degree n and Z=[zjk] bhe a variable on Hn. We put

Y = é%(z—f). For feM (I ), let £(2)=Sa(T,Y,f)q' be its Fourier

expansion where qT=exp(2niTr(TZ)) and T runs over all half-



Y2

integral matrix. If f ig holomorphic, we write a(T,Y,f) as
alT,f) in short since it is independent from Y. Usually

feM (I ) is written in the form £(2)=ga’(T,v,£)e?t1TE(TX) =

bhut
it is convenient for our purpose to write as the former. For a

subring R of C, we denote hy Mk(Fn) the R-gubmodule of Mk(rn),

R
whose element has Fourier expansion with coefficients in R,

Further we put Sk(Fn)R = Mk(Fn)RﬂSk(Fn)‘

We remark that there remaing much to be done to obfain
systematic results as the elliptic modular case treated by
Serre [12]1 and Swinnerton—Dyer {147, including the study of (-

adic representations attached to Siegel modular forms.

2. Statement of results

d _ -3 . _ _ -1
We put a7 = {cjk azjk} with Ciy T 1 for 3j=k and iy % for
‘jik. For integers r20 and k, we define differential operators
on a Cw—function f(Z) on H by
_k+n21 4 k_n;i
By nE=IY] ’EE{ [Y] £
and
r _
%k nOk+2r-2,n %142, 00k, 0
We shall omit subscript n when there 1is no ambiguity. We
understand that Si is the identity operator,. These differen-
tial operators were studied by Maass [81, By
Harris [4, 1.5.31, 8  maps M (T ) to M. . (F.). 1f f is a
k k n k+2r n
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non-zero eigen function of all Hecke operators, we call £ an
eigen form.  For each integer m21, T(m): Mk(F“) > Mk(rn)
denotes the m-th Hecke operator. We denote the eigenvalue of

T(m) hy A(m,f)., The operator 8 has the following properties,

(1) Let feMk(P“) he a non-zero holomorphic modular form,., Then
8Zf # 0 for 2k2n and 8kf = 0 for 2k<n, Note that £ is
necegsarily a singular form in the latter case by Resnik-

“off [10, Theorem 6.41],

(2 1If feM:(Fn) ig an eigenform and 8;f¢0, then 8:f ig algo an

eigen form, As for eigenvalues, we have

l(m,8;f) = mnrx(m,f). (The same is true for arbitrary

double cosets,)
We note a proof of the following congruences:

Am, X, ) = mzx(m,%_) mod 5 (2.1)

and

1]

2
R(m,114) mAlm,Xx,,) mod 23. _ (2.2)

Here we use usual notation for gpecial elements of Mk<r2) as

follows: wkeMk(PZ) is (Siegel’s) Eisenstein series of weight k.

1 1/2 ,
Let § = . For k=10,12,14, we denote by X the —cusp
1/2 1 ‘ k
form of weight k normalized as a{s,4xio} = -1, a(S,12X12] =1
and a[s,4x14} = -1, It is known by TIgusa [5, Theorem 1] that

XkeSk(Fz)Z for k=10, 12 and 14. Using
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we obtain

23 %~ 23 % 3 ~
33 Y6 0c%g 950, ¢, TRA 50, 12X, ,-2885, , (4, , ]

[ae]

[

where gk = (2:{1)—"6k and [A,,] 1is the Eisenstein series

attached to the elliptic cusp form by, Noting wunigueness of
Fourier coefficients we have

- = 59 ... _ 1
2T +§ zTa<T1,¢4)sT2;a<TZ,¢4> = 27.3.7a(T,4x, ) 7]T|a(T,15¢8]

=S
~

and

o L 1
23 2 IT,1{35a(T, 00 0aCT, 0 )-74a(T, 9 dalT, 9, )
T 4T, =T

10 4
_ 6,2 23
= -2 3 al(T, 4, O+ | Tla(T, 12, ,)-288|T|a(T, s, , D).

We note congruences

7a(T,8,,1)

0 mod 23 for T>0 and 23f]2T|

wvhich is proved by Bocherer [2, Satz 5(a)]. Here we note that
7a(T,[A12]) € Z for all T>0, In ‘addition, by

Maass [9, Satz 1], we see that

_ 1
a(T,4x, ) = IT{a[T,15 8] mod 5,

a(T,4X14) = 14|Tla(T,12X12) mod 23,



for all T>0. Noting explicit action of Hecke operators on
Fourier coefficients of holomorphic modular forms obtained by

Andrianov [1, (2.1.11)], we have (2.1) and (2.2).

Up to now, the lack of knowledge on non-holomorphic modu-
lar forms prevents the author from proving further congruences
by the above method., To avoid this difficulty, we make use of

holomorphic projection defined by Sturm [13], We put

I3

o]

1
N
<

1

= (%, e vnR> | x = tx, 1<%, €1 for 125, ksn }

<
I
———
<
|
—
o]
Cma
x
[S—
M
=
N
3
o)
-t
<
1!

Yy, v>0 }
and dX = ] dx, dy = I dyjk. We put

P(f) = PCw,T,a(T,Y,£))q
T>0

where

-4rTr(TY) w—l—nd

a(T,Y,f)e Y

\Y

Y]

P(w,T,a(T,Y,£)) =

w—lfnd

| Y]

J -4nTr{TY)
e Y
v

and T runsg over all half-integral positive definite matrices of

size two. Then, Pw(f) belongs td the ring of formal power
. =1 _ .

series C[qjk'qjk][[qjjjjlgj,kgn where qjk—exp(2n125k). Assume

moreover that w>2n and that f is of bounded growth, namely,

rf r
J J LEx+ivd 1YY T e PTr Y gvdx <
vy
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for any positive constant p. Then, PW(E) converges for all
ZeH, and it is a holomorphic cusp form of weight w, (See

Sturml[13, Theorem 11.)

In what follows, we treat degree two case. For complex numbers

a and B, we put

(@ 8) (a(a-1)...(B+1)8 if a-B is a non-negative integer,
cfla , B)=
il otherwige,

and

1 1 ; -8) i - ive i
a{“'Z}"‘{B+2}B if 2(a-B) is a non-negative integer,

1 otherwise.

Theorem 1. Let R be a subring (not necessarily contain-

ing 1) of C satisfying SRCR. Let feM,(T,), and geM (T,). with

k+0>4, Suppose that I is an ideal of R satisfying

(1) %ICI,

(2) a(T,g) € I for all T#0.
Let & be a non-negative integer and t be a positive integer,

We put r=s+t and w=k+8+2r. Then for any positive integer m,

L .- 2 t 2
(2r1i) ria{mE,Pw(Sif-SQg]]—vm ra(mE,fg)

belongs to (2w-2r-3)I, where §=€(W*3,W-r-2)é{w—%,w—r—%} and

v=n(k+s—1,k—%]n[n+t—1,a—%}.

Theorem 2, Let feMk(Fz) and geM (Fz) with w>4 where

0

k+f=w. Let s and t be non-negative integers. Then we have the
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following:

(1) 8if~8sg is of ‘bounded growth for s+t23. Especially,
] .-
Pw+2s(g8kf) belongs to Sw+25(r2) for =23,

(2) If at least one of f and g is a cusp form, then Sif-BEg is

of bounded growth for all s, t20,

(3 Pw+2(gakf+faﬁg) belongs to sw+2(r2> where
3 1-1 ,
a:=e{k+r—§,k—§} 8;. Especially, P2k+2(f8kf) belongs to
Sy e (T
2 2
(4) Pw+4(gak f+28kf-8Qg+f8Q g) belongsg to Sw+4(P2).

Theorem 3, Let K be an algebraic number field, OK he its

ring of integers, p be its prime ideal not dividing the

ideal (2), and R be the localization of 0K at p. Let

( i : - -
feMW_zr.Fz)R and geSW(FZ)R be eigenforms with 4<w-2r<w, Sup

pose that all the following cohditions (1)-(6) are satigfied:

(1) There exist positive integers m ,m such that

goreee

N e [l(mi £ )} 40 modp

1£1, 3¢n

where n=dim SW(FZ) and {f1""'fn} is an eigen basis of
sw<r2) and L 1is the composite field of K and

Q(A(m,fj)lmzl) for j=1,...,n.
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(2) There exist a positive integer e and 2s (s21) modular

‘ €M

forms hl,t K (Fz)R, h2,t€Mk (FQ)R with

1,t 2,t
kl't+k2’t=w-2r, rl’téo, rzltél and r1’t+r2't=r for
t=1,....8 such that

S
= s €
alnE,£f) = a‘mE’tzlvthl,ch,t] mod p

for all m21, where

Ve F "{ki,t+r1,t‘i'ki,t“%}”(kz,t+r2,t‘1'kz,t’%}‘

(3) pe divides (2w-2r-3)I where I is the ideal of R generated

by a(T,h ) for T20, T#0 and t=1,...,s.

2,t

(4) a(E,f) = a(E,g) mod p° and a(E,f) # 0 mod p.

(5) mfrk(mi,f) = A(mi,g) mod pe for i=1,...,n.
s r r
1.t 2.t
(6) s P 18, 7""h 3, """ h belongs to s (I ).
k=1 ¥ ki,t 1,t k2,t 2.t w2

Then we have:

mzrk(m,f) = Al(m,g) mod pe for all m21,

J. Examples.

We have some congruences between Siegel modular forms of degree
two and different weight by using Theorem 3. Let & be the
Siegel ®-operator. For an eigen form feMk(Fl), there 1is a

unique eigen form [f]eMk(Fz) such that o[fl=f, Let o, he
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Saito-Kurokawa lifting M, _, (I, )M (I, ). Let S (I ) be the

orthogonal complement of ok(SZk_z(rl)) in sk(rz) with resgpect

to the Petersson inner product. We may call an element of

siI(Fz) a generic form since it does not lie in the image of
Eigsenstein lifting and Saito-Kurokawa lifting, The modular
(3> .11

. 2 2
form 120 eSzOCFz) defined by 4X —12X12¢4 +285696UOI10 has

10%4%¢
the minimal weight 20 among generic farme. (See
Kurokawa [6, §51.) By using Theorem 3, we have the following

congruences.

Theorem 4. The following congruences hold for all m21:

Acw,x;g)) = mzicm,EA18]> mod 7,
A(m, X, ) = moACm,p,) mod S, | (%)
(X0 = m'Aln,e, >  mod 17,
A(m,X, ) = m Aln,g,) mod 19.

Remark. In the proof of (¥), we wuse Theorem 3 with slight

modification.

As to the congruences, we can make the following interpre-
tation. For an eigenform feMk(Fn), let Q(f) bev the extension
of Q generated by eigenvalues of all Hecke operators on f.
Then, Q(f) is a finite extensioﬁ‘of Q. For a prime ideal 1 of
QCf) lying above a rational prime ¢, we denote by Q(f)l the 1-
adic completion of QC£) and hy Z(f)l the integer ring of Q(f)l.
Let 6 be the algebraic closure of Q. For each eigenform

feMk(Fn), assume the existence of an l-adic representation
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pylf): Gal(g/Q) » GL(2" Z(£).)

1

attached to f in the (naturally generalized) gsensge of

Deligne [31 and Serre [12, 117. Let'fesk(rn> and geM (I' ) be

eigenforms where k=j+2r with a non-negative integer r. For
ginmplicity, we assume Q(£)>Q(g)., Then a congruence
Am,f) = mnrl(m,g) mod 1°¢

can be ascribed to

~ — Nnr fad
pICE) & XQ @pl(g)

where 5 denotes the reduction modulo 1€ of a representation p
and XQ ig the cyclotomic f-adic character. In other words, 1
would be an exceptional prime for f. Similar to Serre [12], we
can expect that 052k for r>0., Moreover, a prime ideal 1 divid-

ing (k+j)-(n+1) is likely to induce such congruences. It seems

nr

natural to work with the operator 8 since 91(625) = XQ ®p1(f)

(cf. p. 302,
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