0000000000
O 547 0 1985 0 268-286
268

The BC-chain Method for Representing Combinators in Linear Space

R oy o3 Z B * 4k

Kohei Noshita Teruo Hikita

Department of Computer Science Department of Mathematics
Denkitusin University Tokyo Metropolitan University
Chofu, Tokyo 182 Setagaya, Tokyo 158

Abstract

Turner's combinator implementation (1979) of functional programs
requires the memory space of size Q(nz) in the worst case for translating
given lambda expressions of length n to combinator graphs. In this
paper a new idea named the BC-chain method for transferring actual
argumehts to variables is presented. We show that the BC-chain method
requires only 0(n) space for the translation. The basic idea is to
group together into a single entity a sequence of combinators B, B',
C and C', for a variable, which appear consecutively along a path in
the combinator graph. We formulate two reduction algorithms in the
new representation. The first algorithm naively simulates the original
normal order reduction, while the second algorithm simulates it in
constant time per unit operation of the original reduction. Another
reductioﬁ method is also suggested, and a technique for practical

implementation is briefly mentioned.

Key words and phrases

BGC-chains, functional programming, lambda expressions, normal

order reduction, space complexity, Turner combinators

1

1. Introduction

Turner [9] proposed in 1979 an elegant method for implementing
functional programming languages by means of combinators. In this
paper we investigate how efficiently we can implement them, particularly
in terms of the space complexity.

Turner's combinator representation [9] requires the memory space
of size Q(nz) in the worst case for translating given source lambda
expressions ofilength n to combinator graphs [5], which may result

. 3/2
in the runtime inefficiency, although the average size is at most O(n /

)
under a certain definition of the average case [3]. A balancing
transformation of a source expression enables the 0(n) space translation,
but this pretransformation requires Q(nz) space [2]. By extending

the set of combinators, the translation can be done in O(n log n) space,
while the reduction algorithm remains essentially unchanged from the
original normal order reduction [7]. Xennaway and Sleep [6] has also
shown the same O(n log n) result with the idea of '"counter director
strings."

All the works cited above can be regarded to assumé Turner's
combinators as a basis for representing combinator graphs of object
programs. Now we also start our study on the same basis. (See [1]
and [4] for different types of combinators.) We propose a new method
for representing combinator graphs, which requires only O(n) space.

We call this the BC-chain method. Our representation of combinator -
graphs is roughly described as follows. Each Turner combinator can
be regarded to be responsible for exactly one variable, as it plays

the role of a ''director'" at a node for passing actual arguments to

the variable in a graph. If combinators B, B', C or C' appear

PR

consecutively along a path in the graph and they are all responsible
for a particular variable, we can efficiently encode those combinators
into a single entity in a new combinator graph. The key idea to this
encoding is to dissect a tree structure of combinators into chains

of combinators only at S or S' nodes.

With the BC-chain method we can also expect an improvement of
efficiency at the reduction stage. In this paper we present two reduction
algorithms for our new representation. The first algorithm simulates
the normal order reduction in a naive and faithful manner. The second
algorithm is more efficient in the sense that it simulates the normal
order reduction in constant time per unit operation of the original
reduction. We also suggest another type of reduction algorithm for
BC-chains.

In the next section we present a new representation, and we also
sketch a translation method of functional programs to this representation.
In Section 3, we prove that the complexity of this representation is
linear in space. 1In Section 4, a naive reduction algorithm is given,
and it is improved in Section 5, which simulates the original normal
order reduction in constant time per unit operation. Finally, another
reduction algorithm is suggested, and some implementation technique
is also mentioned. For the sake ;f easier understanding, we present

our BC-chain method in an informal way to some extent.

2. Combinator graphs with BC-chains

First we illustrate our new representation by a simple example.

Let us consider an expression with a single variable x:

a(xb)(cx).

271

The ordinary abstraction ([8,9]) of this expression with the variable
x by the combinators S, B, C and I is
S(Ba(CIb))(BcI).

This expression isbrepresented in a graph (binary tree), as shown
in Fig. 1 (a). Here note that for brevity we exclude the extentionality
rule (n-rule) in the abstraction, since it can be easily incorporated
into our method.

If we attach a combinator of either S, B or C at an interior node
of the source graph, each combinator may be regafded to be a director
for transferring an actual argument toward a corresponding variable.
This is depicted in Fig. 1 (b), which is obviously equivalent to (a)
in a suitable sense.

In this graph (b), let us focus on the combinators B and C (but
not S)‘which appear consecutively along a path from the root to a leaf.
We group this sequence of combinators into a single new node, which
we will name a BC-chain. Thus we obtain a string

S([BCJa(Ib))([BIcI),

The graph representation is shown in Fig 1 (c¢). Here brackets
"[" and "]" are used as a notational device to show a sequence of
constituent combinators of a BC~chain. For convenience we shall freely
omit the brackets if a BC-chain contains only one combinator, i.e.,
either [B] or [C].

In general, we construct a BC-chain from an expression in the
original Turner's representation by the following rules:

Bab —> [Blab
Cab —> [C]Jab

Ba([wlbc) —> [Bwla(bc)

272

C([W]éb)c —> [Cw]abc
where [w] denotes a BC-chain, and a, b, ¢ denote subexpressions. See
Fig. 2 for the graph representation of the last two rules. We define
the length of a BC-chain [w] to be the number of combinators in w.
We naturally assume that, among possibly many BC-chains thus constructed
from a sequence of combinators, a BC-chain having the maximum length
is to be chosen for our purpose.

We give a bit more realistic example. The following is a definition
of the factorial function f which receives an integer n and returns
the value of the n-th factorial.

f n = cond (eq ﬁ 1) 1 (mult (f‘(minus nl)) n).
The expression obtained by abstracting with the variable n is
f = S ([CBCB] (cond (eq I 1)) 1)
(s (([BBCB] mult) (f (minus I 1))) I).
The graph representation of this expression‘is shown in Fig. 3.

If a source expression contains more than one variable, the
representation with BC-chains is slightly more complicated. 1In the
original Turner's method, all the combinators for a vériable which
is first abstracted are distinguished from those for any other variable.
In our present method, for the time beiﬁg, each BC-chain will be assume&
to be explicitly subscripted with an index in order to indicate the
variable for which the combinators in the chain are responsible. This
subscript will turn out to be unnecessary in tﬁe reduction algorithm
in Section 5.

Fig. 4 shows the process of the translation (abstraction) of an
expression

X X538

R73

which is first abstracted with X, and then with Xy The translation
yields
[ccl,[CBl,(IDa ,
while the result of the ordinary translation is
C'C(C'BII)a.
From now on, we denote variables in a source expressiop by X5
Koo wees Xpo and without loss of generality we fix the order of the

variables for the abstraction as follows: first with x

K then with

Kel? "t and finally with x

T
As a larger example consider the following expression
x3(x1x2x2)x1 y
where X5 X, and Xy are variables. By abstracting this expression
with X5 X, and Xy in this order, Turmer's translation yields the following
expression:
S'(C'G)(B'(B'C)I(C'S(C'BII)I))I .
This ‘expression is also depicted in Fig. 5 (a). From this expression
we can construct BC-chains in the same way as discussed above. See
Fig. 5 (b) for the result of this BC-chaining. This is equivalently
rewritten as
§,([cBI,[CCI,) (IBCCT I(S,(B,IT)INT ,
which is also depicted in Fig. 5 (c¢).
These>examp1es suggest a naive method for translating a source
program to a combinator graph with BC-chains. For the binary tree
of a given functional program, the abstraction with a variable .proceeds
by attaching combinators to interior nodes, and then, as the second

step, combinators B, B', C and C' are grouped to form a BC-chain.

The detail of the translation (abstraction) method is left to the reader.

R74

3. Space complexity of combinator graphs with BC-chains

Let n be the size of a source expression. In this section we
prove that the order of the size of a combinator graph with BC-chains
is linear in n.

First we show that each BC-chain can be represented in the space
of the constant size, regardless of the length of a BC-chain. For
this purpose, we encode a BC-chain in the following way. Label each
node of the original expression with integers 1 through n in the inorder.
(See Fig. 6 for the resuit of labelling the example in Fig. 5). Then
each BC-chain can be encoded into a pair of integers [i,j] (with a
subscript), where i is the label of the ”startinginode” of the chain
and j is that of the "ending node'". By applying this method to Fig.
5 (¢), we obtain Fig. 7.

It is easy to see that from this representation with encoded BC-chains
we can recover the original sequence of qonstituent combinators B and
C. For example, from the encoded BC-chain [2,3] in Fig. 7, we can
obtain that the head combinator of the BC-chain is B, since 2 < 3,
and that the tail part of the BC-chain is [6,3], since the right son
node of the node (2) is (6), and so on.

The reader may wonder if pointers referring downward to the next
combinator I or S can replace BC-chains in this context, but unfortunately
they-do not work when the reduction is taken into account.

Now we are ready to state the main result of this paper.

Theorem The size of the BC-chain representation is of linear
order.

Proof: Fix a variable x in a source expression, and let r be the number

of occurrences of this variable in the expression. The increase of
the size in the new representation with respect to this variable is

at most

r —vl occurrences of the combinator S at interior nodes, and
2r-- 1 BC-chains,
so that in total at most 3r - 2.
Let Ly eees Ty be the numbers of occurrences of all variables
Xis e X in the source expression,vrespectively. Then obviously

we have

r + r

1

+ eee + r, < n.

2 k

Hence the total increase in the new representation is at most 3n.

4. A naive reduction algorithm for BC-chains

In this section we present a reduction algorithm for combinator
expressions with BC-chains, which naively simulates the normal order
reduction. The normal order (or leftmost-outermost order) reduction
algorithm always reduces expressions (graphs) at the leftmost—éutermost
reducible part of the expression.

Qur reduction rules for combinators are exactly the same as the
original ones, except for BC-chains. 1In case of expressions with a
single variable, the reduction rules for BC-chains are as follows.

[Bwla(bc)d —= a([w]lbed)
[Cw](ab)cd —= [w]abdc
Here, w denotes the tail part of a BC-chain, and d is an actual argument
in this reduction. The first rule is shown graphically in Fig. 8.
In case of expressions with more than one variable, the reduction

rules for BC-chains for the i-th variable are as follows.

R706

[Bw]iua(vbc)d —> ua(v*bed)
[Cw]iu(vab)cd —= u(v¥*abd)c
Here, u is of the form

le(pjz(...(pjm_lpjm)...))
where each pjh is either a combinator or a BC-chain, i < jh <k
(k is the number of variables), and the subscripts of these elements
are sorted in the increasing order, i.e., j1 < j25< ees < jm. Also
v has a similar form to u, and the only difference from u is that the
range of the subscripts is between 1 and k. And finally v* is the
result of inserting [w]i into v at the position whefe the order of
subscripts is preserved. See Fig. 9 for a graphical repfesentation
of the reduction fule for [Bw]i.

It is easily verified that these rules, together with the conventional
reduction rules for combinators, constitute our desired reduction scheme
which naively simulates the normal order reduction. Howeve:, the
simulation is not always realtime, because of the insertion operation
of the BC-chain [w]i into v.

For example, we illustrate in Fig. 10 how the reduction proceeds

for the combinator graph in Fig. 5 (c). Subtrees a, b and ¢ are actual

X, and x

arguments for variables x 2 37

1 respectively. Each reduction
step is always performed for a combinator or a BC-chain at the leftmost

position of the graph. In the figure, small circles stand for newly

created nodes during the reduction.

5. An efficient reduction algorithm for BC-chains

The simulation of the normal order reduction in the preceding

section is conceptually simple but not always efficient in time as

217

mentioned above. In this section we present a more efficient reduction
algorithm which runs in constant time per unit operation of the normal
order reduction.

First we slightly changevthe structure of combinator graphs. In
general, a combinator graph can be regarded as consisting of 'basic
building blocks'" of the [standard] form in Fig. 11 (a), in which each
of subtrees a and b consists of these basic blocks. We modify the
form of the basic block to [modified] in Fig. 11 (b), where the symbol
¢ denotes the special '"nil" node. This modified form will prove to
be useful for achieving the desired efficiency of the reduction algorithm.

Another change to the previous algorithm is to eliminate all the
subscripts of BCQChains and combinators. The reason for this is that
we can immediately tell where to transfer the tails of BC-chains, as -
seen below.

Now we describe our second reduction algorithm. Initially, every
basic block in a combinator graph to be reduced is transformed to the
[modified] form, except the outermosf basic block. This pretransformation
can be done in time proportional to the number of nodes in the graph.

The redﬁction rule for a BC-chain [Bw] is graphically shown in
Fig. 12 (which should be compared with Fig. 9), where w is nonnull.

We explain the algorithm by using Fig. 12, since it is more comprehensible
than formally describing the reduction. On reducing with a BC-chain

[Bw] at the leftmost position of the graph having an argument < for

the i-th variable, we tranfer the argument and the tail [w] of the
BC-chain to the subtree t in Fig. 12. More precisely, we create two

nodes p and q in this subtree. On reducing with [Bw], we transfer

the argument s to the rightson of p and the tail [w] to the leftson

10

of q.

In case of the reduction with a single combinator B or S, instead
of a BC-chain, we transfer an argument s to the top of the argument
list. In this case there must be a combinator or a BC-chain for the
i-th argument at the leftmost position of t. Therefore we simply move
it to the top of the list of combinators or BC-chains in“a similar
way to the case of [w]. The reduction rules for [Cw], C and S are
similarly defined in the subtree t'.

When all the actual arguments are transferred into t or t', the
leftmost parts of t and t' must be empty (4). Now the subtrees t and
t' are transformed back to the [standard] form, except the inside of
subtrees a and b. In this backward transformation we must rearrange
the sequence of BC-chains (or single combinators) in the reverse order.
(In practice, this transformation should be postponed until the reduction
of a subtree starts.) Then the reduction proceeds to this new t' in
the standard fofm.

The process of transferring and accumulating an actual argﬁment
and the tail of a‘BC—chain in a subtree can be berformed in constant
time, thanks to our restructuring of the subtree. Note that no operation
of inserting the tail part of a BC-chain is required. The transformation
of subtrees to the standard form can be done in time proportional to
the number of variables in question, since the reversing of a list
can be done in linear time with respect to the length of the list.
Hence, in total, the simulation runs in constént time per unit operation

of the normal order reduction.

11

6. Concluding remarks

In this paper we have shown that the BC-chain method achieves
the linear space representation for combinator graphs with virtually
no change to the original reduction scheme. This result has solved
a complexity question which has been studied by several authors
[2,3,5,6,7]. We believe that our method is worthwhile to investigate
from the viewpoint of actual implementation as well.

In practical implementation it is expected that the lengths of
BC-chains are reasonably small. In such cases the following technique
seems promising both in space and time. A BC-~chain is represented
in a memory word as a bit string of B and C, e.g., 'l' for B and 'O
for C. . When the length of a BC-chain is too large, we divide the BC-chain
' to several subchains in order to fit them in the word length, with
little change to the reduction algorithm.

Besides our two algorithms, we can formulate still another reduction
algorithm for BC-chains. The key idea of this algorithm is to reduce
with all the constituent combinators of a BC-chain. Thus no transfer
of the tail of a BC-chain is required. This is contrasted with our
previous algorithms, which always reduce only with the head combinator
of a BC-chain. This reduction differs from the normal order reduction
in the sense of computation process, but it can be shown to be normalising,
that is, every graph havingba normal form is reduced to that form as
the final result of this reduction. In practice this strategy seems

to be more efficient.

12

280U

References

[1]

(2]

[3]

[4]

(5]

[6]

[71

(el

[91

S. K. Abdali: An abstraction algorithm for combinatory’logic,

J. Symbolic Logic, 41 (1976), 222-224.

F. W. Burton: A linear space representation of functional programs
to Turner combinators, Inform. Process. Lett., 14 (1982), 201-204.

T. Hikita: On the average size of Turner's translation to combinator
programs, J. Inform. Process., 7 (1984), to appear.

R. J. M. Hughes: Super-Combinators, Conf. Rec. of the 1982 ACM

Symp. on LISP and Functional Programming, 1982, 1-10.

J. R. Kennaway: The complexity of a translation of A-calculus

to combinators, School of Computing Studies and Accountancy, Univ.

of East Anglia, Norwich, 1982.‘

J. R. Kennaway and M. R. Sleep: Efficiency of counting director
strings, typescript, 1983.

K. Noshita: Translation of Turner combinators in O(n log n) space,
Inform. Process. Lett., to appear.

D. A. Turner: Another algorithm for bracket abstraction, J. Symbolic
Logic , 44 (1979), 267-270.

D. A. Turner: A new implementation technique for applicative

languages, Softw. Pract. Exper., 9 (1979), 31-49.

13

281

(b)
(c)
S
Fig. 1. Three different representations of [BC]
combinator graphs for a(xb)(cx)
[w] b c b c
B a [Bw] a
: /g\\ ‘
C b [Cw] a b

- [w] a

Fig. 2. Constructing BC-chains

14

R84

[cBCB] cond eq 1

[BBCB] mult

minus I

Fig. 3. Combinator graph with BC-chain for f

a
X X2
\L/ abstraction with Xo
a
[cBl,
X1 I
\1/ abstraction with X1
a
Fig. 4. BC-chains with more than one variable
[CC]] [CB]2 I I

15

283

Fig. 5. i
19. 5. Combinator graphs for x3(x]x2x2)x]

Fig. 6. Labelling the nodes in the inorder

16

(8)

[Bw] a

[8,61, [8.11;

Fig. 7. Encoded BC-chains with pairs of Integers

Fig. 8. Reduction rule for a BC-chain [Bw]

Fig. 9. Reduction rule for [Bw]i with more than one variable

17

step 1:
step 2:

[c8], [ccl

$4 [CB]2 [CC]3

[BCC]I

Fig. 10. Example of the reduction for BC-chains

18

280

[standard] "

combinators or
BC-chains

[modified]

combinators or
BC-chains

Fig. 11. Basic blocks of a combinator

graph with BC-chains

Fig. 12.

19

Reduction rule for the modified form

