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Abstract :

The péperbis concerned with an improvement over the
symmetric accelerated overrelaxation (SAOR) method for an
iterative solﬁtion of large linear systems. At first, the
Chebyshev acceleration (or semi-iteration) is introduced on
the SAOR method, and then the Non-Adaptive SAOR-SI algorithm
is constructed and moreover Dby introducing the adaptive
procedure which estimates the spectral radius S(&(y,w)) of the
SAOR iteration matrix HA(y,w), the Partial-Adaptive SAOR-SI
algorithm 1is developed. Next, the‘conjugate "gradient
acceleration on the SAOR method is considered, and the Non-
Adaptive SAOR-CG élgorithm is ©presented. Moreover by
introducing the adaptive procedure which determines the SAOR
parameters (y,w) automatically, the Adaptive SAOR-CG algorithm
is developed. Numerical results including the comparison
with the other algorithms are also given. It is finally
proved that the proposed algorithms are considerably efficient

and guarantee the feasibility for the iterative solution.

)

Introduction.

We study on the iterative solution of large and sparse
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linear systems
A4 u =25 (l)a

where A 1is the N X N real and nonsingular matrix,.b is the

N X 1 column vector and u is the N X I column vector to be
determined. Recently the accelerated overrelaxation (AOR)
method was introduced by Hadjidimos[1l], which was an iterative
method accelerated with two parameters (y,w). By an analogy
with the symmetric successive overrelaxation (SSOR) method the
authors have developed the symmetric AOR (SAOR) method[5,6].

It is natural to consider, the acceleration of convergence on
the SAOR method, as well as the SSOR method[4], because the
SAOR iteration matrix H(y,w) has real and positive eigenvalues

[2,6].

In this paper we consider two acceleration procedures on
the SAOR method ; one 1s the Chebyshev acceleration or semi-
iteration ( Non-Adaptive SAOR-SI algorithm ) and the other is
the conjugate gradient (CG) acceleration ( Non-Adaptive
SAOR-CG algorithm ). Moreover, we try to apply the
adaptive procedure [4,9] to the above Non-Adaptive SAOR-SI and
SAOR-CG algorithms. For the Chebyéhev acceleration we
construct the Partial-Adaptive SAOR-SI algorithm, which
employs the adaptively estimated maximum eigenvalue S(H(y,w))
of the SAOR iteration matrix H(y,w). For the CG
acceleration we construct the Adaptive SAOR-CG algorithm which

includes the procedure to determine the SAOR parameters (y,w)

automatically. Numerical test is carried out for simple
model problems. In the test we give the characteristics
of new algorithms and some comparison results. In addition,

we will demonstrate the efficiency and feasibility of the



present algorithms by further applications for more general

problems.

SAOR Method.
Assume that the coefficient matrix 4 of (1) is symmetric
and positiVe definite. Without loss of generality, 4 may

be splitted into
A =1L -U (2),

where I is the identity, and I and U are respectively the

lower and upper triangular parts of A4. For the nth

iterated vector u(n), the SAOR method is defined [2,5,6] as

L(n+1/2) Liv.w)ul™) « kg (3)
and
u(‘rl.'i'l): 1;(y,w)u(n+1/2) + kB ’ (h)a

where v and w are respectively called the acceleration and
overrelaxation parameters. Also L(y,w) and U(y,w) are
respectively the corresponding iteration matrices +to the

forward AOR and backward AOR methods [2,6] expressed as

(I-vL) "1 (1-w)T + (w-¥)I + wU] (5)

i

Z(y,w)

)14

Il

I - w(I-vL

and
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Uly,w) = (I—yu)"l[(z-w)r + (w=-y)U + wk] (6).
= I - w(I-yU)_ZA
Eliminating % "*2/2) from (3) ana (%), we obtain
AR ORI A T ON S R (1)
(y,0) = U(y,0)I(y,0) | ~ )
= I - w2(I—yu)‘1M(I—YL)'1A
and
K(y,0) = Uly,0)k, + k | (9),

F B

Uiy,0) (I-y2) ™ b + (1-yu)™1p

where H(y,w) is the SAOR iteration matrix, and M is defined by

M = [(2-w)T + (w-v)B] (10),

e

in which B(=L+U) is the Jacobi iteration matrix. Notice

that y=w H(y,w) 1is equivalent to the iteration matrix of the

SSOR method[6].

1/2

Now, let 4 1/2)2=

be the square root satisfying (4 A.

Then we can define the matrices H'(y,w), L'(y,w) and U'(y,w)

being similar to H(y,w), ZL(y,w) and U(y,w), respectively, as

follows

g (y,0) = 425y, 0a7 22 0y, 0) D (v,0) (11),



where
L (y,w) = a2/ 200y, wya"1/2 (12)
-7 1/2(I L)_Z 1/2
and
0 (vaw) = a7 20y, w)a1/ (13).
= T wAz/z(I_YU)-zAz/z
Since A is symmetric, we can readily see
U (v,e) = (20 (y,0)" (11,
which in view of (8) gives rise to
B (v,0) = (Z(y,0) T (Z(y,0) (15).
If we choose Yy and w such that
0<y<23ndw+—27;—“’——<y<m-+—£—'—w— (16),
m(B) M(B)

in which m(B) and M(B) are respectively the minimum and
maximum.eigenvalues of B, then the real symmetric matrix M
defined by (10) is proved to be positive definite (see [2,9] ).

From the relation in (8), we obtain

T - (y,w) = A3 (1-a(y,0))a"1/2 v (17),
T 1
- [wall?(r. vo)~1al/ 2T all 2 (royry" 14172
which is -symmetric and positive definite. Hence we can
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use the A1/2 as a symmetrization matrix [3] required in

applying the acceleration procedure to the SAOR method.

Chebyshev Acceleration.

"In the application of the Chebyshev acceleration
procedure, it is necesSary to assume three values of fhe SAOR
parameters (y,w) and the spectral radius S(H(y,w)) of the SAOR
iteration matrix F(y,w). In this paper, we will present
two versions of the Chebyshev acceleration : one is the Non-
Adaptive SAOR-SI algorithm which estimates neither (y,w) nor
S(H(Y,w)), and the other is +the Partial-Adaptive SAOR-SI

algorithm which estimates only the S(H(y,w)).

(1) Non-Adaptive SAOR-SI Algorithm.

(n)

Let wus define the nth iterated vector u during the

Non-Adaptive SAOR-SI algorithm as

u(n+1) 6(n) (n) ) o+ (1

n+1 +

=0 (v o )um=1) (18,

n+1 n+1

where 6(n) is the pseudo-residual vector represented by
s{n)2 H(Y,w)u(n) + k(y,w) - ) (19),

also vn and pn are the Chebyshev parameters defined by

S(H(Y,(D)) (20)

Va+1m 71 - S(H(y,w))



and
p, = 1 (21),
Py = (1 - -2-02)—1
p,eq= (1 - -ZTOan)_Z s oon > 2
in which o0 is given by
- S(H(y,w)) | (22).

2 - S(H(vy,w))

In the Non-Adaptive algorithm the formulae (18)-(22) are
simply iterates until a suitable criterion for convergence is
achieved. The algorithm 1is shown in the flowchart of

Figure 1.

(2) Partial-Adaptive SAOR-SI Algorithm.

We try to apply the partially adaptive procedure to the
Non-Adaptive SAOR-SI algorithm for estimating the spectral
radius S{H(y,w)) of the SAOR iteration matrix H(y,w). The

Partial-Adaptive SAOR-SI algorithm is expressed as follows
(n)

for the nth iterated wvector u

L+ 1) (o stm) L L), (n-1)

= 0,070 Vg (23),

+ (1 -9 Ju

n+1

)

(- .
where § is +the pseudo-residual vector which is the same

form with the one given by (19), and v, andfpn are the

Chebyshev parameters defined by

_ 2
Vne1” T2 - 5, (H(Y,w0)) | (24)
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and
S I ; n=s (25),
(1 - %O )7l m= s w1
2 -1
(1 - Zogo, ) s mozs8 + 2

in which

SE(H(Y,w))

E- 72 - 5(E(Y,0)) (26).

The Partial-Adaptive version involves +the parameter change

test and parameter estimation procedures.

(1) Parameter Change Test Procedure.

We change S(H(y,w)) whenever

16 ™) 172 5,0/ 2
<

F
) (27),
16,172 1+ P
where
p=mn -8 (28)
and
1o [1-42
r = (29),
1 + l—oE

Here F 1is the damping factor to be selected in the interval

[0,11].



(2) Parameter Estimation Procedure.
Once we have decided to change S(H(y,w)), we take new

value of

(55(8(v,0)) 1 ppy= maz( Sp(A(y,0)), SpE(y,0)) ) . (30),

NEW

where Sé(H(Y,w)) are computed by the following Rayleigh

quotient

( Wé(n), WH(Y,w)é(n))
we (M) ps(n)

SL(HE(y,w)) = (31).

E
(
If the new value 1is determined, we set s=n. This partial

adaptive procedure is shown in the flowchart of Figure 2.

Conjugate Gfadient Acceleration.

In the application of the CG acceleration proéedure, it
requires +the SAOR parameters (y,w) only, so we can consider
the +two versions of the CG accelerations : one is the Non-
Adaptive SAOR-CG algorithm which iterates with the fixed (y,w),
and the other is the Adaptive SAOR-CG algorithm which iﬁcludes

the procedure to determine (y,w) adaptively.

(1) Non-Adaptive SAOR-CG Algorithm.
Let wus define +the nth iterated vector during the

Non-Adaptive SAOR-CG algorithm as

WP I

S(n) (n)

+ u Y+ (1 -0 )y (7-1) (32),

v n+1



where S(n) is the pseudo-residual vector represented by

(n) (n)

s By, 0)u™) ¢ kl(y,0) - u (33)
also vn and p, are the CG parameters defined by
(n) (n)
) WH _
\)n+1= ( 1 - (W(S 9(n)(st2:§l) ) ) 1 (31;_)
( Ws , WS )
and
Py = 1
5 S (1 - Vi+1 (Wa(”), we(m)) _1 -1 (35)
/2 .
Instead of W, we employ the 4 in (34) and (35). The Non-

Adaptive version iterates simply the formulae (32)-(35) and

are shown in the flowchart of Figure 1.

(2) Adaptive SAOR-CG Algorithm.

Let us introduce the adaptive procedure which determine
automatically the SAOR parameters (Y,w) to the Non-Adaptive
SAOR-CG algorithm. Our adaptive procedure involves two
procedures : one is the stopping procedure which tests whether
the convergence has been. achieved or not ; the other is the

parameter estimation procedure which determines +the SAOR

parameters (y,w) adaptively.

(1) Stopping Procedure.

A stopping test is expressed as

10
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e . s s, (36)
M 1 - My “u(n)” ’
where E(n) is the ”nth error vector defined by e(n)=u(n)-ﬁ and
Mg is an estimate of the maximum eigenvalue of H(y,w) computed
from
My = (T, ) (37).

Here Tn s is the symmetric and tridiagonal matrix given by [9]
2

in which +the maximum eigenvalue M(Tn s) is computed by the
b

method of bisection.

(2) Parameter Estimation Procedure.

We assume that

J m(B) »m 3 -2/8 (38).

\ p(LU) < B

If we choose Y as

2
1+ 1 - 2M + 48

~
=
IN

48 (39),

Y, =




then the spectral radius of the SSOR iteration matrix H(y,y)

is minimized and given Dby

r , 1 - M
1 -
J1 - 2m + 48
;s M £ 48
1 - M
1 +\/7 (hOL
Q(H(YZ’YI)) < I - 24 + 48
1 - J1 - 48
;M > 48
1 +J1 - 48

Thus we can surely obtain the minimized spectral radius of
the SSOR iteration matrix H(y,Yy). Furthermore, by use of
the parameter s (=w/Yy), it 1is possible to determine the

overrelaxation parameter w so that

p(H(y,w)) < p(H(y;5v,)) (k1)

The parameter s may be chosen in the interval [0.95,1.10].
If s=1.0, then our algorithm is of course reduced to an
SSOR-CG algorithm which differs from the Young's version [L4].
After each iteration, we compute ME=M(Tn,s)’ and then we

change ME(B) if

o(iy) > o(p(E(y,,v,)))" (k2),

E

where ®(X) is defined for [0,1] by

(43)

o(x) =

7 -J1 - X
1 +J1 - X

12
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and F 1s called the damping factor. Decided to change

the parameter (y,w), we compute new ME(B) from

ME(B) = max( ME(B), Mé(B) ) | (bk),
where
Igs (™ 42/ 2 |
M!'(B) (L5).
E “6(7’1)”141/2

Once a new value of Y has been determined, w and p(H(Yy,Y)) are

readily computed by setting M=M_(B). The iterative formulae

E
for the Adaptive SAOR-CG algorithm are the same forms with the

ones as for the Non—Adaptivé SAOR-CG algorithm, except

Py = 1 s n = 8 : (46).
v (n) (n)
(7 - ntl (WS , WS ) _1y-1, i 3a+]
Voo (ws'n1) ) psn=1)y e,

All the iterative procedures of +the Adaptive SAOR-CG

algorithm are shown in the flowchart of Figure 3.

Numerical Experiments.

In order to examine our new algorithms we work out two
types of model problems which involve the generalized
Dirichlet problem with respect to the elliptic partial

differential equation

13



(a2 w2y oy , (57)

dx dx oy 3y
in the unit square domain (0 < z < 1, 0 <y < 1 ), where U =0
is imposed on the whole boundary. Various choices of the
coefficients A(x,y) and C(x,y) [8,9] are considered. We
now deal with the first type ( model 1 ) that A(x,y)=1 and

C(x,y)=1, i.e., the Laplace's equation

= (48).
X dy
Here = the five-points difference formula is adopted for the
discretization of the model problem. All the algorithms

to be treated in the numerical experiments are terminated when

the iterated vector u(n) is satisfied Dby the  following
criterion
n -6 J
1™ <& = 10 (k9),

where e(n) is the nth error vector for the exact solution u.

Also the 1initial wvector u(a1 is chosen such as all its
elements are equal to be I1/(1/h-1), 1in which h is the square

mesh size.

(1) Characteristics of Chebyshev and CG Accelerations.

At first, we shall expose the characteristics of the
Chebyshev and CG accelerations on the SAOR method. Figure U4
and Figure 5 show the iteration numbers required for convergence

in connection with +the damping factor F 1in the Partial-

1h
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Adaptive SAOR-SI and Adaptive SAOR—CG algorithms. If we
work with F being very close to the unity, we can see that the
parameters (Y,w) are changing much fregquently. With too
small values of F, they are not changing enough. However,
as seen frém the results in Figure 4,5, the effectiveness of
the adaptive procedure is relatively insensitive to F only in
view of the iteration numbers required for convergence. Thus
it seems that the selection of F is not very important, but if
F is wvery .close to the unity, it causes the 1loss of
computational time and the waste of arithmetic works for the
adaptive procedure ( see [9] ). Taking account of the
above facts, we take the damping factor F = 0.75 and 0.85 as
their typical wvalues for +the Partial-Adaptive SAOR-SI and
Adaptive SAOR-CG algorithms, respectively. Figure 6 and
Figure 7 show the convergence domain with respect +to the SAOR
parameter Y and 8 (=w/Y) in the SAOR algorithm and the Non-
Adaptive SAOR-SI and Adaptive SAOR-CG algorithms, réspectively
In the Partial-Adaptive SAOR-SI algorithm thé input data
S(H(y,w))=0.99 is employed. By combining with the
Chebyshev or CG acceleration procedure, the convergence domain
in the SAOR method is extended, and thus we can expect a fast
‘convergence for a rough selection of (y,w) in each accelerated

SAOR algorithms.

(2) Comparisons.
Here we will give two comparisons. One is the

comparison with the accelerated SAOR algorithms and the

15
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optimum SOR algorithm. The other is the comparison with
the Chebyshev accelerations and the CG accelerations 6n the
SAOR method. Table 1 gives the iteration numbers required
for convergence in all the algorithms, i.e., the Non-Adaptive
SAOR-SI algorithm, Partial-Adaptive SAOR-SI algorithm, the
Non-Adaptive SAOR-CG algorithm, the Adaptive SAOR-CG algorithm
and the optimum SOR algorithm. In three of the Non-
Adaptive SAOR-SI algorithm, Partial-Adaptive SAOR-SI algorithm
and Non-Adaptive SAOR-CG algorithm, the SAOR parameters (y,w)

are taken as (y,w) = (1.40,1.54) and (Yb,wb), where (Yb,mb)

are the optimum parameters determined experimentallyl In
the Adaptive SAOR-CG algorithm, the SAOR parameters (y,w) are
determined automatically during the iteration process.

Also the input data for the estimates of S(H(y,w)) in the Non-

Adaptive SAOR-SI algorithm are 0.99. The SOR parameter
w is taken as w = 2(1 + /1—M(B)2 )_J,Which M(B) is the maximum
eigenvalue of the Jacobi iteration matrix B. As expected,

the SAOR method accelerated with the Chebyshev procedure or CG
procedure has achieved the  considerably faster convergence
than the optimum SOR algorithm. Next we consider a
comparison with the Chebyshev acceleration and CG acceleration
on the SAOR method. In the <case of the non-adaptive
versions, the effectiveness of both the algorithms with the
optimum parameters are almost comparable. However, taking
account that +the Non-Adaptive SAOR-SI algorithm requires not
only the SAOR parameters (y,w) but also S(H(y,w)), it is

advantageous for the CG acceleration to require only the SAOR

16
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parameters (Yy,w) and to ©be at least comparable in the
iteration numbers required for convergence to the Non-Adaptive
SAOR-SI algorithm. In the case of the adaptive versions,
we can suggest that the Partial-Adaptive SAOR-SI algorithm is
inferior to the Adaptive SAOR-CG algorithm because of the same

facts with the above.

(3) Further Applications.

We +try to test the feasibility and efficiency of our
new algorithms for more general problems, i.e., we choose the
coefficients A(x,y) and C(x,y) in (47) as in Table 2.
Table 2 gives the iteration numbers required for convergencé
in +the ﬁon—Adaptive SAOR-SI algorithm, the Partial-Adaptive .
SAOR-SI algorithm and the Adaptive SAOR-CG algorithm. It
is clear that +the new algorithms are superior to the SOR
algorithm, even 1in comparison with the Non-Adaptive SAOR-SI

algorithm.

Concluding Remarks.

In this paper, we have proposed the new algorithms, the

Non-Adaptive and Partial-Adaptive SAOR-SI algorithms based on

the Chebyshev acceleration and the Non-Adaptive and Adaptive
SAOR-CG algorithms based on the CG acceleration. In the
numerical test, the following observations are made

(1) In the test of the non-adaptive versions, i.e., the Non-

17
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Adaptive SAOR-SI and Non-Adaptive SAOR-CG algorithms, +they

have enough fast convergence in spite of = the haphazard
selection of the parameters (y,w). Moreover, when the
optimum parameters are employed, they converges fast

considerably.

(2) From the fact that fewef iteration numbers and no
parameter reéuirement, it can be suggested that the Adaptive
SAOR-CG - algorithm are far superior to the other algorithms
including even the Partial-Adaptive SAOR-SI algorithm.
(3) The introduction of the adaptive ©procedures make the
application to more general problems possible. Thus it
proves +that +the Adaptive SAOR-CG algorithm is feasible for

iterative solution.

In the future, we will attempt to develop the :Full-
Adaptive SAOR-SI algorithm which estimates Dboth the SAOR

parameters (y,w) and the spectral radius S(H(y,w)).
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