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A Computer-Algebraic Problem on Two-dimensional
Linear Recurring Arrays - Cycle Representatives

of Two-dimensional Cyclic Codes
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(@z *?’:« T K) Toyohashi Univ. of Tech.
ABSTRACT

Most problems on two-dimensional (2-D) linear recurring
arrays are also important from the standpoint of computer |
algebra, one of which is treated in this paper. 1In partic-
ular this problem has a close connection with Buchberger's
algorithm. A method of finding cycie representatives of
2-D cyclic codes defined by primary ideals in the bivariate
polynomial ring.is presented. This is based also on a two-
dimensional generalization of Kurudjukov's result on cyclic
codes defined by non-squarefree parity check polynomials.
Our result is useful for determining the weight distribution
of any 2-D cyclic code and exhibits an example suitable for

applying a formula manipulating system.
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I. INTRODUCTION

The two-dimensional (2-D) cyclic codes;are a general-
ization of the important class of one-dimensional (1-D)
cyclic codes [1-5]. A 'cycle' of a 2-D cyclic code is
the collection of codewords which are cyclic shifts of
a codeword, as in the case of a 1-D cyclic code. If we
can find the cycle representatives, we can immediately
determine the weight distribution of the coée. The prob-
lem of finding‘the cycle representatives of < 2-D cyclic
codes remains open except in the case of irreducible (IR)
2-D cyclic codes; an IR 2-D cyclic code is equivalent to
(a repetition of) an IR 1-D cyclic code [4,5]. For 1-D
cyclic codes, this problem has been solved (6-=10].

In the present paper, we present a method of finding
the cycle representatives of any quasi-irreducible (QIR)
2-D cyclic code by extending Kurdjukov's result [10] on
quasi-irreducible (i.e., non-squarefree) 1-D cyclic codes.
This also implies ﬁhat'we can find the cycle representa-
tives of any 2-D cyclic code by combining its QIRncompé—
nents with the aid of Seguin's method [8].7 In the‘follow-
ing discussions, with no loss of generality we confine
ourselves to the binary case where the symbol field is

the binary Galois field GF(2).



II. PRELIMINARIES ON 2-D CYCLIC CODES AND GROBNER BASIS

be the ring of bivariate polynomials

I
y
N
&

Let R 5

A
GF(2) and I_ = (z"+1,y"+1) be the

3

ideal generated by «"+1 and yn+1. A binary 2-D cyclic

code C of area mxn is an ideal I = I/Im " in the factor

3

ring R 4 R/I [3,5], where I is an ideal in R such
m,n m,n

that I D Im . On the other hand, we may define a 2-D

k]

cyclic code C = I by the parity check ideal J = J/Im "
3

(/DI ) in é (or J in R) such that I.J = 5 (the zero
m,n m,n
idel in Rm n) and denote it by C} (or CJ).

]

The elements (codewords) u of ¢ are either referred
to as bivariate polynomials u(x,y) = I,. . 2 -u..xLyJ
. (t,J)eZm y L

.. 2
(modulo Im ,) OF as 2-D mxn arrays (uij)' (1,J)€Zm)n, where

3

22 is the set of pairs (Z,J) of integers 7 modulo m and

2

J modulo n, i.e. the subscripts 7 and j are to be inter-

preted respectively modulo m and n. The multiplication

by a polynomial f(x,y) = Z(k Z)eZz szxkyl amounts to
! m,n
send w = lugy) to flewhu = (g gy ez Frats-x,j-1)

B4
In particular, cyclic shifts x-u and y-u of a codeword u
of ¢ are also codewords of ¢. From now on. we regard each

codeword as a doubly periodic (DP) array by considering

cyclic shifts.
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A DP array w 1s characterized by a fundamental period

(FP) parallelogram £1x£2 = {(“1111+“2121' 41112+m2Z22)
2 . .
= 7
Ezm,n | Ogml,w2<l} with side vectors 21 (le’“IZ) and 22

=(ZZl,122) such that any period vector ! of u can

= k,1

be represented as an integral linear combination 1 14

+k2£2 of Ll and 22, kl,kzeZ [4]. The 'period' of u is
[/

-1
the area [1.x1,] = |det( 11 "12 ) | of a FP parallelogram
-1 =2 21 %22

I;xl,. In general Zi , 1s covered with a network of con-
gruent parallelograms obtained by shifting cyclically

a FP parallelogram through kl£l+k2£2’ kl,kzez.

Let d & dim CJ be the dimension of the code CJ (as
a linear subspace). Then, there exists a set of integer
pairs {(Kl,xl),...,(KM,AM)} associated with an 'independ-
end point (IP) set' of J

A(J) = L}M—l{(i i) | 0<i<x O<j<h };Crzz
’ s=1 & =" Ts+l’ 7= s m,n
which satisfies the following conditions {5]:
(1)) k,=0<k, <<k %m, n;A1>A2>--->xM:O;

1 2 M
(l)(
x

(2) J-has‘a normal basis {f ,y),'--,f(M)(m,y)}

composed of the generator pélynomials f(S)(x,y)
(s) _ (« X ), l<s<M;
S s -7

with the 'quasi-degree' Deg f

(3) 4(J) has the cardinality |a(J)]| = d;
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(4) any non-zero polynomial of the form

5
o

flew) = T iyeatn g™ ¥

is not an element of J.

The above normal basis is nothing but the Grobner basis [11]
of J, which can be obtained from any basis of J by a construc-
tive method [5]. Although the algorithm is found to be
equivalent to Buchberger's algorithm [11], the former which
originated in a problem of encoding any 2-D cyclic code was
devised independently and applied to construct some new 2-D
cyclic codes [5]. The idea behind the algorithm is as follows.
Suppose that, for each (Z,j) € A(J), an arbitrary value is
assigned to the component Uji of a codeword in CJ. From these
values Ugir (2,7) € A(J), we can determine the other compo-
nents Ug g (k,7) ¢ A(J) by applying succesively a series of
polynomials in {f(l), ceey f(M)}. The set {f(l), cees f(M)}
is a GroObner basis of J if and only if Upq (k,2) £ A(J), is

determined uniquely, i.e. independently of any combination

and any order of the polynomials used in determining Ug e

IIT. QIR 2-D CYCLIC CODES CQ
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A guasi-irreducible (QIR) 2-D cyclic code £, 1s defined

by a primary ideal 3. The code (ideal in hm,n)'CQ has
a minimal subideal ¢_, 1.e. an irreducible (IR) 2-D cyclic
code. The IR code CP is defined by the (maximal) prime
ideal P associated with the primary ideal & such that P D
Q@ DO P° for a certain integer o. There exists a pair of
irreducible (over F) polynomials f = f(z) and h = h(z,y)
which generaterP, i.e. P = (f, h). Let dl A degxf and d2
1y degyh, where degxg (degyg) is the degree of a polynomial
g = glx,y) with respect to x (y). The IR code C, has an
IP set A(P) = {(,5) | O<i<dy, 0;j<d2}. Thus, the dimen-
sion of Cp is equal to d A [a(P)| = d,d, [4]. Let r be
the least integer satisfying ZT:p. Then, from the inclu-
sion |

Q@ > PZT_D (fzt, hzr),
it follows that the QIR code (¢ = CQ is a subcode of the
QIR code ¢ defined by the primary ideal Q@ L (fzt, hz‘).

T

The latter code ¢ can be constructed by interleaving
T

the codewords of the IR code CP‘

For an array (codeword) y of a 2-D cvclic code CJ,

we define the characteristic ideal of g by I(w) = {feR |

frw = (C)}. 1In like manner we have the characteristic

ideal of a collection of arrays Upse e a Uy such that

[

{feR [f'ul = (0), ..., frup = (0)}

I(ql,,..,uK

|
D
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Dualistically, for an ideal < (2-D cyclic code : ) there
exlists a finite set {“l' ., u]? of 'representative arrays
(codewords)' such that J = 7 (uy,, ..., w,), 1.e. ¢, = ¥ L R-u
: 1 L J s=1 s

{53.
Let H(Q) be the multiplicative group of invertible

elements in the factor ring r/Q and {xlyJ} be the subgroup

of H(Q) consisting of all powers xiyj of r and y. A major
point of the present problem is to find the representatives
of cosets in the factor group H(Q)/{xiyj}. In particular,
if the parity check ideal J (2-D cyclic code CJ)fhas

a single representative array (codeword) u, then for

a complete set {gl, i eey gM} of coset representatives of
H(J)/{xiyj} {gl~u, .;., gM‘u} is a complete set of cycle

representatives which are contained in CJ, but not in any

proper subcode of CJ.

IV. CYCLE REPRESENTATIVES OF Cb
T

In this section we consider the QIR 2-D cyclic code CQ
_ T T T
defined by the parity check ideal QT = (f2 / h2 ) . The

0 has a single representative array u. For
T

example, we can determine such an array ueCQ by
T

QIR code C

ll (ilj) = (K_llA.—l);
(1)

0, (z,J)e A(QT)-{(K—l,A—l)T,

where « = 4.2%, » = d22T and A(QT) = {(i,5) | O<i<x, 0<j<r}

The primary ideal Q. has a unique minimal primary super-

’ J

. A 27 2T__ T_ T ]
ideal QT' = (f f th l, h2 ) which belongs to the same
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prime ideal 7 = (f, h}. Correspondingly, fﬁ ., 1s the
maximal subcode of CQ , where the difference between the

T

dimensions of these codes is

dim CQr - dim CQT, = d (= dim CP).
Hence the cardinality of the difference set CQ - CQ , 1s

T T
equal to
27 27 _ 21

2427 _ pd(277-1) _ pd(270-1) (pd (2)

The period of any element.in CQ - CQ , is equal to p22T,

T T
where p is the period of a non-zero element in Cp- Thus,

the number of cycles in CQ - CQ , is

T T
27 21_ _
where s = |T(P)| = (2d—l)/p is the cardinality of the set
T(P) of coset representatives in H(P)/{xlya}.  Let
a polyncmial o« = of{xz,y) denote a primitive element of the

extension field GF(Zd), which is isomorphic to R/P, then

T(P) = {aoy al,'w--, as—l}-

For a non-zero array u 1in CP’ let ilxiz be a FP paral-

lelogram of u with %; = (¢;, Jy) and Z, = (Z,, j,), where

1, J
p = [det([il jl])l. Then, there exist unique polynomials
\ 2 Y2
a. bl' Cy1r Aoy b2, and e, such that
1y J
x ly 1 + 1 = alf + blh + clfh,

1y J
2 72 1 ] (4)
:12f + b2]1 + (,Zf‘]l

¢
e
+
F._d
1]
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(degyJ degya2 < d2; degxbl; degxn2 . al),

l ’

In fact, we can take jl=0, il>i230 (S]. Thus, bl=cl=0,

al#O, bZ#O. For any integer o, we define SO
to be the set of polynomials g with degxg < 2C_ldl and
o-1
degyg < 2 d2' Let
-1 o-1 o-1 . o-1
-8 20 ) = A, 2 _ A, 2
ay=aq r ajza, ’ bl:bl (=0), b2=b2
20 20
modulo (f~ , ™ ), (5)

and Scl (502)‘be the set of polynomials in S0 which do not

r S r 8 r S r 8
1,°1 ("2 52 11 "2,%2) 4o 4 non-

( y "), where =z "y

contain =z

zero term of .the polynomial &l (b2). Then we have the

s

following theorem, which is proved in the Appendix.

Theorem 1: A complete set of coset representatives

in H(QT)/{xiyj} is given by

2 2 2,2
t(l+fkl+h11+fhml)(¥+f koth“1,+f"h"m,)

-1 -1 -1 2T—l

(1+f£2 kT+h2 Zr+f2 h m ), (6)

where teT (P), (ko,lo,mc)sLoASclxsdsz (06=1,...,1); a com-

plete set of cycle representatives in CQ - CQ , is obtain-
T T

ed by multiplying the representative array u (1) of CQ
T

by polynomials (6).
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V. CYCLE REPRESENTATIVES 0OF ANY QIR CODE

Now we will show that Theorem 1 is also useful for
obtaining the coset representatives of H(Q}/{xiyj}, where
¢ is any primary ideal belonging to the same prime ideal
P = (f(x), h(x,y)) such that P> @ D QT = (fZT, hzT),

Let I be an ideal in R and A(I) be an independent point set
of I. We represent each element (coset) of the factor ring

R/I by a polynomial of the form

. i,
g(zy) =Ly iyea(n9i ¥

Let I' be a subideal of I. By virtue of the isomorphism

(R/I'Y/(I/I"'), we can select the coset representa-

e

R/I
tives of R/I out of those of R/I'., To be precise, we have
only to pick up the elements g with the quasi-degree Deg g
ea(I), since A(I) € A(I'). Thus, in view of dimF(R/I) =
IA(I)I, the set of elements of R/I is identical with the set
of elements of R/I' satisfying Deqg g e A(I).k
Furthermore,- let g be an invertible element of R/I'
satisfying Deg g eA(I). Then there exists a polynomial

g such that g-g_l = 1 mod I' and Deg g_l e A(I'). Since

rvc 1, grgtt 1 mod I, where g - = g7 mod I and Deg g7t

e A(I). Therefore g is invertible as an element of FR/I.

Consequently, we have the following lemma.

7
i

Lemma 2: Let I and 7' be ideals in F and / D I'.
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The invertible elements of K/1 are given by the invertible

elements g of R/I' satisfying Deqg g ¢ A(I), i.e. H(I) =

{geH(I') | Deg g ¢ A (I)}).

The following theorem is an immediate consequence of

Theorem 1 and Lemma 2.

Theorem 3: Let ¢ be a primary ideal belonging to
T T
a prime ideal ® = (f, k) and P> @D @_ = (F27, w3,
The coset representatives of H(Q)/{xtya} can be selected

among the elements (6) whose quasi-degrees are contained

in A (Q).

To find the cycle representatives of CQ, we need
a collection of representative arrays {ul, ey uN} of @

which satisfies the following conditions:

~ N . . AN .

(1) CQ = Us=lCI(us)' in particular @ = ﬂs=lI(uS),

(2) there does not exist any array v such that I(us)
2 I(v) 2 Q.

To obtain such a collection of arrays {ul, oot uN} for

c we may begin with the set of representative arrays

Q 7
{u(l), u(M-l)} defined by

e s o 7

1, (Z2,3) = (« -1,x_-1),
uéi) = { s+l s (l<s<M-1) (7)
“ 0, (Z,4) ¢ a(Q) = {(x__,-1,x _-1)},
s+1 s
where A (Q)= UM_l{(i 1) | O0<i<x 0<g<x } is an independ-
s=1 e I s+1’ ¢ g
end point set of @ [5]. Then, we continue to select linear

- 11 -
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combinations u = g(l)u(l)+~~-+g(“ l)u( 1) satisfying the

condition (2) until the condition (1) is fulfilled.
Each array U has a largest FP parallelogram among the

arrays in (¢ and I3 = I(us) has a unique minimal super-

I{u )
s
ideal IS' which is a primary ideal belonging to P. Thus

we obtain the cycle representatives in CQ - Lgich '
s

Lézl(CI - CI ,) by multiplying the arrays U by the poly-
s

nomials mentioned in Theorem 3.

Example 1: Let P = (f, h), where f = z+l, h = y2+y+l.
x(0,3) is a FP parallelogram and the period of Cp is p = 3.

Thus s = (2%-1)/p = 3/3=1 and 7(P) = {1}, a = z.

From

z+l =1-f,

y341 = (y+1) -h,

it follows that a; = 1, a, = 0, bl =0, b2 = y+1, ¢y = ¢y = 0.
2

For @ = (f2, h2), Ql = (f2, fh, h"), the period of every

element of ¢, - C is equal to\3‘22 = 12. Let S1 = {g |

Q Q'

fin

and L, = Slle The total number of cycles is equal

1
to |T(P)| 27977 = 16 (= ]Lll). The cycle representatives

are shown in Fig. 1. On the other hand, the primary ideal

. .. . 2
@' has five minimal superideals Il = (fz, h), I2 = (f7, h+f)
2
= @241, yCeyra), Iy o= (F RO, I, = (7, heyf) = (2041,
eyl I = (F2, h+(y+1) f) = (2241, y+zu+a), i.e.

- 12 -
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CQ' = iilCIi' The cycle representatives 1in U:i -
(l<2<5) and their FP parallelograms are shown in Fig. 2.
In particular, the 2x6 code CIZ has the code parameters
(n, k, d) = (12,4,6) and the weight enumerator A(z) = 1+
1226+328, where n = code length, k = dimension, d = mini-
mum distance and the coefficient Ai of A(z) = ZﬁZOAizi
is the number of codewords having weight 7. This code

has the largest minimum distance d=6 among the linear codes

with the parameters (n, k) = (12,4) [5].

Example 2: Let P = (f, h) and @ = (fz, h), where f =

x2+x+l, h = y+x+l. The cycle representatives of the 6x6

code CQ and their FP parallelograms are shown in Fig. 3.

The left array is in’CQ - CP and the right array in CP.

Thus this code CQ is an optimal linear code with the para-

meters (36,4,18) and the weight enumerator A(z) = l+12218
24

+3z [5].

vI. CONCLUSION

We have presented a method of finding the cycle repre-
sentatives of any quasi-irreducible two-dimensional cyclic
code by extending Kurdjukov's result on one-dimensional
(ordinary) cyclic codes. This result is useful for deter-

mining the weight enumerator of any two-dimensional cyclic

code.
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APPENDIX

Simplified proof of Theorem 1: The total number of
2lements written by (6) is

T

2(z-1)

.
[T(P)| ™ lLi[ = |T(P)| 1 232 d-2
=1 =1 21
' 27 -1) -2
= |r(py 2942 "D 2T,
which is ecual to the number of cycles (3). For the remain-

ing part of the proof, we can show inductively by an argu-
ment close to Kurdjukov's that distinct elements of (6)
belong to different cosets. In the course, we remark that
the representative array u has a FP parallelogram 2T£lXZT£ .
Furthermore we need the following lemma.

Lemma: A maximal subset S of the Cartesian

product SOXSO which satisfies the following condition is

- 15 -~
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Example of cycle representatives of a QIR

1

Fig.

2-D cyclic code
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