goooboooogn
0 5510 1985], 180-191

is

INTERNAL REPRESENTATIONS OF FORMULAS

IN JAPANESE COMPUTER ALGEBRA SYSTEM GAL

M R 3B "ETH

Tateaki Sasaki” and Fumio Motoyoshi**)

%) The Institute of Physical and Chemical Research (E‘E'Z‘ﬁ)
Wako—-shi, Saitama 351, Japan

it
R
w

*%) Electrotechnical Laboratory, Ministry of ITI (tHCZT-O
Niithari—-gun, Ibaraki 305, Japan

abstract
This paper describes internal representations of formulas in a computer algebra system
GAL which we are developing. In particular, the emphasis is laid on the usefulness of
expression tags, description 6f data structures of some common expressions, and

explanation of a unique method of controlling arithmetic.

Key words and phrases: computer algebra system, internal representation,

§1. Introduction

In a previous paper [1], we described the objectives of GAL project, the basic
system design, and the global structure of GAL. In this paper, we describe internal
representations of many common expessions, These representations were well
investigated and tested so far. The internal representations are related directly
with many important properties of computer algebra system, such as performance,
usefulness, and generality, Furthermore, once a system has been developed, it is very
difficult to change the internal representations because so many system procedures are
written crucially dependently on the internal representations. In addition to these
points, we must alsc consider that GAL aims at attaining superficially conflicting two
objectives, generality and high performance. We, therefore, designed the ir;ternal
representations in GAL very carefully.

As for the internal representations in GAL, three points are noteworthy: The first
is the definition of many kinds of canonical representations by introducing expression
tags, the second 1is the introduction of simple structures into the prefix—form
representations, and the third is a unique strategy of controlling arithmetic,

We find that expression tags are quite useful not only because they allow us to
introduce many canonicals but also they make the system highly modular and extensible,
In GAL, prefix—form representations are designed so that they represent formulas in
guite a similar way as the human does., As a byproduct of this design as well as the
strategy of controlling arithmetic, a high performance of arithmetic on prefix—forms

is attained. In 86, we present some empirical data showing the performance of GAL.

§2. Canonicals and expression tags

The representations of formulas in GAL are classified into three classes, Basic~-
NUMbers, CANOnicals, and PREfix—Forms, where capital letters denote the abbreviated
names, The BNF definition of the BNUM s

<BNUM> ::= <INTeger> | <RATional-NUMber> |

Y
[@2e)
o

<FLOATing-number> | <INTerValL>
We assume that these numbers are contained in the host Lisp system. (Currently, not
every Lisp system contains RATNUM data type, but RATNUM will be available soon in most
Lisp systems., The INTVL is available only in a few Lisp systems now, but the authors
recommend INTVL as a useful data type in Lisp systems for scientific use.) The preci-
sion of the above numbers should be arbitrary. |

By canonical representations in computer algebra systems, we mean some prescribed
and unique data structures representing mathematical expressions. Most computer
algebra systems define canonical representations for common mathematical expressions
such as polynomials, although the representations' are considerably different from
system to system, There are several important merits of doing so. First,
mathematically equivalent expressions are uniquely represented, making the equiValence
check quite easy. Second, a high computation speed is attained., Third, fixing the
data structure is very convenient for implementing many algebraic algorithms, The
canonical data structures should also be defined for structured mathematical
expressions such as matrix or set, In the GAL, canonical data structures are defined
for ALGebraic—Numbers, POLYnomials, ALGebraic—Functions, RATional-Functions, SERIes,
VECTors, MATrices, TENSors, SETs, and Ordered-SETs. (Currently, not all of these are
implemented.,) Furthermore, GRAPHs etc, are planned to be incorporated into GAL as
canonicals.

In some systems, different canonicals are distinguished from each other by the
difference of data structures. Since the GAL contains so many canonicals, this method
will surely lead to confusion, In order to distinguish many canonicals clearly and
efficiently, we put an expression tag at the head of each list representing a
canonical. The expression tag is a Lisp short integer (normally 24 bits length), and
it is composed of three parts, global type tag, local type tag, and domain-property
tag. For the significance and usage of these tags, see [1]. In this paper, we want

to emphasize the usefulness of expression tags for table—driven procedure call,

183

We explain this point further by an example, In the current GAL, the glbbal ty)
tags of POLY and RATF are 2 and 4, respectively., The multiplication procedure fi
POLY and RATF is stored in TABLExCANOCANO(2,4). Hence, given two CANOs :
multiplicands, we first check their global type tags and take out the necessa:
procedure from TARLExCANOCANO, With this scheme of procedure call, we can program t!
procedures for one CANO almost independently of other CANOs. Hence, as for CANOs, GA
is highly modular and extensible, However, if we define canonical representations fi
most expressions in GAL, much memory will be expended for the tables such

TABLE*CANOCANO,

§3. Data structures of common canonicals

In the following, by "bare—CANO" we mean a canonical data structure with tl
expression tag deleted. By "A . B" and "(E1 En)" we mean the dotted pair of A ar
B and the list with elements E,. ..., E,, respectively. We use VAR and TRAN :
abbreviations .of VARiable and TRAnscendental-Number, respectively.

The BNF definition of POLY data structure is as follows:

<bare-POLY> ::= (<main—-VAR> <P-C pair> ... <P-C pair>) ;*)
<main-VAR> ::= <commutative VAR> | <TRAN> ;
<P-C vpair‘> ;:= <POWER> . <COEFF> ;
<POWER> ::= <nonnegative INT> ;
<COEFF> 1= <BNUM> | <ALGN> | <bare-POLY> ;

%) The main—VAR is the highest order VAR in the bare-POLY, and the <P-C pair:
are in decreasing order.
For example, when the VAR x is of higher order than the VAR vy, the canonic:
representation of x2 + 2xy + 1 is
#HTAG x (2 . 1) (1 . (y (1 . 2)) (0 . 1).
This data structure 1is, when the tag is deleted, quite similar to the polynomi:

representation in MACSYMA [21, although not exactly the same, It should be noted the

184

a TRAN is treated as a VAR in the internal representation, However, a TRAN is
constructed to be of lower order than any VAR, hence the TRAN appears in coefficients
of VARs. It should be noted further that functions such as sin(x). or cos(y) are not
allowed as variables of polynomials in GAL.

Using POLY data structure, RATF data structure is.defined as

<bare-RATF> :1:= (<D-N pair> ... <D-N pair>) ;*)
<D—-N pair> ::= <DENOM> . <NUMER> ;
<DENOM> ::= <bare-POLY> | <BNUM> ;

<NUMER> ::

I

<BNUM> | <ALGN> |
<bare-POLY> | <ALGF> ;

%) The <D-N pair>s are in increasing order.
The pair of each denominator and numerator is determined by preserving the input form,
unless the user specifies the collection of fractions, Hdwevef, the common monomials
in the numerator and denominator are cancelled, and the fractions of the same
denominator are collected into a single fraction, Therefore, the RATF data structure
is not canonical in a strict sense,. because there are many different data structures
which are mathematically equivalent. For.example, 1/ (xy+2x+y+2) — 1/(x+1) — 1/(y+2),
which is equal to (, is represented as

(#HTAG (y+2 . -1) (x+1 . -1) (xy+2x+y+2 . 1)),
where underlines denote bare-POLY data structures,

The POLY data structure is used also in ALGN and ALGF:

<bare—ALGN> ::= <bare-ALGF> ::= <NUMER> . <DENOM> ;
<NUMER> ::= <BNUM> | <bare-POLY> ;*’
<DENOM> ::= <BNUM> | <bare-POLY> :*’

- %) The VARs in <bare—POLY> are now algebraic identifiers,
For ALGN and ALGF, we can always normalize the DENOM to 1. However, the normalization
is often time consuming and may lead to complicated forms. Hence, we allow

unnormalized representations, In this sense, the representations of ALGN and ALGF are

184

not truely canonical.

In determining the data str’uctures of POLY and RATF, we considered the hig
performance to be the most important condition, In fact, if the RATF is represente
by a single fraction, which is canonical when the common factor in the denominator an
numerator is cancelled, the representation will become large in general, Hence, ot
representation of RATF will lead to a much higher performance than that in REDUCE [3.
for example. On the other hand, elegance of mathematical treatment and the generalit
of representations are the leading conditions in determining the data structures c
ALGN and ALGF. For example, the imaginary number i1 is represented in the followin
complicated form (#I is the GAL name of i)

HTAG #HI (1 . 1)) . D).
However, representing 1 in this way, we can treat the 1 just the same as othe
algebraic numbers, (If a user wants to manipulate 1 efficiently, he can introduce

variable, say I, with the simplification rule Ix%2 —>_ -1.)

§4, Data structures of prefix—forms

Although the canonical representations are quite useful, we must introduce als
prefix—forms into GAL, There are mainly two reasons for doing so. The first is tha
canonical representations are not able to represent various forms of expressions whic
are often necessary in actual calculations, For example, we often need a factore
form (x + 1)2(X + 2)2 or (x2 + 3x + 2)2 instead of x4 + 6x3 + ISXZ + 12x + 4. Th
second reason is that the existence of canonical form is unknown for many mathematica
expressions,

The first element of the list representing the PREF is an identif‘ier, Hence, th
PREF can be distinguished clearly and easily from the CANOs the first elements o
which are in‘;egers, All the prefix—forms in GAL are classified as follows:

<PREF> ::= <RATional-EXPRession> | <SET-EXPRession> |

<RELational-EXPRession> | <LOGical-EXPRession>

180

The first elements of the lists representing SETEXPR, RELEXPR, and LOGEXPR are,

respectively, set theoretic operators U, ¢\, etc., relational operators =, >, etc.,

and logical operators V, A, etc. The RATEXPR is constructed in the following way:

(1) It may contain BNUMs as numbers;

(2) It may contain VARs (commutative or noncommutative) and TRANSs;

(3) It may contain unstructured CANOS {(hence, ALGN, POLY, ALGF, RATF, and SERI);

(4) It may contain mathematical FUNCtions (commutative or noncommutative);

(b) It may contain OPERators;

(6) Operation of addition, multiplication, division, .exXxponentiation, and composition
{of functions as well as operations) are allowed in any ne,sted way.,

Although the RATEXPRs cover very wide classes of expréssions; they are classified
into only three forms, Cx-form, NCx-form, and C+—form. The Cx-form and NCﬂ;—form
represent products of factors which are mutually commutative and noncommutative,
respectively, The C+—form represents the sum of BNUM, CANCOs, NCx-forms; Cx—forms, and

C+—-forms. We give the BNF definitions of these forms,

<C+-form> ::= (C+ <BNUM> <CANO> ... <CANO>
<T-C pair> ..., <T-C pair>) ;*1)
<T-C pair> ::= <prefix—-TERM> . <numeric-COEF> ;
<prefix—~TERM> ::= <NCx-form> | <Cxkx-form> |
<commutative C+—-form> ;*2)
<numeric—COEF> ::= <BNUM> ;
<C#—form> ::= (Ck <CBASE> <POWER> ... <CBASE> <POWER>) ;*%’
<NCx—form> = (NCx <NCBASE> <POWER> ... <NCBASE> <POWER>) ;

<CBASE> ::= <BNUM> | <unstructured CANO> |
<commutative FUNC> | <NCx—form> |

. %4)

<commutative C+-form> ;

<NCBASE> ::= <noncommutative VAR> | <OPER> |

<noncommutative FUNC> |

1874

<NCx*—-form> | <noncommutative C+-form> ;
<POWER> ::= <BNUM> | <unstructured CANO> Iy <RATEXPR> ;
<FUNC> ::= <FUNC-name> . (<ARG> ... <ARG>) ;
<ARG> = nil | <BNUM> | <CANO> | <RATEXPR> ;

*1) The <BNUM> and <CANO>s may be nil, <CANO>s are in increasing order, and
<T-C pair>s are in decreasing order;

%2) Ordering of constructors is NCx > Cx > C+ ;

*3) The <CRASE>s are in decreasing order;

%4) The number of <NCx-form> is 1 at most.

In most systems, "+", "-", "x", "/", and "xx" are used as constructors of
prefix—forms, In our representations, three of these are eliminated by introducing
simple structures into prefix—forms, This structure introduction allows us to arrange
the terms in C+-forms or factors in Cx-forms in quite a natural order, Furthermore,
arithmetic on RATEXPRs becomes quite simple, Note that the C+H+-form can contain
Cx—~forms and NCx—-forms simultaneously, which is necessary because we often handle sums
of noncommutative and commutative terms, Since the constructor NCx is of higher order
than Cx and C+, and since the C+-form does not contain noncommutative C+-form as a
term, NCx~-forms are arranged near the head of the C+-form. Hence, we can easily check
whether or not a given C+4-form contains noncommutative elements,

The followings are some examples of RATEXPR representations, where underlines
denote CANO representations, "sin” isv assumed to be of high order than "cos", and "A"
and "B" are noncommutative VARSs:

sin(x)zcos(x) ==> (Cx (sin x) 2 (cos x) 1) ;

©@x3 1) (x+1)? ==> (Cx (2x%+1) 1 (x+1) 2) ;

(x+1)3AB ==> (Cx (NCx A 1 B 1) 1 (x+1) 3) ;
4sin(x)® + 3cos(x)*/(x+2) + (xP4x+1) =—>
(C+ (P4x+1) ((Cx (sin x) 3) . 4)((Cx (cos x) 4 (x+2) -1) . 3))

It should be commented that using canonical representations for the arguments of FUNC

is not a waste of memory, because the polynomial data structure for a single variable

is made unique as far as possible,

§5. Arithmetic control

For controlling arithmetic, such as whether or not a factored form is expanded, GAL
provides a useful and practical method. The principles for arithmetic control in GAL
are structure preserving and simulating human's method. In fact, the representation
of RATF has been determined by the principle of structure preserving. These
principles lead us to the following unique method of controlling arirt};metic,

For the éddition operation, GAL allows three modes, UNCOLlection, COLlection, and
STrong—COLlection. Let u and v be nonzero BNUM, CANO, or RATEXPR. In UNCOL mode,
addition of u and v results normally in a C+—-form unless both u and v are BNUMs. For
example, if u and v are CANOs such that u is of higher order than v, we have

u + v ==> (C+ v u),
In the COL mode (default), any BNUMs and CANOs are unified, and any C+-forms are
unified to a single C+—form unless the result reduces to a simpler form, where CANOs
in C+-forms are unified only when they are of the same type, Important is the addi-
tion of Cxk—-forms, Two Cx—-forms are unified when they differ from each other by a
single CANO/BNUM factor of power 1. For example,

sin(0)? (41 (x-1) + 2sin(0 (-1 (342) ==> sin(0® (xr2y+5) (x-1),
but sin(x)s(x+1)2(x—1) and sin(x)S(x—l)z(y+2) are not unified. On the other% hand, in
STCOL mode, any BNUMs and CANOs in C+—forms are unified, and any Cx—forms are unified
when they differ from each’ other by a single CANO/BNUM factor of integer power. For
example,

sin(0)*(x+ D 2 (x-1)% + sin(x)® (x-1) % (y+2)

= sin(x)s(x—l)z(xz+2x+y+3).
For the multiplication and exponentiation operations, GAL allows also three modes,

UNEXPansion, EXPansion, and STrong—EXPansion. Let u and v be nonzero BNUM, CANO, or

RATEXPR. In UNEXP mode, exponentiation of u results normally in a Cx-form and
multiplication of u and v does also unless both u and v are BNUMs, For example, if u
and v are CANOs such that u is or higher order than v, we have

u X v == (Cx u 1l v 1).
In the EXP mode (default), CANOs and BNUMs are multiplied as usual and C+—-forms are
expanded, but any CANOs and C+-forms in Cx—forms are not expanded. For example,

sin(0) 2 (x+1)%(2+3) x cos () (x+1) (y+2)

==> sin(x)cos(y)® (x+1)* (y+2) (z+3).

On the other hand, in STEXP mode, all the BNUMs, CANOs, and C+-forms of integer powers
are expanded.

Thus, once factored forms or power forms are constructed, their structures are
preserved until the user issues COLLECT /EXPAND command or adds/multiplies them in
STCOL or STEXP modes. (The COLLECT command and STCOL mode do not always destroy the
structure.,) Note that, the arithmetic in COL and EXP modes is almost the same as that
in our paper—and-pencil calculations, One practical problem in calculating large
expressions by computer is how to avoid the expression swell, and a human solves this
problem by structure preserving. Our method of arithmetic control seems to be a

simple and useful, although not sufficient, solution to this problem,

§6. Performance

We compared GAL with REDUCE-2 and REDUCE-3 in the speed of basic arithmetic. The
following timing data were obtained on a FACOM,M-38(0 computer, where CLISP system [4]
is used for GAL and REDUCE-2 and SLISP system [5] for REDUCE—Z&; In the following

table, expressions S, A, B, C, D, E, and F are

S = 2x37 + 3x33 —+ 4x27 + 5}(2l - Bxl3 - 7X9 - 8x5 - 9x3 - 10,

2

A:xy+xy2+y222

+ z + 1, B:A+yz‘,'
C=x+y+uwx+ 2z -v) + X + u, D=C+ vy - v,

E = sin(x)(x+y) + cos(y)(z+1) + (x-y), F

= E + (Z+1§.
unit/msec*’ GAL REDUCE—2 REDUCE—3

| | : I : | |
} SkxT l 9211 l 3,589 | 540 l

! | | |
| AT = Axx7 | 65 | 182 l 165 |
| B7 = B#x7 | 126 | 340 1 315 1
| AT % BT 4292, 1 21,791 | 18,409, |
| AT/ Axx5 . | 61*1) I ok ok ok ', 211*2)
| B7 / Bxx2 | 151 | *okokok | 508 |
l | | I |
| C4 = Cxxd4 | 103 l 166 l 190 |
| D4 = Dkxd | 162 | 919 | 9261 |
| C4 % D4 ! 9,045 [19,194 [25,889 |
| | —— - | |
| E6 = Exx6 | 103:§§ | 126 | 150 I
| F§ = Fxxf | 278,00 | . 336 | 398, |
| E6 % F6 | 10,0387 | 20,995 | T T A
| EB x F6 | 3,487 | same | ok ok ok I

*%) the result is not printed out,
*1) using DIVIDE command,

*2) using REMAINDER command,
x*3) in STEXP mode,

*4) in EXP mode,

*x5) GRC-overflow,

In GAL, polynomials A, B, C, D are represented in canonical form and expressions E
and F are represented in prefix—forms., On the other hand, in REDUCE, E and F: are
represented in canonical forms by treating sin(x) and cos(y) as variables, We see

that performance of GAL 1is pretty good. It 1s remarkable that arithmetic on

- prefix-forms 1is quite efficient in GAL. Usually, performance of arithmetic on

prefix—forms is considerably worse than that on canonicals, We see furthermore that
arithmetic control in GAL 1is able to make the calculation on prefix-forms quite

efficient,

191

Acknowledgement., We thank Prof. S. Watanabe, Dr. Y. Kanada, and Mr. H. Murao for

discussions on the representations of polynomials,

References

[1] T. Sasaki and A. Furukawa, "Design of a general computer algebra system,” IPSJ
Meeting Report on Symbol Manipulation, No.23-2, March, 1983.

[2] A. C. Hearn, "REDUCE user's manuai", Version 3.0, The Rand Corporation, 1983.

[3] The MATHLAB Group, "MACSYMA Reference manual”, 9th Version, Laboratory ‘for
Computer Science, MIT, 1977.

[4] A. C. Norman, "Introduction to the Cambridge Lisp System", Computer Laboratory,

Univ, Cambridge, 1981.

