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problems by discrete variable methods (I)

Masatomo FUJII
B HF E K

Department of Mathematics, Fukuoka University of Education

1. Introduction

In the paper [2], We considered an initial value problem

(1.1) g-’g = X(x,t)

with an initial condition
(1.2) x(a) = 2,

where x, X(x,t) and & are real vectors of the same dimen-
sion. We have then obtained a global existence theorem of an
exact solution in a neighborhood of a continuous approximate
solution and proposed an algorithm for getting a global error
bound of a discrete numerical solution over an interval
I=[a,b], when the above differential system is integrated
numerically by means of a discrete variable method over I.
Several global existenée theorems and their applications

to getting global error bounds have been discussed in M. Urabe



[6], H. Shintani and Y. Hayashi [5], Y. Hayashi [4] and T.
Yamamoto [7] as the special case of boundary value problems
including an initial value problem. But any algorithm to the
case of the discrete numerical solution has not been given in
them. For two-point boundary value problems, G. Kedem [1]
has propésed the algorithm in which a method of the interval
analysis is used. But he has dealt with only the case that
X(x,t) is a polynomial in t and x.

In this paper, we propose a new algorithm which is more
accurate than that given in [2]. We assume that the dimension
df the differential equation in (1.1) is one, the order of the
discrete variable method is four and the step-size is a con-
stant h. But in Section 2 we shall describe the global exis-
tence theorem in vector forms and in Section 3 also mention
continuous approximate solutions in vector forms. In Section
4 we shall give quadrature formulas which are important in
our algorithm, in Section 5 state an algorithm for evaluating
some necessary quantities for our purpose and in Section 6
discuss the accuracies of them. In Section 7 a numerical
example will be shown and in Appendix some remarks will be
given. |

Computations in this paper have been carried out by the
use of FACOM M-382 at Kyushu University and some preparatory
computations by the use of FACOM S-3300 at Fukuoka University

of Education.
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2. The global existence theorem

By the symbol || +|| , we denote a suitable norm of a
vector or a matrix. For a vector-or a matrix-valued function
defined on I, we denote the supremum (over I) of the above
norm by ll-llc.

Let D' be a domain of the tx-space intercepted by two
hyperplanes t=a and t=b such that the cross sections R,
and Rb at t=a and t=b make an open set in each hyper-
plane, and D=RauD'uRb on which X(x,t) 1is defined.

Let us denote the knots on I by tn (n=0,1,...,N),

where
(2.1) a =

For each n, by X(n) we denote the value of the numeri-
cal solution of (1.1) and (1.2) at the knot t
Let xo(t) be a continuous interpolating function pass-

ing through the points (t ))ED (n=0,1,...,N). We shall

n’ x(n
call such a function xo(t) a continuous approximate solution,

if it lies in the interior of D. Let us define the residual

error 1(t) as follows:

t

(2.2) r(t) = xo(t) - X(O) - Ja X[xo(s),s]ds
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Let A(t) be a continuous matrix—valued function defined
on I and &(t) be the fundamental matrix of the linear homo-

geneous differential system

(2.3) F - Ay

satisfying the initial condition

(2.4) ®(a) = E (the unit matrix).
Then we have the following

THEOREM 1. Let X(x,t) in (1.1) be continuous and conti-
nuously differentiable with respect to x in D. For a conti-
nuous approximate solution xo(t),-we suppose that there are
a continuous matrix-valued function A(t) defined on I, a

positive constant 6 and a non-negative constant k < 1 such

that

(2.5) Dg = {(t,x)| [ x - xp(t)]|] <68, teIl(D,

(2.6) IlXx(x,t) - AD) ] = —ﬁ— for any (t,x)¢€ Ds>
1
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(2.7) 2 <,

where Xx(x,t) is the Jacobian matrix of vX(x,t) with

respect to x, and where M1 and M2 are the quantities such

that

t
(2.8) M; > max J ]l@(t)Q_l(s)IIds,
tel ‘a

t -

(2.9) M, > || f o(t)e L(s)A(s)r(s)ds + r(t) + e (t) (x(g) - 2 1. -
a

Then there exists one and only one solution Xx(t) to the given

differental system (1.1) satisfying (1.2) over I. Furthermore,

for x=R%(t) it holds that

2
(2.10) & - %l < < 8.

For the proof, refer to [2] and [5].
REMARK 1. 1In general we may take Xx[xo(t),t] as A(t).

REMARK 2. 1In this paper, as (2.1) we may consider only
the case that

(2.11) t_ =a+nh (n=0,1,...,N), h = 2 2




-J
<

3. Continuous approximate solutions

Evidently there may exist infinitely many continuous appro-
ximate solutions. In [1], G. Kedem has given a concrete form
of xo(t). However, we do not give any concrete form of xo(t).
We use only the discrete information. We imagine that a suita-
ble one may be chdsen by the given differential system and the
algorithm given in Section 5.

However, we have the following

THEOREM 2. 1If §(t) is the unieque solution of (1.1) and
(1.2) over 1I. then there exists a continuous approximate solu-

tion xo(t) such that

(3.1) 1% - %l = max J1%Cep) - xgy)l

This theorem is proved by constructing such xo(t) con-

retely. Let xo(t) be the function defined on I by

(3.2) xo(t) = X(t) + {x(n) - x(e )} e ()

A

- x(t )}mwno(t) on each In’

* {X(n+1) n+l

where In=[tn,tn+l] (n=0,1,...,N-1) and
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(3.3) v () = [ J nrleg . nym-1 D ym-lggy-l
m t h h
n
t s - t s - t
x J (1 - n ym-1 N ym-l3s on each I,
n
t h h
n
(3.4) nfno(t) =1 - ¥ ,(t) on each I for m > 1.

Then this xo(t) satisfies the relation (3.1) in Theorem 2
(cf.[3]). Note that there exist other such ones.

By the assumption that the order of discrete variable

methods is four, we may write
~ _ 4 _
(3.5) x(tn) - X(n) = 0(h") (n=0,1,...,N).

Furthermore, if xo(t) satisfies the relation (3.l1l) in

Theorem 2, then we may also write
(3.6) 2(t) - x4(t) = o(n*) for all te€ L.

A numerical experiment shows that there exists much better
xo(t) than that defined in (3.2) {cf.Appendix).

However, since we do not give the concrete form of xo(t),
we can not know whether our xo(t) satisfies the relation

(3.6) or not.

Further discussion about continuous approximate solutions

is given in Appendix.



4. Quadrature formulas

In our algorithm for getting global error bounds, the

following formulas are important:

1) [ih (s)d j £(h)
4.1 £ = h a.. ]
( (i_l)h S S j=o k ij J

+ kcihk+3f(k+l)cgi), 0 < Ei < kh,

(k=6,7;i=1,2,...,%).

As is seen from Table 4, for k=7 7€4 is the smallest
one in magnitude among 7€5 (i=1,2,...,7) and from Table 2,
for k=6 63 and 64 are both the smallest ones in magni-
tude among 651 (i=1,2,...,6). Thus we See that it is desir-

able to use the fourth formula for k=7 and the third or the

fourth formula for k=6 as often as possible respectively.

Table 1
Coefficients 6a.. g=60480
i3
i 8620 86241 8632 86243 8624 86215 8626
1 19087 65112 —46461 37507 -20211 6312 -863
2 -863 25128 46989 -16256 7299 -2088 271
3 271 —2760 30819 37504 -6771 1608 -191
4 -191 1608 -6771 37504 30819 -2760 271
5 271 -2088 7299 -16256 46989 25128 -863
6 -863 6312 -20211 37504 -46461 65112 19087
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Coefficients 6ci Table 2 e=120960Q
e-6cl ’e'6C2 E'6C3 e.6clp 3'6C5 E’6C6
1375 =351 191 =191 351 -1375
Coefficients 7215 Table 3 e=120960
&350 7% %7%2 % 7%3 %49%4 %735 €736 %777
36799 139849 =121797 123133 -88547 41499 -11351 1375
- =1375 47799 101349 =44797 26883 =11547 2999 -351
351 -4183 57627 81693 -20227 7227 -1719 191
~-191 1379 -39531 68323 68323 -9531 1879 <191
191 -1719 7227 -20227 81693 ‘57627 -4183 351
-351 22999 =11547 26883 =44797 101349 47799 -1375
1375 -11351 41499 -88547 123133 -121797 139849 ‘36799
Table L
Coefficients 7ci £=362800
o0, £y, Ergey Eege Ergeg fheg £
-33953 7297 -3233 1497 -3233 7297  -33953
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5. An algorithm for evaluating ﬁl and ﬁz

Let M, and M., be the quantities of the right hand

1 2
sides of (2.8) and (2.9), and Ml and HZ be their approxi-

mations respectively.

From the definitions of r(t) and &(t), it holds that

t
n X[x,(s),s]ds
a

(5.1) r(tn) x(n) - X(O) - f

= Xm) T *ta-1) 7 r(t; 1)

. ,
- [ n X[x,(s),s]ds

and

t
exP{[ n X, [x,(s),s]ds}

(5.2) @(tn) .

t
@(tn_l)exp{ftn Xx[xo(s),s]ds}.
n-1

Let T and ¢n be the approximations of r(tn) and

@(tn) defined respectively in the following

ALGORITHM. (k=6)

/0



6
4 = h'ZQ 6%1j X[X(J)’ t;1
]
L—o9o = én_lexp(dn)

for n=3,4,..., N-3, do:

n " *t) T *-1) T Ta-1

[x

(n+j-3)" Fn+j-3]

6
dp = hjz 6%35%x

—_—0 = @n_lexp(dn)

for i=4,5,6, do:

n=N+1i-25

6
T Xm) T *@-1) Y Tn-1 hjzo 6215 % X (n+j-6)* tn+j-6!

[a W
[}

6
n =Pl 625 X ne-6)2 tavyee]

l

n Qn-lexP(dn)

Il
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for n=i=1,2, do

6
-1

E+h ..0.7X . t.]r.

jZO 62135 Xx[X(5y0 5175

tr
1]

ki
]

|®nE tro+ Qn'(X(O) - 2)|

L———MZ = max (F, Hz)

for n=3,4,...,N-3, do:

E=E + h_

6 ‘
JZO 6235%n+5-3Xx (X (n+j-3)> Tnej-31Tnej-3

F = [@nE tro+ ®n°(x(0) - 1)

——"-ﬁz = max(F, Hz)

for i=4,5,6, do:

62ij n+j-6%x X(n+j-6) Tn+j-6!Tn+j-6

/<
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for i=4,5,6, do:

O
I
O
+
=
I 10

o

o
L1}
o
5
O

We have a similar algorithm for k=7.

6. The accuracies of T_, ¢, Ml and M

n 2

For k=6, since T, = r(to) = 0, from (4.1), (5.1) and

the definition of To» we have

(6.1) r_-r(t) =t - r(t 1)+ 0%
= o).
While since
A t A
(6.2) x(tn) -2 - f n X[x(s),slds = 0,
, a

1%



we obtain

(6.3) r(tn)»= x( - x(tn) - (X(O) - %)

n)

t R N n
. Jan X _[R(s) + 8(xo(s) - X(s))1[x,(s) - X(s)]ds
0 <6 < 1.

Since X0) - %2 1is negligible, if we suppose that our xo(t)

imagined in Section 3 satisfies the relation (3.6), then it

follows that
(6.4) r(c ) = oh?).

From (6.1) and (6.3), the relative error of r is expressed

as follows:

: r - 1r(t.)
(6.5) L oomd).

r(tn)
From (6.5) we may suppose that T, has a few significant di-

gits.

From the definitions of dj and @n, since

t.
d. = f I X_[x.(s),s]ds + 0(h®)
J t. 1 x70 s
J—

we have

n
(6.6) o @Oexp(_z d;)

j=1

o(t_Jexp[0(h))].
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Thus the relative error of @n is expressed as follows:

n

o - o(t.)
(6.7) M n o oexplo(h))] - 1

@(tn)

o(h’).

As is readily seen, we have
.7

(6.8) S —— =0("),
3

(6.9) -~ = 0(h7).

Simiraly .for k=7, we have

- r(t )4
(6.10) In T m - oomh,
r(tn)
¢ - o(t)
(6.11) - = - 0(58)’
@(tn)
M, - M
1 8
(6.12) : R
1
W, - i, .
(6.13) z 3 2 = om".
2

We denote the approximations Ml and Mz for the case

of k=7 by 7M and 7M respectively, and for the case of

k=6 by 6M1 and 6M2 respectively.

/6
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We do not know the values of ﬁl and ﬁZ’ and so we use

M, and -M, instead of them, respectively in Section 7.

71 7

Since there exist constants C6 and C7 such that

M, - M M, - M
(6.14) $1 1 -ch’ ana I _1.-cnd,
f | ft
1 "1
we see that
oM - My 7 g 1+ Ceh’
(6.15) 22712 -cn’ - cn
M 8
' Ve o 0 1+ Csh
- i
= _6....1_:..._.i_- (1 + O(h)).
My
Simiraly for 6M2 we have
M, - .M M, - M
(6.16) 2 T2.82 2.1+ 0(n).
7™M2 M,
From (6.15) and (6.16), it follows that
(6.17) - log, |& 2 T 2| = - 109 |&L 1| 4 o) (i=1,2).
10 w7 10 f

771 i
7. A numerical example

Here, as the numerical integration formula, we use the
Runge-Kutta-Gill formula with the constant step-size h=0.01
in double precision and we gompute kﬁi'(k=6,7;i=1;2) in

quadruple precision.

/7



EXAMPLE. Consider the initial value problem

(7.1)  FE=-xFeet -, x(0 =1, I=[0,1].
The exact solution of this problem is given by

(7.2) X(t) = 1/(2et - t - 1).

The left hand side of (2.6) reads as follows:

t
(7.3) Ixx(x,t) - Xx[xo(t),t]l = |4e” - 2]||x - xo(t)[.
At t=0.5, we obtain
_ = -9
6M1 = (0.28809862..., 6M2 = 0.3254311...x10 7,
__— __— -9
7M1 = 0.28809862..., 7M2 = 0.3254241...%10 ~.

As the approximate significant digits of 6M2’ we have

M, - .M
i 10glol6 2 " 772

72

= 4.666...

Thus by rounding up the mantissas of 6ﬁ1 and 6M2 to four

decimal digits, we obtain

(7.4) M, = 0.2881 amd M, = 0.3255x10°°

/&



respectively.

Since 4e0'5 - 2 =4.595, from (2.6) and (2.7) we obtain

the following inequalities:

Lo —5 .
1 -« 4.595M1

(7.5)

If we take « = 0.0001, then we have

(7.6) 0.3256x10"° < 6 < 0.7553x1074,
The global error reads as follows:
(7.7) max Iﬁ(tn) - x(n)] = 0.325424117...x10°°.

O;p;SO

Hence we see that the global error bound 0..7>ZS6><10-9 is very
good.
At t=0.8, the global error takes its maximum in maguni-

tude on I. We obtain

} ) -9
oM, = 0.3407682... , ¢M, = 0.39406942...x107°,
o o : -9
M, = 0.3407682... , oM, = 0.39406473...x10"°,

M, - .M
- log, |82 T 21 - 4 929,
10 -
M,

In the same way as in the above case, we have

77
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(7.8) M, = 0.3408 and M, = 0.3941x10"°
respectively.
Since 4e0’8 -2 = 6.903, if we take «k = 0.0001, then we
have
-9 -4

(7.9) 0.3942x10 ~ < § < 0.1448x10 .
The global error reads as follows:

A _ ‘9
(7.10) max ]x(tn) - x(n)l = 0.39406487...x10 7.

0<n<100

Hence we see that the result is very good.

Appendix

The polynomials m¢n0(t) and mwno(t) of degree 2m-1
given in (3.3) and (3.4) satisfy the following relations res-

pectively:

t t
n+l _ n+l

(A.1) Jt n®no(s)ds = Jt n¥no(s)ds
n n

= % for all m > 1.

<0



For instance, for the initial value problem

(A.2) X -x, x(0) =1, I=[0.1],
r(tn+1) corresponding to the xo(t) given in (3.2) is obtain-

ed succesively by

(A.3) Tty =Tt - Ry - x(e)}A + D

%) on each 1I_.

* {x(n+l) ) ;E(tn+1)}(1 B n

Let us also consider xo(t) defined by

(A.4)  x4(t) X(t) + {x(n)‘- ﬁ(tn)}2¢no(t)

L

{x(n+1) " i(tn+1)}2wn0(t)

+

(X(x(nyoty) - XIX(t),t 13,6, (¢)

+

{X(X(n+1)’tn+l) - X[g(tn+l)’tN=l]}2wnl(t)

on each I_,
n

where

(A.5) 6 (t) = h(l - — 2"
‘ 2'nl h h

)

’

2!
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t -t t -t

- 2 n _
(A.6) 2¥n1 (V) = h(— =) °( - 1).

This xo(t) does not satisfy the relation (3.1) but it satis-
fies the relation (3.6) and r(tn+1) for the initial value

problem (A.2) is given by

2
(A7) r(ty,q) = T(t) - fxgy - Reia + 5+ 3
" Y
+ {X(n+1) - X(tn+l)}(l -7 + 1z ).

The numerical results for h=0.01 reads as follows:

k xo(t) M2

7 (3.2) 0.22463932...x107°

7 (A.4) 0.224641326...x10°°
6 Algorithm 0.2246439629...x10 °
7 Algorithm 0.2246440034...x10 °

- % = -9
|x(100) x(tloo)l = 0.22464400363...x10

From the above results, we see that our algorithm gives

the good results.

22
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