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In this Tecture I will review some recent work done by my colleagues and
ne at Clarkson. I will concentrate on the basic underlying ideas and refer
interested readers to suitable references for complete details; specifically
background material can be found in various texts on this subject (e.g. [1].
by Ablowitz and Segur) and more recent references will be given as necessary.
The outline of the lecture is as follows.

1. Introductory Remarks.

2. A discussion of two separate but related issues. Namely, (a) solving

certain nonlinear evolution equations in infinite space and, (b)
Inverse Scattering. These are important problems having many physical
applications. Moreover, they are related to each other by what I refer
.to as the Inverse Scattering Transform (IST). It ‘turns out that the
relationship between these problems depend crucially on the number of
dimensions involved. The explanation of this phenomenon will occupy
most of the Tecture.

3. At the end of the Tecture I will make some remarks on the possibility

of solving nonlinear evolution equations in high dimensions
(i.e. equations with more than two spatial and one time variab]e)‘
by-using the IST method as we now understand it.

The prototype nonlinear evolution equations for our purposes will

be the Korteweg deVries (KdV) equation

Uy - 6qu Uy S 0 (1)

in one spatial dimension, and the Kadomtsev-Petviashvili (KP) equation

_ 2
(ut - buu, + uxxx)x = -30 Uy (2)
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in two spatial dimensions. It turns out that the sign of 02 is critical:
there being two cases labeled by KPI: 02 = -1, KPyp = 02 =1,

Historically speaking, the KdV equation was the first equation solved (on
the infinite 1ine) by use of Inverse Scattering. Subsequently numerous other
equations of physical interest in one spatial dimension were solived e.qg.
Nonlinear Schrddinger, sine-Gordon, Three wave interaction, Modified KdV,
Boussinesq, --. These equations are all partial differential equations. In
fact, there are other equations which are discrete in space - continuous in
time (differential-difference) and equations discrete in both space and time
which also may be solved by IST. One other class of equations 1n one spatié]
and one time dimension fits into this scheme, namely nonlinear singu]ar»

integro-differential equations; with the prototype being the so-called

Intermediate Long Wave equation [2a]:

1 - 0-
up +ogu, 2uux + (Tu)XX = 0; (3)
Tu = %E’f coth %E(g-x)u(g)dg.

-0

As s ~ 0 (3) tends to the KdV equation (with appropriate coefficients) and

as § - to the so-called Benjamin-Ono equation

ug 2uux + (Hu)XX =0 (4)
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The method to solve (4) was recently found and it's method of solution has

certain features in common with some two-dimensional problems - specifically
KP; (see [2b]).

It should also be remarked that some ode's can also be solved by similar
methods; specifiéa]]y the classical equations of Painlevé (see [3]). I will
not dwell on this aspect any further in this lecture.

In two spatial one time dimension the KP equation is
only one of the equations that can be solved in infinite space. However
an effective method was not realized until a short time ago. In fact new
ideas had to be introduced for KPII [4]. This paved the way for the develop-
ment of the IST for a wide class of equations in 2 + 1 dimensions (a review
of this and related work can be found in [5]). It should be mentioned that
earlier work on KPI had been done by Manakov [6a], more recently by Fokas

and Ablowitz [6b] and on the three wave equation by Kaup [7]. KP., and

11
others like it depart significantly from previous work and its study
has led us to develop a general method to do inverse scattering in n
spatial dimensions as I will indicate in this lecture. However, the situation
with regard to solving nonlinear evolution equations in spatial dimensions
greater than two is still unclear. There are few cases known which seem to
fit into the IST schema and, in fact, the inverse scattering results found
in [8,9] shed some more light as to why in n dimensions it is difficult to
isolate such multidimensional equations.

The method of solution by IST begins with the study of two compatible
linear operators (Lax pairs) (L depends on one or more "potentials" or

functions which we call u)
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LV = v (5)

connected by the compatibility condition
Ly + [LMl =0 (7)

when the f1bw is isospectral: At = 0. (7) is the nonlinear evo]ution equation
to be solved. X is a spectral parameter, which as it turns out Tloses
~significance in spatial dimensions greater than one. L 1is a spatial operator
only;with time acting as a parameter. The parametric dependence in time is
what allows us to study the question of inverse scattering separately and

then after this task is completed allows us to solve the relevant nonlinear

equation (7). For KdV the operators are,

9 (8)

-9 = A
L="— u, M= (4x+2u) ; Uy

X X
then the reader can now verify that (7) yields (1).

The direct scattering problem associated with L means given a potential,
solve for relevant eigenfunctions and associated séattering data. The
scattering data generally contains asymptotic information about u. The inverse
problem for all the one dimensional problems I am familiar with (cohnected
to the equations mentioned above) may be written in a simplified form. Namely,
solve the following Riemann-Hilbert factorization problem on a specified

‘contour C:
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U+(X9k)‘U_ (Xak> = M (X,oc(k))V(X,k) on C (9)

a(k), V(x,k) given on C, u, -~ 1 as [k] - ~ and ui(x,k) are to be meromorphic
in k ¢ € off C with the poles of My fixed and appropriate information given
about the residues of y . is essentially an eigenfunction of v being connected
to v by an exponential transformation: u = veeL; 6. depends on the form of
the operator (5), and the parametric dependence of A on k is explicitly given
(n may be matrix valued). Thus with this information given, the inverse
problem is posed. Since intuitively speaking, the somewhat simpler case of

u, sectionally analytic contains the essential ideas I shall simply assume

the scattering data: V(x,k) is given and we look for u, sectionally analytic.

Hence the Riemann-Hilbert boundary value problem (RH) is well posed-without
need for any extra information regarding the pole structure of My With
regard to the question of pure inverse scattering, the scattering data may

not be what is referred to as the physical scattering data. Nevertheless

in specific cases of interest, transformations between the physical scattering

data and V(x,k) can be found.

To be concrete the scattering problem for KdV, the one dimensional time

independent Schrodinger equation has i = K2
v+ (k2—u)v = (0, -w<X<w (10)
XX ’
_ =ikx
V = ue
UXX - Zikux - Uyu =0, (1])



The direct problem (11) with u > 0 sufficiently rapidly (J (1+ x| )] uldx ).

—C

has solutions with appropriate analytic properties namely for Im k2 0,
ut(x,k) are +/- functions of k. It may be shown that in this case the
functions in (9) are given by (k) = -k
V(x k)= r(k)el KX (12)

where r(k) has suitable smoothness and decay properties. The contour C is
Imk = 0, r(k) is usually called the reflection coefficient and is a physically
meaningful function. In the sense of the inverse problem, specifying r(k)
determines the potént1a1 u(x); assuming no poles in Hys 17e. no bound states.
As mentioned earlier when bound states are included, the residue structure of
the eigenfunction: u_(x,kj) must be specified. Finally we note that the

potential u(x) follows directly from u+(x,k) since u, are eigenfunctions

associated with L. (In fact, for u the Schrodinger operator it may be

shown that u(x) = 8/ax(%fr(k)eZ]kxu_(x,-k)dk.) Similar formulae hold
in the general case.

The solution of the initial value problem of KdV is obtained by noting
8ik3t

that r(k,t) = r(k,0)e This follows from the second linear oper-

ator M: see (6), (8). The reconstruction of u(x,t) then follows from the
inverse problem.. In general, the scattering data V(x,k,t) also evolves
simply in time e.g. V(x,k,t) = V(y,k,O)e‘”(k)t (when V,w are scalars).
Schematically, we have:

(Direct problem) (From&M operator) k;from inverse problem)
U(X,O) "+U+(xskat=0) '%‘V(X,k,O) —> V(Xskat) ""Ui(xskst) _— U(X9t)
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The method of solution is what is usually referred to as the Inverse
Scattering Transform: IST. This program has been carried out for a surpris-
ingly Tlarge number of physically interesting equations in one spatial dimension.
In fact,'thé only equation in one spatial dimension mentioned above that does
not have an associated inverse problem of the form (9) is the Benjamin-Ono
equation. (4). It shares with the KPI equation an inverse problem of the

nonlocal R-H form:

s (0K = k) = [ Gk V0K KA (13)

Next, I shall discuss the KP equatioh and its associated scattering

operator L:

cvy Ve T u(x,y)v =0, (14)

where, for Lv = Av, A = 0 may be taken without loss of generality (by the

scaling property of v). Since the analysis for the generalization:

ov,, + Av - u(x,y)v =0 (15)

n
where o = oR+ioI, A= X az/axi. X € Rn, y e R, is a natural extension of
2=1

that in two dimensions, I will discuss this case. Scattering parameters are

put into (15) by looking for a function u = u(x,y.k) where
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. 2 ,
v.=11e1k‘X+k y/o’ (16)

oMy, + Ap + 2ik + Vy -up = 0. (17)

and k = kR + ikI

We look for a solution u(x,y,k) bounded for all x,y and p ~ 1 as

e C". We shall consider op # 0, op < 0.

k| - . The latter condition is a convenient normalization. If we should
consider (17) for o = + 1 in analogy to the KPII scattering problem, we
immediately notice that the dominant operator is the heat operator which

is known to be illposed as an initia]lvalue problem. Even though we pose a
boundary problem, immediately we are led to believe that in this case there
there will be some type of unusual behavior. In fact in ref. [4,8] it is

shown that the function u for Op # 0 is nowhere an analytic function of k.
Specifically p = u(x,y,kR,kI). In particular p is constructed from the following

equation. Given a u(x,y) -~ 0 sufficiently rapidly at «, (the direct problem),
wo= 1+ Gluy),
Gf = G*f = JJG(X-X', y-y', kR’kI)’ f(x',y')dx'dy"'. (18)

The Green's function G is obtained from:

1 eri(x-€+yn)

G(x,Y kpokp) = dgdn
@™ ion-g®-2k-g
‘ 2 . ko '
e [/HEAEITE D (yap(ePraicy + D) (20)
w)o . )

where  ® (x) = {1 for x > 0, 0 for x < 0}. In constructing (20) we have



78

used the principle of boundedness, and have taken the Fourier transform in both

x and y to find G.
Taking the DBAR derivative of (18) we find (assuming no homogeneous

solution to (18)):

_.B_H_. = ?'U = C Je.lB(g)(S(S(g))(EJ’kJR)T(kRakIs{;—)n(xx),s‘g’k]:)’ j=‘|’2";"n

- j n
where
| ) K op 2 o1 |2
Cn = - “‘—n—"—; L}(é:) = (x+2y g’)(g‘kR)a 5(€)Z(g+ 6—“ kI) —(kR + Em kI) s
(2m) IGR! R R R
Tlkgokpo8) = [[e BNy utxy ko x dy (21)

and §(x) is the usual dirac delta function. Thus (21) expresses the fact

that au/an depends linearly on u. This is all within the context of direct

scattering.

The inverse problem is: given T(kR,kI,E) construct u(x,y).
However it is immediately transparent that there is a serious redundancy
question. Namely T(kR,kI,E) is a function of 3n parameters with one restric-
tion (the reduction is due to &§(s(&)) in (21): i.e. T will be given as a
function of 3n-1 variables and we wish to construct a function u(x,y) depend-
ing on n+l variables. But for n=1, namely for the two spatial dimensional
problem, the difficulty disappears.

In fact there are numerous reconstruction formulae for u available and
serious restrictions on T mustbe imposed in order to obtain a function u(x,y)

vanishing at «». This is the admissability question.
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Our first inversion formula for u is obtained from the generalized
Cauchy formula: j):U—-(X,y,ké,ki)
1

ok . ,
= t J 1 !

. .o . . . _—
where we use the simplified notation kR”(klR""’ij""’knR) and similarly

for ki' (22) is a linear integral equation for y, using (21). The potential
is constructed from:

AR op o )l 1
obxn) - B ]2 Gy gk ke (23)

But the issue arises as to what conditions on T(kR,kI,E) will ensure that
u(x,y) is independent of the parameters kRi’in’ i# 3.

For n=1the above procedure is effective and in fact (21) reduces to (kl=!<):

. ] °1 i8(g,)
BE = m]— sgn(kR + % kI)e 0 T(kR’kI’EO)U(X’y’QOkI)

(24)
where £O=-(kR+2hoI/oR). For K-P the IST is carried forth by noting that

T evolves simply in time T(-,t) = T(-,O)em(kR’kI)t (see [4]). It should

also be noted that while KPII is obtained directly op = 0, op = -1; the

solution to KPI can also be obtained by taking the Timit: o = 1, op 0-,

R? kI = kI/gR (kR, kI finite).

2 2
For n > 1 the compatibility condition _3 o = _8 E_ (5 # j) leads
okoky ok ok;

to a nontrivial restriction on T; one which is nonlinear:

2i5(1) = Ng(T) (25)
where
- 3 .1 08y 3 .1 3%
I]'j = (ankJR)(;i_ + ?g) - (gi'k-iR)(;E—” + 75’5‘;) (26a)
i .

/70
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N;5IT200E) = [LEj-kg) (85 -E)-(Ef ki) (£5-E5) 16 (s (5D
X T(kR,klﬁgl)T(g.’kI’g)dgl’ (26b)

In fact there is a change of variables which allows (25) to be put in a
simplified form. Without loss of generality we may consider the case of
(25) with i=1, then introduce new variables (X,w,wo) € Cn_] x R" x R

which parameterize the sphere s(g), (X = (XZ""’Xn)

n W O WAW O WAW .
- - 1 1071 _ 107 ]
k L WiXip = 5 - . Kip = -W X.p - W, -
1R j=2 J7iR 2 2w2 JjR 17jR j/2 2W2
n . OpWAW OpWAW ;
k-lI = ZW.X.I + ROZ] , k I = _w]X I +R—02J_
2 JJ 2w J J 2w
n Wi opWoW, w O WAW

Thus for wy# O there is a 1-1 map : (kp,k;,E) » (X,w,wo) such that

3 _
9% 13
j

Thus (25) for i =1, j = 2,...,n yields

LI .=
" N]j(T)(X,w,wO), j=2,...,n. (29)

J
Thus by inversion using the generalized Cauchy formula we have

NTJ[T](X',W,WO)

= 1 ' T = 0
<0 = Twug) - %-JJ oy iy = Glwug) . (30)

!/
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~

(u(w,wo) is the Fourier Transform of u(x,y)) (30) leads both to admissability
criteria as well as reconstruction of u(x,y). Namely given T(kR,kI,g) compute
<Q. We conjecture that if~£ is independent of x and j and has suitable decay
properties for large w, Wy» then T is admissable. The potential is recovered
from
u(x,y) = ¥HE (wawg)), (31)
where ?-] denotes the inverse Fourier Transform. Moreover we see that
reconstruction follows purely by quadratures given‘T(kR,kI,C) on s(&) = 0.
It turns out that the physically interesting case of the time
dependent Schrodinger equation in n dimensions fall out as special cases
of the above result. I mention these facts in the following concluding

remarks .

Remarks

(1)  The nonlinear equation for T: (25) precludes the existence of a simple flow
in time for the scattering data i.e. T(.,0) # T(',t)eiwt. This provides
still another explanation for why no local nonlinear evolution equations
have been associated with (15).

(2) The results for the time dependent Schrddinger equationo= i in (15)

are obtained via the Timit: o = 1, op > 0-, kg = kp, k; = k{/ops
ER’ EI finite.

(3) The results for the time independent Schridinger equation are obtained
by specializing those of (2) to the case of u = u(x). In fact we find

that our results then agree with those of Faddeev 1966, 1976 for the three

dimensional case. However it should be remarked that the admissability

/2



criterion we give is somewhat different from that of Faddeev - which is
given in terms of certain analyticity behavior of T. It must also be
mentioned that T(kR,kI,g) is not the usual scattering data. Namely the so
called Scattering Amplitude A(kR,E)is the physically measurable data and hence.
the physical scattering data. Nevertheless there is a linear integral
equation relating T tc A which holds on- the energy shell. Similar remarks
can be made for the scattering theory associatéd with the time dependent
Schrodinger problem.

(4) Although here we have discussed the analysis for the genéra]ized
Schrodinger scattering problem, the algorithm also works other operators in a
straight forward way. In [9] the scattering problem

n
V. +0 2 Jd,V. = ulxs.x)V, (32)
X0 2=1 L Xy 0

with 0= op * 101, x ¢ R s Xy € R, u an mxm matrix, and J2 = diag(Ji,...,Jz).
Again results analogous to (25) generically follow; i.e. the scattering

data satisfies a nonlinear constraint. (32) is one of the few

operators that has a compatible time evolution operator and hence a Lax pair
describing a nonlinear evolution equation in n dimensions - the so called

m-wave interaction equation. However the compatible equations follow only

if certain restrictions are put on JL: namely that the vectors

EL IS B
J = (J]’JZ""

nonlinear term in the equation for T vanishes - i.e. the analogy to (25) is

,J;) are all colinear. In this case the coefficient of the

now purely linear and allows a simple flow, in time. The m wave equation

follows. Nevertheless despite outward appearances the m-wave interaction

equation can be reduced to two spatial dimensions [11].

/3
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As a final remark, if one is interested in perhaps very complicated

nonlocal nonlinear equations which are linearizable, then (25) and its

generalizations clearly provide such models.
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