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Quantum Three Wave Interaction Models:

Bethe Anstz and Statistical Mechanics

BR-#% X f& B 7 ( Kenji Ohkuma )

8§1. Introduction

The quantum three wave interaction (Q3WI, hereafter) model
has applications in many fie]ds of physics, for example,
nonlinear optics, plasma physics, solid state physics, etc]‘z)
In the present paper we construct Bethe states for three bhoices
of statistibs. The thermodynamics for one case of them is
studied. In this case there does not exist any bound state.
Imposing the periodic boundary conditions, two integral
equations for the densities of states for particles and holes

are obtained. Further giving a form of an entropy and minimizing

the free energy under a condition of fixed particle densities,
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integral equations for the thermal equilibrium are derived.
The construction of this paper 1is as follows. In the
following section, we introduce the model and show its Bethe
states. In 83, we study the thermal equilibrium from periodic
boundary condition and the condition for the minimal free
energy. In 84, three limiting cases; g»0, g+~ and T»0, are
studied. The final section is devoted to the concluding

remarks.

§2. The Model and the Bethe States

The quantum three wave interaction (Q3WI, hereafter) model

in 1-dimensional space is given by the Hamiltonian;

3 %, 1 3
H = fdx{jE]CJQJ(X); g;Qj(x)

%* * %*
+9[Q2(X)Q3(X)Ql(x)+01(X)Qs(X)Qz(X)]}- (2.1)

where c's are distinct constant velocities, g is the coupling
*l ]
constant, and Q 's and Q's are creation and annihilation

operators, respectively. Eq.(2.1) suggests that the number of
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each particle is not conserved. Three choices of statistics can

be considered;

1) Boson model A11 fields are bosons, i.e.
« ,
[Q-(th)!Q (Y!t)] =6, G(X_y)u j!k = 1.2.3. etc.
J k jk
2) Fermion model 1 The fields Q1 and Qs are fermions and the

field Q2 is a boson, i.e.

*
{Qj(xvt)va(y!t)} = 5jk6(x—y), j-k = 1,3,

[02(x.t), Q) (v t)] = 6, 8(x=y)s  k = 1,2,3, etc.
field Q2 is a boson.
3) Fermion model II The fields Qi1 and Q2 are fermions and the
field Qs is a boson, i.e.
*

{Qj(x.t).Qk(y,t)} = ijd(x—y), j.k = 1,2, etc.

For the description of eigenstate we prepare some noéations§)
First we define the vacuum state |0> as

Qj(x,t)|0> = 0, j=1,2,3. (2.2)
Ket states created by only one kind of field operators are

expressed as

|A1'...,AN> = j.'.del...dee(xl>...>XN)



* ¥*
x eXP[1(P1X1+"'+PNXN)]01(X1)"'Ql(XN)|0>. (2.3a)
ul‘ot-,uN> =‘J.o-delooodee(xl>oco>XN)
3* *
X exP[i(q1X1+"'+qNXN)]Qs(X1)°°°Qs(xN)|0>. (2.3b)
[ Axtuz,eeeo Ayt > = I"°de1°°'de6(x1>‘°->xN)

x exp{i[(prtar)xates s+ (pytay)x 10z (x2)* =+ Q2 (xy) 0>,

(2.3c)
with
6(x1>--->xN) = e(xl—xz)e(xz—X3)~-°6(xN_1—xN),
[ for x > 0
B(x) ={1/2 for x = 0
\ 0 for x < 0, (2.4)
Py = (ca—C3)Aj, a; = (C1—Cz)uj. (2.5)

Argument Aj (uj) means a Qi- (Qs-) particle with a wave number
P; (qj).‘Sim11ar1y Aj+uj means a Q,-particle with a wave number
pj+qk' Ket states with more than one kind of particles are
expressed in a similar way, e.g.

[ X1, Az+U1, 12> = JJdeldxde3e(X1>X2>X3)

X exp{1[p1X1+(p2+Q1)X2+Q2X3]}QT(X1)Qf(xz)Q?(Xs)|0>- (2.3d)
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The Hamiltonian commutes with the number operators;

W= [dx(olai+0zea), N = [dx(Q70:+030s). (2.6)
Eigenvalues for these operators are non-negative integers.
Therefore, we use them to classify eigenstates. The eigenstate
for & and ﬂ is expressed as ||[M,N>>, i.e.

MM N>> = M| [M,N>>,  N||M.N>> = N||M,N>>, (2.7)
where M and N are eigenvalues for ﬁ and ﬁ, respectively. The
terms in the state ||M,N>> are classified into [min(M,N)+1]
kinds according to the number of Qi-operators. The terms with
fo's has (M—l)QT's, and (N—Q)Q?'s, and 2 satisfies the
condition;

0 =2 = min(M,N). (2;8)
The eigenstate is determined up to a constant factor by giving
the quantum numbers M, N and the set of the wave numbers
{p1."'.pM.Q1.°".qN} with eq.(2.5). We assume that MN#0
hereafter. We can write the state [[M,N>> in the case MzN as

follows

llMlN>> = [)‘1!...!)\M!ulv'..!UN]lxli...kavulv...qu>
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+ [Al'.."uN'uN—1]lkl'."'uN'uN—1> + eoe
+ [uN'...'ul!AM!.."Al]IUN"."Ulka"..'A1>
+ [Al"..'AM+u1'.."UN]lAl’.."AM+“1'...’“N>
4 oo
AR TR I R R TR AR R I DT TP L S D SRR L P e
§ oo, (2.9)
To be a Bethe state, the above coefficients (square brackets)

5)

are related by the following rules;

[eeeaup A ,eee]

’ A._ ...'A-' '... .
j Sl( i Uk)[ j uk ]

[.."Ak‘xj'...]

Sz(kj_kk)[ooo’kj’xk’noo]‘

[...luk'u:j'...] Sa(uj—uk)[..'luj’uk’...]’

S N A T ¢ U] EXE W TTRRETS P (2.10)

1

where S1,52,53,S, are expressed for each choice of statistics as

+

follows;

1) Boson model

S1(v) = (v=ik)/(v+ik),  S2(v) = S3(v) = (v+2ixk)/(v-2ix),

S+(v) —2K(c1-c3)/g(v+1K). (2.11)
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K = g?/2(c1-c2)(c2-c3)(cs-c1). (2.12)
The same result has already been obtained by Kulish and

Reshetikhin through algebraic Bethe Ansatz in this case?)

2) Fermion model I

Si(v) -(v=-ik)/(v+ik), S2(v) = S3(v) = -1,

5,.(V)

—2K(c1—c3)/g(v+iK). (2.13)

3) Fermion model II

S1(v) = (v-ik)/(v+ik),  Sa2(v) = -1,

S3(v) = (v+2ik)/(v-2ik), $,(V) = =2¢(cq-c3) /g(v+iK).

(2.14)

As the number of each particle is not conserved, we have to
consider S+, which does not appear in usual Bethe states.

For all models, the energy eigenvalue is

E = ci(patesetpy) + ca(quteestqy). (2.15)

*
The number of terms with 2Qa2's is (M+N_2)!MP2'NC£ for
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0=2=min(M,N).

Next we show the condition where bound states in the
eigenstates occur§)
‘1) Boson model
(1) Bound states of Q,-particles occur when
(c1-c2)(c3-c1) < O. | (2.16)
(2) Bound states of Qs-particles occﬁr when
(c2-c3)(c3-c1) < 0. (2.17)
For distinct c¢'s, at least one of eqs.(2.16) and (2.17)
is always satisfied, which means, there can always exist bound
states in the Boson model.
2) Fermion model I
In this case, no bound states occur.
3) Fermion model II
(1) The bound state of Qi-particles does not occur.

(2) The bound state of Qs-particles occurs when

(Cz—C3)(Cs—C1) < 0. ’ (2.18)
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§3. Periodic Boundary Conditions

We consider the Fermion model I, where the fields Q; and Q;
are fermions and the field Q. is a boson. From egs.(2.9) and
(2.13) the eigenstate ||M,N>> can be expressed as follows;

||M,N>> = QJ...jdxl...ddeyl...dyNw(xl'...'XM,yl,...,yN)

x Q1(x1)®*+Q1(xy)Q3(y1) Q3 (yy)|0>
min(M,N)

3*
+ I { terms with 2Qz-operators 1}, (3.1)
2=1

where
¥(x1eoeesyy) = expli(pixatecopyxy+raryrtectayy))]

x | 9(x1>--°>xM>y1>--->yN)
+e<xl>°">XM>y1>'°'>yN>yN—1) § s
_SI(AM_UI)e(xl>...>y1>xM>...>yN) § oee
+j?k[—51(kj—uk)]6(yN>-'->y1>xM>'°°>x1) Yo (3.2)

When we set a volume of the system L, then the periodic boundary

*
condition for the terms without Q,-operators is

W(XJ=L) = Ll’(><J-=0). LP(yj=L) = l1’(3/\]-=0), (3.3)
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TaCa
. N N
exp(1ij) = (-1) exp[12£1¢(kj-u2)].
y M
exp(iqu) = (=1)"exp[i X o(u.-2,)1, (3.4)
g=1 J
where
6(v) = —i&n[S1(v)] = 2tan” ‘(v/k),  -m<b<T. | (3.5)

It is easily shown that periodic boundary conditions for the
terms with Q.-particles are automatically satisfied, when the
conditions (3.3) are assumed. So it is enough for us to consider
conditions only for Qi- and Qs-fields. Take the logarithm of

eq.(2.3), we get

N M

E ¢(kj—u2). qg.L = 2an+ i

L = 27l
P Tyt j

=1 L

1¢(UJ—A2>' (3-6)

where
Ij is an integer (a half integer) when N is even (odd),
Jj is an integer (a half integer) when M is even (odd).

Here we define the functions hi and hs; as

N
hy = p.L - Z AL- .
M
- q.L - =X, ). .7
Lh3 qJL ££1¢(UJ z) (3 )

- 10 -
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These functions become continuous monotonic functions in large
volume limit.

We consider integers (or half integers) I's and K's which

satisfy
. E h . ] . . - -
I;el 1(pJ)/2w K, & th(pJ)/Z1T (3.8)
Here we impose the following restriction I., K, 2 I . , I .
R i min min

corresponds to the cut-off wave number Py which will appear
soon..I's correspond to Q;-particles, and K's correspond to
Qi-holes. The density of states p; and p? are defined in the
large volume 1imit as follows;

Loi(p)dp = { no. of I's in (p,p+dp) 1},

Lpb(p)dp = { no. of K's in (p,p+dp) }. (3.9)
Thus,

dhi(p)/dp = 2n[p1(p)+01(p)] = 2mfy(p). (3.10a)
For Q3- particles and holes, the same treatment is possible
and we get

dhs(q)/dq = 2m[ps(q)+p5(a)] = 2mfs(q). (3.10b)

The last equality in (3.10) means definition of fj' In the large
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volume Timit eq.(3.7) becomes

e}

hi(p) = p—| dq ps(q)éd(A -u_),
qu 3 P q
hs(q) = q=| dp pa(p)o(u_-A_). (3.11)
: JPK a7

Here Pk and qy are cut-off wave number for Q;- and Qz-particles,
respectively. Differentiate these equalities and use eq.(3.11),
we have
2nf1(p) = 2nlp1(p)+ol(p)]
= 1——EE—~J K(p,q)es(g)dg,

C2—C3 qK

21f5(q) = 2m[ps(q)+ph(q)]

- 1-———;;jp K(pva)p1(p)dp. | (3.12)

where

K(p,q) = [(=—=2 9__yz4e2]7], (3.13)

C2—-C3 C1—-C2

With py and ps, the energies per particle are expressed as

E./M = D1—1f dp cipp1(p),
Pk

Es/N = 03—1 dqrcaqp3(q), (3.14)
ax

- 12 -
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where D} and D3 are particle densities of Q; and Qs per unit
volume, i.e. D1=M/L D3=N/L, respectively.

Next we consider the free energy of the state. Along the
disscussion of Yang and Yang, the entropy of the Qi- and Qs-

fields are4)

S, = Lj dp{[p1 (p)+0D(p) 12nlo1 (p)+o(p)]
Pk
—01(p)Rnol(p)—o?(p)lno?(p)}.
S = Lj dal [ps(q)+00(q) 1nlos(q)+ol(a)]

dg

~03(q)2nps(q)-p1(q)Lnpl(q)}. (3.15)

Then the free energy is
F = E1+E3—T(S]_+Sa). (3.16)
Minimize the free energy under the condition (3.13), i.e. take

the variation of

oo

F+aTH-L[ dp 01 (p)1+ASTIN-L]  da pa(a)] (3.17)
Pk Ay

then set it zero, we get

- 13 -
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-A T+C1p+T2n[— (p)] ?(ETIE—TI dq K(P-Q)ﬂn[1+— (q)] = 0,
dk
<T © P
AsTresasTinl () Joageiloss | dp K(paa)inl1+p(p)] = 0,
P3 pK P1
(3.18)

where A; and A; are the Lagrange multipliers for the condition
(3.14). Here we define €; and €3 as

expl-€1(p)/T1 = p1(p)/0%(p),

exp[-€3(q)/T] = 03(a)/p8(a). (3.19)

Use these €'s, eq.(3.18) becomes

e1(p) = —A1T+c1p+;(;E§;;7J dq K(p,q)n{l+exp[-e3(q)/T]},
9K

€3(q) = -A3T+Czq+gfgfgggjj dp K(pyq)&n{l+exp[-e1(p)/TI}.
P

(3.20)
Equation (3.12) becomes

2nfi(p) = 1-—35~;J dq K(p.,q)fs(q)/{1+exp[es(q)/T1},
9k

21£3(q) 1-—3§——j dp K(paq)f1(p)/{1+exple(p)/T1}.  (3.21)
Pk

- 14 -
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§4. Special Cases

In this section we consider three limits; strong coupling limit

(g+=), weak coupling limit (g+0) and zero temperature limit (T+0).

§84.1 Strong coupling limit: g » o

In this 1limit the integals in (3.20) and (3.21) vanish.

Thus,

e1(p) = -Ai+cip, €3(q) = -As+caq,

2m01(p) = ziexp(-c1p/T)[T+z1exp(-c1p/T)17",

2mol(p) = [T+z1exp(-c1p/T)17,

2m03(q) = zsexp(-csq/T)[T+zsexp(-csq/T)17 ",

2mpf(q) = [1+zsexp(-csa/T)17], (4.7)
where

zy = exp A./T, z3 = exp As/T. (4.2)

These results show that the particles behave like free fermion
gases. This can be understood easily, because in this limit S+
becomes zero, which means that Qz2-particles cannot exist and

Q.- and Qs;-particles do not interact each other.

- 15 -
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§84.2 Weak coupling limit: g > O

As g-»0,

kK(p,q) » -m8[p/(c2-c3)-a/(c1-c2)]. (4.3)

Thus, eq.(3.20) becomes

Ci1—C»
e1(p) = -Ay+cyp- Tln{1+eXP[ es(————~p)/T]}.
C2-C3
€3(q) = -As+cag-TaAn{l+exp[- el(E~:E—q)/T]} (4.4)
Equations (4.3) and (3.21) gives
h Ci=C: Ci1—-C»
2nfa(p) = 2mnlpa(p)tea(p)] = 42 rc7es(ooo7P)
h Ca2—Cg3 Co2—C3
2nfs(q) = 2nlps(q)+ps(a)] = V1+2m—=z=p1(g7zg7a)- (4.5)
1—C2 Ci1-C2
Thus,
C3—C; C3—C,
2mp1(p) = zilexp(-cogrg7p/T) g og7zsexp(cap/T)
Ci1—C» C3—C;
+zlE—:E—]/{[exp( c23~:E—p/T) 2,25
x [exp(cip/T)+z,]}
C3—Cy C3—C,
2mp3(a) = zslexp(-cogrzgra/T)~googrz1exp(csa/T)
Co—C3 C3—C;
LEX Povsran ]/{[exp( Cz—T:E_Q/T) z,25]
x [exp(csq/T)+z3]}. ' (4.6)

This result is not derived by setting g=0 at first.

- 16 -
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§§4.3 Zero temperature limit: T+0

As €:(p) and £3(q) are monotonically increasing functions,

there are certain Fermi levels Pr and 93
e.(p) < 0, for P<PEs e.(p) > 0,
e1(pp) = 0.

Equation (3.19) gives

p1(p) = 0, for p>pp, o%(p) = 0,

for p>pc,

for p<pg,

For €5 and p;, the similar relation is valid, j.e.

€3(q) < 0, for 9<qg., e3(q) > 0,
€3(qF) = 01
p3(q) = 0, for 9>qp, p?(q) = 0,

From eqs. (3.20) and (3.21), we obtain

for q>qg,

for q<qr.

9F
e1(p) = ‘A1T+°1P"E(E§:EZSJ dq K(p,q)es(q),
K
PF
es(q) = —A3T+C3q—E(E§:E;7I dp K(p.q)e1(p),
Pk :
2¢ [ F
2mp1(p) = 1—g;§g;J dg K(p,q)es(a),
K
PF
2mps(q) = 1—;—:;—J dp K(p,q)e1(p).
1 2p

- 17 -

(4.7a)

(4.8a)

(4.7b)

(4.8b)

(4.9)

(4.10)
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§6 Concluding Remarks

The Bethe state for the quantum three wave interaction

- models for three choices of statistics. The thermodynamics for
the case with two kinds of fermions and one kind of bosons is
studied. The main results are as follows.

1)In the study of the thermodynamics, the Qz—partié]e does not
appear explicitly. This means that the Q,-particle is not
fundamental and can be considered as a composite state of Q:-
and Qsz-particles.

2)The integral equations for the thermal equilibrium state are
similar to that of nonlinear Schradinger model with a repulsive
1nteraction?) The main differences are as follows. First the
integral equations are for two fields coupled each other. Second
we should introduce the cut-off momenta as the energy spectra
for this model do not have lower bounds.

3)Three 1limiting cases are considered. In the zero temperature
1imit T»0, Fermi state appears. In the strong coupling limit

g>», the Q- and Q3-fields behave like free fermions. The result
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in the weak coupling limit g-0 each particle is not derived from
the solution for g=0.

The themodynamics for Fermion model II is also studied
quite similarly.

It is possible to study elementaly excitations. Two kinds of
excitations; Q;- and Qsz-excitations exist. We will publish the
result in near future.

Recently Wadati and Sakagami showed the classical soliton is
derived as a matrix element for an n-string in the limit n»e for
Nonlinear Schrodinger model in attractive case?) For Q3WI

models, the same will be shown in the Boson model.
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