Quantum Three Wave Interaction Models:

Bethe Anstz and Statistical Mechanics

東大・教養 大 熊 建 司 (Kenji Ohkuma)

§1. Introduction

The quantum three wave interaction (Q3WI, hereafter) model has applications in many fields of physics, for example, nonlinear optics, plasma physics, solid state physics, etc. 1,2)

In the present paper we construct Bethe states for three choices of statistics. The thermodynamics for one case of them is studied. In this case there does not exist any bound state.

Imposing the periodic boundary conditions, two integral equations for the densities of states for particles and holes are obtained. Further giving a form of an entropy and minimizing the free energy under a condition of fixed particle densities,

integral equations for the thermal equilibrium are derived.

The construction of this paper is as follows. In the following section, we introduce the model and show its Bethe states. In §3, we study the thermal equilibrium from periodic boundary condition and the condition for the minimal free energy. In §4, three limiting cases; $g \rightarrow 0$, $g \rightarrow \infty$ and $T \rightarrow 0$, are studied. The final section is devoted to the concluding remarks.

§2. The Model and the Bethe States

The quantum three wave interaction (Q3WI, hereafter) model in 1-dimensional space is given by the Hamiltonian;

$$H = \int dx \{ \sum_{j=1}^{3} c_{j} Q_{j}^{*}(x) \frac{1}{i} \frac{\partial}{\partial x} Q_{j}(x)$$

$$+g[Q_{2}^{*}(x)Q_{3}(x)Q_{1}(x) + Q_{1}^{*}(x)Q_{3}^{*}(x)Q_{2}(x)] \}, \qquad (2.1)$$

where c's are distinct constant velocities, g is the coupling constant, and Q^* 's and Q's are creation and annihilation operators, respectively. Eq.(2.1) suggests that the number of

each particle is not conserved. Three choices of statistics can be considered;

1) Boson model All fields are bosons, i.e.

$$[Q_{j}(x,t),Q_{k}^{*}(y,t)] = \delta_{jk}\delta(x-y), j,k = 1,2,3,$$
 etc.

2) Fermion model I The fields Q_1 and Q_3 are fermions and the field Q_2 is a boson, i.e.

$$\{Q_{j}(x,t),Q_{k}^{*}(y,t)\} = \delta_{jk}\delta(x-y), \qquad j,k = 1,3,$$

$$[Q_{2}(x,t),Q_{k}^{*}(y,t)] = \delta_{2k}\delta(x-y), \qquad k = 1,2,3, \text{ etc.}$$

field Q_2 is a boson.

3) Fermion model II $\;\;$ The fields Q_1 and Q_2 are fermions and the field Q_3 is a boson, i.e.

$$\{Q_{j}(x,t),Q_{k}^{*}(y,t)\} = \delta_{jk}\delta(x-y), \quad j,k = 1,2, \text{ etc.}$$

For the description of eigenstate we prepare some notations 3)

First we define the vacuum state $|0\rangle$ as

$$Q_{j}(x,t)|0> = 0, j=1,2,3.$$
 (2.2)

Ket states created by only one kind of field operators are expressed as

$$|\lambda_1, \dots, \lambda_N\rangle = \int \dots \int dx_1 \dots dx_N \theta (x_1 > \dots > x_N)$$

$$\times \exp[i(p_{1}x_{1} + \cdots + p_{N}x_{N})]Q_{1}^{*}(x_{1}) \cdots Q_{1}^{*}(x_{N})|0\rangle,$$

$$|\mu_{1}, \cdots, \mu_{N}\rangle = \int \cdots \int dx_{1} \cdots dx_{N}\theta(x_{1} > \cdots > x_{N})$$

$$\times \exp[i(q_{1}x_{1} + \cdots + q_{N}x_{N})]Q_{3}^{*}(x_{1}) \cdots Q_{3}^{*}(x_{N})|0\rangle,$$

$$|\lambda_{1} + \mu_{1}, \cdots, \lambda_{N} + \mu_{N}\rangle = \int \cdots \int dx_{1} \cdots dx_{N}\theta(x_{1} > \cdots > x_{N})$$

$$\times \exp[i[(p_{1} + q_{1})x_{1} + \cdots + (p_{N} + q_{N})x_{N}]Q_{2}^{*}(x_{2}) \cdots Q_{2}^{*}(x_{N})|0\rangle,$$

$$\times \exp[i[(p_{1} + q_{1})x_{1} + \cdots + (p_{N} + q_{N})x_{N}]Q_{2}^{*}(x_{2}) \cdots Q_{2}^{*}(x_{N})|0\rangle,$$

$$(2.3c)$$

with

$$\theta(x_{1} > \cdots > x_{N}) = \theta(x_{1} - x_{2})\theta(x_{2} - x_{3}) \cdots \theta(x_{N-1} - x_{N}),$$

$$\theta(x) = \begin{cases} 1 & \text{for } x > 0 \\ 1/2 & \text{for } x = 0 \\ 0 & \text{for } x < 0, \end{cases}$$
(2.4)

$$p_{j} = (c_{2}-c_{3})\lambda_{j}, q_{j} = (c_{1}-c_{2})\mu_{j}.$$
 (2.5)

Argument λ_j (μ_j) means a Q_1- (Q_3-) particle with a wave number p_j (q_j). Similarly $\lambda_j+\mu_j$ means a Q_2- particle with a wave number p_j+q_k . Ket states with more than one kind of particles are expressed in a similar way, e.g.

$$|\lambda_{1}, \lambda_{2} + \mu_{1}, \mu_{2}\rangle = \iiint dx_{1} dx_{2} dx_{3} \theta(x_{1} > x_{2} > x_{3})$$

$$\times \exp\{i[p_{1}x_{1} + (p_{2} + q_{1})x_{2} + q_{2}x_{3}]\}Q_{1}^{*}(x_{1})Q_{2}^{*}(x_{2})Q_{3}^{*}(x_{3})|0\rangle. \quad (2.3d)$$

The Hamiltonian commutes with the number operators;

$$\hat{M} = \int dx (Q_1^*Q_1 + Q_2^*Q_2), \qquad \hat{N} = \int dx (Q_2^*Q_2 + Q_3^*Q_3). \qquad (2.6)$$

Eigenvalues for these operators are non-negative integers.

Therefore, we use them to classify eigenstates. The eigenstate for \hat{M} and \hat{N} is expressed as ||M,N>>, i.e.

$$\hat{M} \mid M, N>> = M \mid M, N>>, \qquad \hat{N} \mid M, N>> = N \mid M, N>>, \qquad (2.7)$$

where M and N are eigenvalues for \hat{M} and \hat{N} , respectively. The terms in the state $||M,N\rangle\rangle$ are classified into $[\min(M,N)+1]$ kinds according to the number of Q_2^* -operators. The terms with Q_2^* 's has $(M-\ell)Q_1^*$'s, and $(N-\ell)Q_3^*$'s, and ℓ satisfies the condition;

$$0 \le \ell \le \min(M, N). \tag{2.8}$$

The eigenstate is determined up to a constant factor by giving the quantum numbers M, N and the set of the wave numbers $\{p_1, \bullet \bullet \bullet, p_M, q_1, \bullet \bullet \bullet, q_N\} \text{ with eq.} (2.5). \text{ We assume that } MN \neq 0$ hereafter. We can write the state ||M,N>> in the case $M \geq N$ as follows

$$|\;|\;M\,,\,N>>\;=\;\;[\;\lambda_{\,1}\,,\,\bullet\,\bullet\,\bullet\,,\,\lambda_{\,M}\,,\,\mu_{\,1}\,,\,\bullet\,\bullet\,\bullet\,,\,\mu_{\,N}\,]\;|\;\lambda_{\,1}\,,\,\bullet\,\bullet\,\bullet\,,\,\lambda_{\,M}\,,\,\mu_{\,1}\,,\,\bullet\,\bullet\,\bullet\,,\,\mu_{\,N}>$$

$$+ [\lambda_{1}, \dots, \mu_{N}, \mu_{N-1}] | \lambda_{1}, \dots, \mu_{N}, \mu_{N-1} \rangle + \dots$$

$$+ [\mu_{N}, \dots, \mu_{1}, \lambda_{M}, \dots, \lambda_{1}] | \mu_{N}, \dots, \mu_{1}, \lambda_{M}, \dots, \lambda_{1} \rangle$$

$$+ [\lambda_{1}, \dots, \lambda_{M} + \mu_{1}, \dots, \mu_{N}] | \lambda_{1}, \dots, \lambda_{M} + \mu_{1}, \dots, \mu_{N} \rangle$$

$$+ \dots$$

$$+ [\lambda_{1} + \mu_{1}, \dots, \lambda_{N} + \mu_{N}, \lambda_{N+1}, \dots, \lambda_{M}] | \lambda_{1} + \mu_{1}, \dots, \lambda_{N} + \mu_{N}, \lambda_{N+1}, \dots, \lambda_{M} \rangle$$

$$+ \dots$$

$$+ \dots$$

$$(2.9)$$

To be a Bethe state, the above coefficients (square brackets) are related by the following rules; 5)

$$[\cdots, \mu_{k}, \lambda_{j}, \cdots] = S_{1}(\lambda_{j} - \mu_{k})[\cdots, \lambda_{j}, \mu_{k}, \cdots],$$

$$[\cdots, \lambda_{k}, \lambda_{j}, \cdots] = S_{2}(\lambda_{j} - \lambda_{k})[\cdots, \lambda_{j}, \lambda_{k}, \cdots],$$

$$[\cdots, \mu_{k}, \mu_{j}, \cdots] = S_{3}(\mu_{j} - \mu_{k})[\cdots, \mu_{j}, \mu_{k}, \cdots],$$

$$[\cdots, \lambda_{j} + \mu_{k}, \cdots] = S_{+}(\lambda_{j} - \mu_{k})[\cdots, \lambda_{j}, \mu_{k}, \cdots],$$

$$(2.10)$$

where S_1 , S_2 , S_3 , S_+ are expressed for each choice of statistics as follows;

1) Boson model

$$S_1(v) = (v-i\kappa)/(v+i\kappa),$$
 $S_2(v) = S_3(v) = (v+2i\kappa)/(v-2i\kappa),$
$$S_+(v) = -2\kappa(c_1-c_3)/g(v+i\kappa),$$
 (2.11)

$$K = g^2/2(c_1-c_2)(c_2-c_3)(c_3-c_1). \tag{2.12}$$

The same result has already been obtained by Kulish and Reshetikhin through algebraic Bethe Ansatz in this case. 7)

2) Fermion model I

$$S_1(\nu) = -(\nu - i\kappa)/(\nu + i\kappa), S_2(\nu) = S_3(\nu) = -1,$$

 $S_+(\nu) = -2\kappa(c_1 - c_3)/g(\nu + i\kappa).$ (2.13)

3) Fermion model II

$$S_1(v) = (v-i\kappa)/(v+i\kappa),$$
 $S_2(v) = -1,$ $S_3(v) = (v+2i\kappa)/(v-2i\kappa),$ $S_+(v) = -2\kappa(c_1-c_3)/g(v+i\kappa).$ (2.14)

As the number of each particle is not conserved, we have to consider S_{\perp} , which does not appear in usual Bethe states.

For all models, the energy eigenvalue is

$$E = c_1(p_1 + \cdots + p_M) + c_3(q_1 + \cdots + q_N).$$
 (2.15)

The number of terms with lQ_2^* 's is $(M+N-l)!_MP_l \cdot _NC_l$ for

 $0 \le \ell \le \min(M, N)$.

Next we show the condition where bound states in the eigenstates occur $^{3})$

- 1) Boson model
- (1) Bound states of Q_1 -particles occur when

$$(c_1-c_2)(c_3-c_1) < 0.$$
 (2.16)

(2) Bound states of Q_3 -particles occur when

$$(c_2-c_3)(c_3-c_1) < 0.$$
 (2.17)

For distinct c's, at least one of eqs.(2.16) and (2.17) is always satisfied, which means, there can always exist bound states in the Boson model.

2) Fermion model I

In this case, no bound states occur.

- 3) Fermion model II
- (1) The bound state of Q_1 -particles does not occur.
- (2) The bound state of Q_3 -particles occurs when

$$(c_2-c_3)(c_3-c_1) < 0.$$
 (2.18)

§3. Periodic Boundary Conditions

We consider the Fermion model I, where the fields Q_1 and Q_3 are fermions and the field Q_2 is a boson. From eqs.(2.9) and (2.13) the eigenstate ||M,N>> can be expressed as follows;

$$||M,N\rangle\rangle = \alpha \int \cdots \int dx_1 \cdots dx_M dy_1 \cdots dy_N \Psi(x_1, \cdots, x_M, y_1, \cdots, y_N)$$

$$\times Q_1^*(x_1) \cdots Q_1^*(x_M) Q_3^*(y_1) \cdots Q_3^*(y_N) |0\rangle$$

$$+ \min_{\lambda=1}^{\min(M,N)} \{ \text{ terms with } \lambda Q_2 \text{-operators } \}, \qquad (3.1)$$

where

When we set a volume of the system L, then the periodic boundary condition for the terms without $Q_2^{\boldsymbol{\ast}}\text{-operators}$ is

$$\Psi(x_{j}=L) = \Psi(x_{j}=0), \qquad \Psi(y_{j}=L) = \Psi(y_{j}=0), \qquad (3.3)$$

i.e.

$$\begin{aligned} \exp(ip_{j}L) &= (-1)^{N} \exp\left[i\sum_{\ell=1}^{N} \phi(\lambda_{j} - \mu_{\ell})\right], \\ \exp(iq_{j}L) &= (-1)^{M} \exp\left[i\sum_{\ell=1}^{N} \phi(\mu_{j} - \lambda_{\ell})\right], \end{aligned} \tag{3.4}$$

where

$$\phi(v) = -i \ln[S_1(v)] = 2 \tan^{-1}(v/\kappa), \quad -\pi < \phi < \pi.$$
 (3.5)

It is easily shown that periodic boundary conditions for the terms with Q_2 -particles are automatically satisfied, when the conditions (3.3) are assumed. So it is enough for us to consider conditions only for Q_1 - and Q_3 -fields. Take the logarithm of eq.(2.3), we get

$$p_{j}L = 2\pi I_{j} + \sum_{\ell=1}^{N} \phi(\lambda_{j} - \mu_{\ell}), \qquad q_{j}L = 2\pi J_{j} + \sum_{\ell=1}^{N} \phi(\mu_{j} - \lambda_{\ell}), \qquad (3.6)$$

where

 I_{j} is an integer (a half integer) when N is even (odd),

 J_{i} is an integer (a half integer) when M is even (odd).

Here we define the functions h_1 and h_3 as

$$Lh_{1} = p_{j}L - \sum_{\ell=1}^{N} \phi(\lambda_{j} - \mu_{\ell}),$$

$$Lh_{3} = q_{j}L - \sum_{\ell=1}^{N} \phi(\mu_{j} - \lambda_{\ell}).$$

$$(3.7)$$

These functions become continuous monotonic functions in large volume limit.

We consider integers (or half integers) I's and K's which satisfy

$$I_{j} \in Lh_{1}(p_{j})/2\pi$$
, $K_{j} \notin Lh_{1}(p_{j})/2\pi$. (3.8)

Here we impose the following restriction I_j , $K_j \geq I_{min}$. I_{min} corresponds to the cut-off wave number p_K which will appear soon. I's correspond to Q_1 -particles, and K's correspond to Q_1 -holes. The density of states p_1 and p_1^h are defined in the large volume limit as follows;

$$L\rho_1(p)dp = \{ \text{ no. of I's in } (p,p+dp) \},$$

$$L\rho_1^h(p)dp = \{ \text{ no. of K's in } (p,p+dp) \}.$$
 (3.9)

Thus,

$$dh_1(p)/dp = 2\pi[\rho_1(p) + \rho_1^h(p)] = 2\pi f_1(p).$$
 (3.10a)

For Q_3- particles and holes, the same treatment is possible and we get

$$dh_3(q)/dq = 2\pi[\rho_3(q)+\rho_3^h(q)] = 2\pi f_3(q).$$
 (3.10b)

The last equality in (3.10) means definition of f_j . In the large

volume limit eq.(3.7) becomes

$$h_{1}(p) = p - \int_{q_{K}}^{\infty} dq \, \rho_{3}(q) \phi(\lambda_{p} - \mu_{q}),$$

$$h_{3}(q) = q - \int_{p_{K}}^{\infty} dp \, \rho_{1}(p) \phi(\mu_{q} - \lambda_{p}).$$
(3.11)

Here p_K and q_K are cut-off wave number for Q_1- and Q_3- particles, respectively. Differentiate these equalities and use eq.(3.11), we have

$$2\pi f_{1}(p) = 2\pi [\rho_{1}(p) + \rho_{1}^{h}(p)]$$

$$= 1 - \frac{2\kappa}{c_{2} - c_{3}} \int_{q_{k}}^{\infty} K(p,q) \rho_{3}(q) dq,$$

$$2\pi f_3(q) = 2\pi [\rho_3(q) + \rho_3^h(q)]$$

$$= 1 - \frac{2\kappa}{c_1 - c_2} \int_{p_{\chi}}^{\infty} K(p,q) \rho_1(p) dp.$$
 (3.12)

where

$$K(p,q) = \left[\left(\frac{p}{c_2 - c_3} - \frac{q}{c_1 - c_2} \right)^2 + \kappa^2 \right]^{-1}.$$
 (3.13)

With ρ_1 and ρ_3 , the energies per particle are expressed as

$$E_{1}/M = D_{1}^{-1} \int_{p_{K}}^{\infty} dp \ c_{1}p\rho_{1}(p),$$

$$E_{3}/N = D_{3}^{-1} \int_{q_{K}}^{\infty} dq \ c_{3}q\rho_{3}(q),$$
(3.14)

where D_1 and D_3 are particle densities of Q_1 and Q_3 per unit volume, i.e. $D_1=M/L$ $D_3=N/L$, respectively.

Next we consider the free energy of the state. Along the disscussion of Yang and Yang, the entropy of the Q_1- and Q_3- fields are $^4)$

$$S_{1} = L \int_{p_{K}}^{\infty} dp \{ [\rho_{1}(p) + \rho_{1}^{h}(p)] \ell n [\rho_{1}(p) + \rho_{1}^{h}(p)]$$

$$-\rho_{1}(p) \ell n \rho_{1}(p) - \rho_{1}^{h}(p) \ell n \rho_{1}^{h}(p) \},$$

$$S_{3} = L \int_{q}^{\infty} dq \{ [\rho_{3}(q) + \rho_{3}^{h}(q)] \ell n [\rho_{3}(q) + \rho_{3}^{h}(q)]$$

$$-\rho_{3}(q) \ell n \rho_{3}(q) - \rho_{3}^{h}(q) \ell n \rho_{3}^{h}(q) \}.$$
(3.15)

Then the free energy is

$$F = E_1 + E_3 - T(S_1 + S_3). (3.16)$$

Minimize the free energy under the condition (3.13), i.e. take the variation of

$$F+A_{1}T[M-L\int_{p_{K}}^{\infty}dp \ \rho_{1}(p)]+A_{3}T[N-L\int_{q_{K}}^{\infty}dq \ \rho_{3}(q)]$$
 (3.17)

then set it zero, we get

$$-A_{1}T+c_{1}p+T\ln\left[\frac{\rho_{1}}{\rho_{1}}(p)\right]+\frac{\kappa T}{\pi(c_{1}-c_{2})}\int_{q_{K}}^{\infty}dq \ K(p,q)\ln\left[1+\frac{\rho_{3}}{\rho_{3}}(q)\right]=0,$$

$$-A_{3}T+c_{3}q+T\ln\left[\frac{\rho_{3}}{\rho_{3}}(q)\right]+\frac{\kappa T}{\pi(c_{2}-c_{3})}\int_{p_{K}}^{\infty}dp \ K(p,q)\ln\left[1+\frac{\rho_{1}}{\rho_{1}}(p)\right]=0,$$

$$(3.18)$$

where A_1 and A_3 are the Lagrange multipliers for the condition (3.14). Here we define ϵ_1 and ϵ_3 as

$$\exp[-\epsilon_{1}(p)/T] = \rho_{1}(p)/\rho_{1}^{h}(p),$$

 $\exp[-\epsilon_{3}(q)/T] = \rho_{3}(q)/\rho_{3}^{h}(q).$ (3.19)

Use these ϵ 's, eq.(3.18) becomes

$$\varepsilon_{1}(p) = -A_{1}T + c_{1}p + \frac{\kappa T}{\pi(c_{1} - c_{2})} \int_{q_{K}}^{\infty} dq \ K(p,q) \ln\{1 + \exp[-\varepsilon_{3}(q)/T]\},$$

$$\varepsilon_{3}(q) = -A_{3}T + c_{3}q + \frac{\kappa T}{\pi(c_{2} - c_{3})} \int_{p_{K}}^{\infty} dp \ K(p,q) \ln\{1 + \exp[-\varepsilon_{1}(p)/T]\}.$$

$$(3.20)$$

Equation (3.12) becomes

$$2\pi f_{1}(p) = 1 - \frac{2\kappa}{c_{2} - c_{3}} \int_{q_{K}}^{\infty} dq \ K(p,q) f_{3}(q) / \{1 + \exp[\epsilon_{3}(q)/T]\},$$

$$2\pi f_{3}(q) = 1 - \frac{2\kappa}{c_{1} - c_{2}} \int_{p_{K}}^{\infty} dp \ K(p,q) f_{1}(p) / \{1 + \exp[\epsilon_{1}(p)/T]\}. \tag{3.21}$$

§4. Special Cases

In this section we consider three limits; strong coupling limit $(g\to\infty)$, weak coupling limit $(g\to0)$ and zero temperature limit $(T\to0)$.

§§4.1 Strong coupling limit: $g \rightarrow \infty$

In this limit the integals in (3.20) and (3.21) vanish. Thus,

$$\epsilon_{1}(p) = -A_{1} + c_{1}p, \quad \epsilon_{3}(q) = -A_{3} + c_{3}q,$$

$$2\pi\rho_{1}(p) = z_{1} \exp(-c_{1}p/T)[1 + z_{1} \exp(-c_{1}p/T)]^{-1},$$

$$2\pi\rho_{1}^{h}(p) = [1 + z_{1} \exp(-c_{1}p/T)]^{-1},$$

$$2\pi\rho_{3}(q) = z_{3} \exp(-c_{3}q/T)[1 + z_{3} \exp(-c_{3}q/T)]^{-1},$$

$$2\pi\rho_{3}^{h}(q) = [1 + z_{3} \exp(-c_{3}q/T)]^{-1},$$
(4.1)

where

$$z_1 = \exp A_1/T$$
, $z_3 = \exp A_3/T$. (4.2)

These results show that the particles behave like free fermion gases. This can be understood easily, because in this limit S_+ becomes zero, which means that Q_2 -particles cannot exist and Q_1 - and Q_3 -particles do not interact each other.

§§4.2 Weak coupling limit: $g \rightarrow 0$

As $g \rightarrow 0$,

$$\kappa K(p,q) \rightarrow -\pi \delta[p/(c_2-c_3)-q/(c_1-c_2)].$$
 (4.3)

Thus, eq.(3.20) becomes

$$\varepsilon_{1}(p) = -A_{1} + c_{1}p - T \ln\{1 + \exp[-\varepsilon_{3}(\frac{c_{1} - c_{2}}{c_{2} - c_{3}}p)/T]\},$$

$$\varepsilon_{3}(q) = -A_{3} + c_{3}q - T \ln\{1 + \exp[-\varepsilon_{1}(\frac{c_{2} - c_{3}}{c_{1} - c_{2}}q)/T]\}.$$
(4.4)

Equations (4.3) and (3.21) gives

$$2\pi f_{1}(p) = 2\pi [\rho_{1}(p) + \rho_{1}^{h}(p)] = 1 + 2\pi \frac{c_{1} - c_{2}}{c_{2} - c_{3}} \rho_{3} (\frac{c_{1} - c_{2}}{c_{2} - c_{3}} p),$$

$$2\pi f_{3}(q) = 2\pi [\rho_{3}(q) + \rho_{3}^{h}(q)] = 1 + 2\pi \frac{c_{2} - c_{3}}{c_{1} - c_{2}} \rho_{1} (\frac{c_{2} - c_{3}}{c_{1} - c_{2}} q). \tag{4.5}$$

Thus,

$$2\pi\rho_{1}(p) = z_{1}\left[\exp(-c_{2}\frac{c_{3}-c_{1}}{c_{2}-c_{3}}p/T) - \frac{c_{3}-c_{1}}{c_{2}-c_{3}}z_{3}\exp(c_{1}p/T)\right]$$

$$+z_{1}\frac{c_{1}-c_{2}}{c_{2}-c_{3}}\left[\exp(-c_{2}\frac{c_{3}-c_{1}}{c_{2}-c_{3}}p/T) - z_{1}z_{3}\right]$$

$$\times \left[\exp(c_{1}p/T) + z_{1}\right],$$

$$2\pi\rho_{3}(q) = z_{3}\left[\exp(-c_{2}\frac{c_{3}-c_{1}}{c_{1}-c_{2}}q/T) - \frac{c_{3}-c_{1}}{c_{1}-c_{2}}z_{1}\exp(c_{3}q/T)\right]$$

$$+z_{3}\frac{c_{2}-c_{3}}{c_{1}-c_{3}}\left[\exp(-c_{2}\frac{c_{3}-c_{1}}{c_{1}-c_{2}}q/T) - z_{1}z_{3}\right]$$

$$\times \left[\exp(c_{3}q/T) + z_{3}\right].$$

$$(4.6)$$

This result is not derived by setting g=0 at first.

§§4.3 Zero temperature limit: $T \rightarrow 0$

As $\epsilon_1(p)$ and $\epsilon_3(q)$ are monotonically increasing functions,

there are certain Fermi levels p_F and q_F ;

$$\epsilon_1(p) < 0$$
, for $p < p_F$, $\epsilon_1(p) > 0$, for $p > p_F$,
$$\epsilon_1(p_F) = 0. \tag{4.7a}$$

Equation (3.19) gives

$$\rho_1(p) = 0$$
, for $p > p_F$, $\rho_1^h(p) = 0$, for $p < p_F$, (4.8a)

For ϵ_3 and $\rho_3,$ the similar relation is valid, i.e.

$$\epsilon_3(q) < 0$$
, for $q < q_F$, $\epsilon_3(q) > 0$, for $q > q_F$,
$$\epsilon_3(q_F) = 0$$
, (4.7b)

$$\rho_3(q) = 0$$
, for $q > q_F$, $\rho_3^h(q) = 0$, for $q < q_F$. (4.8b)

From eqs. (3.20) and (3.21), we obtain

$$\epsilon_{1}(p) = -A_{1}T + c_{1}p - \frac{\kappa}{\pi(c_{1} - c_{2})} \int_{q_{K}}^{q_{F}} dq \ K(p,q)\epsilon_{3}(q),$$

$$\epsilon_{3}(q) = -A_{3}T + c_{3}q - \frac{\kappa}{\pi(c_{2} - c_{3})} \int_{p_{K}}^{p_{F}} dp \ K(p,q)\epsilon_{1}(p),$$

$$2\pi\rho_{1}(p) = 1 - \frac{2\kappa}{c_{2} - c_{3}} \int_{q_{K}}^{q_{F}} dq \ K(p,q)\rho_{3}(q),$$
(4.9)

$$2\pi\rho_{3}(q) = 1 - \frac{2\kappa}{c_{1} - c_{2}} \int_{p_{K}}^{p_{F}} dp \ K(p,q)\rho_{1}(p). \tag{4.10}$$

§6 Concluding Remarks

The Bethe state for the quantum three wave interaction models for three choices of statistics. The thermodynamics for the case with two kinds of fermions and one kind of bosons is studied. The main results are as follows.

- 1)In the study of the thermodynamics, the Q_2 -particle does not appear explicitly. This means that the Q_2 -particle is not fundamental and can be considered as a composite state of Q_1 and Q_3 -particles.
- 2)The integral equations for the thermal equilibrium state are similar to that of nonlinear Schrödinger model with a repulsive interaction. The main differences are as follows. First the integral equations are for two fields coupled each other. Second we should introduce the cut-off momenta as the energy spectra for this model do not have lower bounds.
- 3)Three limiting cases are considered. In the zero temperature limit T+0, Fermi state appears. In the strong coupling limit $g+\infty$, the Q_1- and Q_3- fields behave like free fermions. The result

in the weak coupling limit $g \rightarrow 0$ each particle is not derived from the solution for g=0.

The themodynamics for Fermion model II is also studied quite similarly.

It is possible to study elementaly excitations. Two kinds of excitations; Q_1- and Q_3- excitations exist. We will publish the result in near future.

Recently Wadati and Sakagami showed the classical soliton is derived as a matrix element for an n-string in the limit $n\to\infty$ for Nonlinear Schrödinger model in attractive case. For Q3WI models, the same will be shown in the Boson model.

Acknowledgements

The author would like to express his sincere thanks to Professor M. Wadati for continual encouragement and instructive discussions. He wishes to thank T. Izuyama for encouragement and interest in this work.

References

- D. J. Kaup, A. Reiman and A. Bers: Rev. Mod. Phys.
 51(1979)275.
- 2) V. E. Zakharov and S. V. Manakov: JETP Lett. <u>18</u>(1973)243;
 JETP <u>42</u>(1976)842.
- M. Wadati and K. Ohkuma: J. Phys. Soc. Jpn. <u>53</u>(1984)1229,
 K. Ohkuma and M. Wadati: J. Phys. Soc. Jpn. <u>53</u>(1984)2899.
- 4) C. N. Yang and C. P. Yang: J. Math. Phys. <u>10</u>(1969)1115.
- 5) H. A. Bethe: Z. Physik <u>71</u>(1931)205,
 - C. N. Yang: Phys. Rev. Lett. 19(1967)1312,
 - F. A. Berezin and V. N. Sushko: JETP 21(1965)865,
 - H. B. Thacker: Rev. Mod. Phys. 53(1981)253.
- 6) M. Wadati and M. Sakagami: J. Phys. Soc. Jpn. <u>53</u>(1984)1933.
- 7) P. P. Kulish and N. Yu. Reshetikhin: J. Phys. <u>A16</u>(1983)L591.