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§0 Introduction and Summary
My topic is Interacting korteweg-de Vries (Int Kdv)

equations and Interacting Toda (Int Toda) equations.

Subject: Nonlinear Classical Wave Solitons
Picture: an Interacting Soliton Picture
Method: New Operators Si

Equation: an Extension or a Decoupling
Solution: a Simple Sum

Identity: Without Exchange

Interaction: Attractive

Table 1 Summary of this talk

We treat nonlinear classical waves. The central idea is an
interacting soliton picture1)’2); it is very simple and easy to
understand. By the picture the original soliton equation such as
the KdV, the sine-Gordon and the Toda equations are extended to
obtain coupled nonlinear differential equations which we call
interacting (Int) soliton equations. They can also be regarded
as results of a decoupling of the original soliton equation. By
introducing new operators, solutions of an Int soliton equations
are obtained starting with the exact N-soliton solution. The
N-soliton solution is decomposed into a simple sum of the
solutions of the Int soliton equations, each of which is regarded

as a soliton suffering much deformation when another soliton

(other solitons) comes near in space. These single solitons as
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classical waves interact attractively and eventually become apart
in space without exchanging their identities. We mean by
"without exchanging their identities" such a situation shown in
Fig.1 in the N=2 case, but not the one in Fig.2.

The relation to the inverse scattering method is also
discussed in detail in several cases. Further, "partial'" Lax
forms corresponding to the Int KdV equations are shown.

To summarize: We shall present an interacting soliton
picture, in which several single solitons interact attractively
with each other. Attractiveness is obvious in the KdV case from

3)

the phase shift analysis already done if we accept the fact
that the solitons interact without losing their identities during
collisions.

Linear classical waves do interfere linearly, but interact
neither attractively nor repulsively. On the other hand, the
classical wave solitons interfere nonlinearly (i.e. uy is

deformed when other solitons come near in space) and interact

attractively.

§1 An Interacting Scliton Picture
We take the KdV equation in the following form as an example

of a soliton equation.

(a/at)u+6u(a/ax)U+(a/ax)3u=0 (1-1)

nonlinear term dispersive term
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speed: 6u

u: at t at t+dt

speed

/1
o\ /x+dx x

ul(t,x)=u(t+dt,x+dx)=u(t,x)+u dt+uxdx

t
nonlinear term only: (3/3t)u+bu(y/ox)u = 0, dx/dt = -ut/uxz 6u

Fig.3 Nonlinear effect

When there is only one single soliton u in space, its speed

originated from nonlinear effect is 6u according to the Kdv

equation (Fig.3). If there is another soliton u' near u, we
expect the total wave becomes u+u'. Then the speed of u becomes
6(u+u'), which is also the one of u'. Of course u and u' greatly

affect each other when they come across, then eventually become
apart without exchanging their identities. The following coupled

equations are expected to hold.
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du.+6u(2)8u.+83u, =0 (1-2)
i i i
and
2 )
(2) = U+ u2; . u,=u, u,=u (1-3)
where
d = 9/9t, 9 = 9/9x%. (1-4)

Thus, when there are N single solitons initially apart in
space, we expect that they interact with each other satisfying
the following coupled nonlinear differential equations which we
call the interacting KdV equations (Int KdV equations)

(N)

dui + 6u 8ui + 0”u, = 0, (i=1,2,°°+,N) (1-5)

N)

and that the total wave u( is a simple sum of each wave u. g

u(N) I _quy. (1-6)
One aspect of equations (1-5) is, in this way, a natural
extension of the original KdV equation (1-1). Of course, each
equation of (1-5) may have its own solution with any soliton
number, but here each uy is taken for a single soliton as t-+tw.

There is another aspect of the Int KdV equations, that 1is,
they are results of a decoupling of the KdV equation. Summing up
equations (1-5) from i=1 to i=N, we get the K4V equation using
Eg.(1-6). Note that decoupling of the KdV equation is not
unique.

In this section we have used only a knowledge of the form of

the KdV equation.
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An example of the simplest N=2 case is shown in Fig.4.1)

Fig.4
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§2 Interacting KdV Equations
2-1 The Form of Equations
As was explained in the preceding section, the form of the
Int KAV equations are able to be derived using only the knowledge
of the form of the original KdV equation. The form of egs.(1-5)

has already been obtained in Ref.4)

an extension = a decoupling

the original KdV eq. :::§ Interacting KdV egs.

1

du+6u8u+a3u = 0 ! du.+6u8u.+a3u. =0
i i i

simple sum
(

the exact N-soliton solution u NL% ui(a single soliton as t—o*w)

(N) N
b Lioa¥y
(N) 2 "
u = 2371n det(I+B) u, = ZBBiln det(I+B)
3z3/3x aiF(x1,xz,'-',XN)=(8/8Xi)F]X1=X2=.._=X
N A
o Li—193
where I,B: N x N matrices I,B: N x N matrices
Tig = 84 Ti5 = %4y
Biy = ®i¢j/(Ki+Kj) Biy = @in/(Ki+Kj)
- _ 2 3 _ B 2 3
@i:Ciexpyi:Ciexp(Kix—Z Ky t) @i:Ciepri—Ciexp(Kixi—2 Ky t)

O<K1<K2<°'°<KN

Table 2 Summary of 2-1 and 2-2

2-2 Solution uy of the Int KdV Equation
We have obtained Int KdV equations in the previous section

by a physically natural consideration. Their exact solutions can
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be obtained in the following three steps.

a) First step: The exact N-soliton solution of the Kdv

3)-8)

equation has already been obtained in several ways and its

3)

asymptotic behavior was fully examined. We shall take these

results as our starting point. It is known that the solution

u(N) has the form

a2 9(3/9%x)%1nE. (2-1)

The function f is defined as

f(Y1IY21...IYN) = det(I+B) (2-2)

where I and B are N X N matrices whose elements are

Ty1 = %%
and Ckcl
Bkl = ~E*:E—_exp(Yk+Yl), (1sk,1:N), (2-3)
k 71
and here 2 3 ‘
Y; T OKyX - 2 Ky t (i=1,2,+¢+,N) (2-4)

with Kronecker's 6ij and arbitrary positive constants Ky and Ci'
We assume

K, <K <osely (2-5)

1772 N
without losing generality. Note that the function f is a
rational function of expyi's.
Here we remember that there is a notice in Ref.3) that f and-

feexp{a(t)x+B(t)} give the same solution u(x,t) for any functions

a(f) and 8(t).
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b) Second step: Before obtaining solutions of Egs.(1-5), we
introduce new variables, a function and operators. First, let us
introduce N independent space variables Xy (i=1,2,-++,N) and

following the definition (2-4) define Pi as
I'. = k.x, - 27k, t. (i=1,2,¢9++,N) (2-6)

We can define N independent time variables ti as well. 1In

dealing with the Toda equation in §3, we will use them.

(N)

Secondly, we define a function F of Fi following (2-2):

2 (M)

(F1’F2"."FN) = A{Fi} det(I+B), (2-7)

where B is a N x N matrix whose elements are
LAV d

55

By1 7 ¢

eXp(Fk+F1) (1sk,1szN) (2-8)
k

+Kl

and A{Ti} is exp{2§_1ai(t)Fi+B(t)} with arbitrary functions ai(t)

and B(t). Lastly, new operators ai (i=1,2,«++,N) are introduced.

They operate as follows;

BiF(F1,F '°-,FN)

= [(S/BXi)F(F1,F2,"',T

2'

Using these operators, the following eguations hold;

A

(3/3%)f = 9f = [)_,8,F (2-10)

-10-
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and

A

99y = 35)197- (2-11)

Note that these operators §i and Hirota's bilinear differential
operator DX are much alike.

c) Last step: With these preparations, we are now able to
obtain the solution of Eg.(1-5). Using Egs.(2-10) and (2-11), we
get the expression

(N) _ ~ _ A . .
u = ZBEkaklnF = ZEkakzlallnF. (2-12)

Substituting Eg.(2-12) to Eg.(1~-1), we have
- 2
1595 0(8/8t) (2], 3, InF)+3({];3, (2], 3, 1nF))

+(§8,)° (2], 8, 1nF) ]=0. (2-13)

In this equation, [ ]=zG is a rational function of exp Fi's
and K (i=1,2,+++,N), for F is such a function. N.B. that
ajexpri = 0 (izj) and aiexpri = K expy; - Further, the values
Ki's are arbitrary. Therefore, to satisfy Eqg.(2-13), ZiaiG = 0,
G must be identically zero as a function of space variables

«e¢,x_ and of time variable t;

X_',X N
G = 0.

2I
(2-14)

So, for each i we reach

aiG = 0. (2-15)

Using Egs.(2-10) and (2-11), we get from Eqg.(2-15)

-11-
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(3/3t) (233, 1nF) + 6(2821nf)8(288ilnF)

+83(28811nF) = 0. (2-16)
Thus we obtain the solution uy of the Int KAV equations (1-5);

u, = 288ilnF. (i=1,2,¢+,N) (2-17)

It is obvious from Egs. (2-10),(2-1) and (2-17) that

(N) _ N 2 _ N
u = 23] _q9;1nF = ]/ .u.. (2-18)
Equation (2-18) is Eg.(1-6) itself.
It is easy and straightforward to derive certain properties
of the ui's. For example, we can get
o]
j_muidx = 4Ki’ (2-19)
therefore the total area of uy is invariant in time whatever
deformation it suffers. We can also show that each uy becomes a
single soliton as t+:tx. The simplest N=2 case is very

1)

interesting and important. We will see in the next subsection

that there is a relation of our ui's to the eigenfunctions which
appear in the IM and they have many well-known properties.
In this subsection we have only made use of the fact that

(N)

the solution u is of the form X (here X=231nf) and that the

function f is a rational function of expyi's. In the next

subsection we shall use the full information about u(N).

~12-
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2-3 A Relation to the IM in the KdV case

def. wk = E(E%E]km¢m
9By = (+Ky)Byy gigkl = K361y +0657)By,
91n det(I+B) = 3Tr 1ln(I+B) Tr3,In(I+B) = zKi(IfB)ii
=Zk,l(f%§)klaBlk =2x;-2x; (55) 55
=27xy (725 ) kx
=2y -2 1 (45 ) kx
Using L —A"1(3A)A‘1
u = 23{9ln det(I+B)} u; o= 285iln det (I+B)
- 40k (F) 1% ToB 1 = ~4x;3(75) 14
AT TS

Table 3 Summary of 2-3

Here we shall show that the following relations hold.

(i =1,2,¢¢«,N) (2-20)

In ref. 8), Wadati and Sawada showed that: Using a formula

1n det(I+B) = Tr 1n(I+B) (2-21)

for a square matrix I+B (2-3) and with the properties

Bkl: Blk (2-22)

and 3 (2-23)

Biy = (kyp+kp)Byyy

-13-
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they derived

I

9 1lIn det(I+B) = Zk,l(f;_B)klaBkl

= 20 (5o ki = 20y - 2L (Fp) e (2729)
Then they defined b and wl for 1sm,1sN as follows;
o, = Cm éxp Yo (2-25)
by = 2§:1[f%§)lm¢m. (2-26)
For any normal matrix A, we have
527" = a7 ()Tt (2-27)

From this and eg.(2-24) follows

23{231ln det(I+B)}

o
i

I I 2
I, 1%k (T8 k10200 (T8 mk = Lpdeq¥y - (2-28)

1}

By making the best use of their results with our new
operators 31 introduced in subsection 2-2, we can show explicitly
that Eg. (2-20) holds.: We have introduced B in Eqg.(2-8),

“xC1

Bkl = *E;:zz eXp(Fk+Fl) (2-29)

for which equations

-14 -
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5By = <5065, +6;1)B, (2-30)
hold, and so we get
Tr giln(1+§) = ZKi(I?B)ii = 2cy - 2¢5 (78) 54 (2-31)
Hence Eg.(2-20) is proved to hold:
u, = 233, 1n det(I+B) = -4k 3 (7og) ;
=43 Ty, 1 (Fo9) 1001 (Fop)1s = 4kqvg”  (2-32)

This means that there exists an explicit relation between our
method and the IM. The function by which appear in the IM is not
an auxiliary quantity to the solution u of the KdV equation, but
relates directly to it.

In this subsection we have used the full knowledge of the

form of the KdV N-soliton solution.

2-4 "partial" Lax Forms

It is well known that for the KdV equation (1-1) there

exists the Lax formg)
(3/3t)L = [A,L] = AL - LA, (2-33)
where
L = —82'— u (2-34)
and A = -43° - 6up - 3u_. (2-35)

Here u, is a function obtained by differentiating u with respect

~15-
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to x. With these operators L and A, two equations

Lwi = Ky wi (2-36)

and (3/3t)0,

]
o]
<

(2-37)
hold.

We only point out a fact, using a relation

{3,u} = Zj{ajgi} (2-38)

with
u =2 {8, 9,1n(I+B)}, (2-39)

that "partial" Lax forms

(a/at),\l;'l = [Alt,&’] (i=1121"'lN) (2"‘40)
hold, where L = _(Z‘a.)Z —u, (2-41)
Ei = _aigjaj - Uy (2-42)

and 2
A, - -4(zjaj) 9, -4ud, "233123'83' -34y e (2-43)

In Eq.(2-43) B ox stands for a function Zj{ajgi}. Here {ajgi}
means a function obtained by differentiating u with respect to
Xx.. So, for example, d.u, = {d.u.} + u.,9.. It is obvious that

J J~1 Jwl ]

summing up Egs.(2-40) from i=1 to i=N and equating all Xy with x,
we get equation (2-33).

We can not give a 'discussion based on the unitary

equivalence here. It is left for a future study.

-16-
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§3 Interacting Toda Equations
In this section, we only present tables without discussion;
they speak for themselves. Detailed discussion will soon be

published elsewhere.

3-17 Int Toda Equations and their Solutions Vrl 5
4

an extension = a decoupling
the original Toda-eq.:::§ Interacting Toda egs.
dzln(1+v )=V +V -2V
n n+1 "n-1 n
ala v_/(1+v )} = 2%y alav_ ., /(1+v )} = 8%y
n n n n,i n n,i
A = -
( Vn vn+% vn—%)
simple sum
the exact N-soliton solution V :éV . (a single soliton as t>*%®)
n n,i
v oy
n i=1"n,i
V_ = a°ln det(I+B) V_ . = dd,ln det(I+B)
n . n,i i v
E a a o0 - 8 a
d = 9/8¢ diF(Ey ty, " " ty)=(9/ ti’F’t1=t2=--~=t
N
d , Li 19
I,B :N x N matrices I,B: N x N matrices
I.. =6,. I.. = 0,
1] 1] 1] 1]
- _ - - ¢ 9 -
Bij = ¢i¢j/(? zizj) gij i j/(1 zizj)
= ' —a ¢ = _a
) Ciexp{Bit i(n+1)} i Ciexp{Biti i(n+1)}
. -1
= o = - = -Q
Bi sinh i (zi zi)/2, z, exp ( i)

Table 5 Int Toda equations and their solutions Vn i
’

-17-
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3-2 The Form of Solutions Vn i of Int Toda Equations
4
_ I ~ I
def. O () = LTS8 knb (M) Xk () = LEE) kb (0-1)
dByy = (By*Bp)oye,/(1-2,2)) A3 By =B (643 %651)9 0,/ (1-2y27)
_ -0 -
= (z %R+z Q)¢k¢l/2
={Cbk(n"1 )le(n).ﬂbk(n)d)l(n“] )} /2
- B _ B
dln det(I+B) = J28 (778 mm d;1n det(I+B) = ZBi(I+§2ii
v = d°ln det (I+B) V_ . = dd.1ln(I+B)
n n,i 1 =
I T
=B (T8 mxl ok (n=1)o g (n) oy (n)6, (n=1)} (F35) 1y | =2B4x 4 (MU, (n)
ZZmZBme(n)wm(n)
Table 6

The form of solutions Vrl
14

i of Int Toda equations

3-3 N. Saitoh transformation1o);the Toda Eg. to the KAV Eq.
Toda eq. h > 0 Kdv
N
v _(t) (0<hs1) 7 u(x,t)
2
Vn = h un(T)

n=(x/h)+(h %-h%)7/h » x=hn-(h 2-h%)¢

(a/aw)f{vn(f)} = {(3/3t)-(h

2 h%)(3/0%) ) £(ulx,1))

the Toda eq.: dzln(1+vn)

=-23°%u/3x31+h252u7TRe -2 252 (u?) /3%?

d{Kdvy}: (B/BX){—28U/8T—2—18(U2)/8X}

h‘4{u(x+h,r)+u(x—h,T)—2u(X,T)}

n=23%ura?e12 o 4u/0xd

(8/8X){12_183u/8x3}

similarly,

Int Toda eqgs. » Int KdV egs.

Table 7 N. Saitoh transformation;

-18-

the Toda eq.

to the Kdv eq.
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§4

and the Modified KAV cases

Direct Relationships to the IM; the Kdv,

the sine-Gordon
11)

It is shown that the solutions of three kinds of the

interacting soliton equations
squared eigenfunctions of the
equations which appear in the
the modified KdV (MKdV) cases

We consider the KdV, the
in the following forms;

. {a) The KdV equation:

du + 6udu + 83u = 0.

The operators d and 0 are,

Q
Hi

3/9t
and 3

i

9/9x.

can be expressed explicitly by the
corresponding two-component
IM. The KdV, the sine-Gordon and

are shown.

sine-Gordon and the MKdV equations

(4-1)

(4-2)

(4-3)

(b) The sine-Gordon equation:

doo =

but here we use u =

dou =

(c) The MKdV equation:

30/2 instead of o,

ucoso.

sino,

so the form is

(4-4)

~19-
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du + 6u®u + d°u = 0. (4-5)

The Int soliton equations in the three cases are then given
as follows. Detailed discussions in the cases of (b) and (c)
will soon be published elsewhere.

(a) The Int KdV equations:
du. + 6u(du.) + 33u‘ = 0. (4-6)
i i i
(b) The Int sine-Gordon equations:
ddu., = u,cos0O. (4-7)
i i

(c) The Int MKAdV equations:

du. + 6u®(du.) + 3°u. = 0. (4-8)
1 1 1

Of course, each solution uy of Egs.(4-6)Vv(4-8) may have its own

solution with any soliton number, but here each ug is taken for a

single soliton as t+iw.2) Summing up each solution Uy from i = 1

to i= N gives the exact N-soliton solution u(N)'

4

XN - u(N)

i21Y . (4-9)

Here, we adopt the two-component equations in the following

forms:12)’13)

(0 - K)¢1 = uy (4-10a)

2

-20-
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(o + Kb, = ry, (4-10Db)

and
dw1 = A(t,x,K)w1 + B(t,x,K)w2 (4-11a)
dwz = -A(t,X,K)wZ + C(t,x,K)¢1 (4-11b)

where « is an eigenvalue, ¢1 and wz are corresponding
eigenfunctions and functions A, B and C are so chosen that Kk is
time invariant.

Now, we shall give proofs that the solution of the Int
soliton equations are expressed explicitly by the sqﬁared
eigenfunctions of the corresponding two-component equations.

(a) The KdV case: In this case,

u., = ciwz (4-12)

r = -1 (4-13)
and
3
A = —(4x” + 2Ku + uX)
B = -(4K2u + 2Ku_ + 2u2 + u. )
X XX
c = 4k® & 2u. (4-14)

(Subscripts denote partial differentiation.) From Egs.(4-10) and

(4-13), we get

8w1 = Kw1 + uwz (4-15a)

-21-
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and
whence
a2¢1 = (-u + K2)¢1 +u b, (4-16a)
azwz - (-u + Kz)wz (4-16b)
and
370, = (-u + %) (30,) ~u . (4-17)
From Egs.(4-16),(4-14) and (4-15b),
dv, = _(4k? 4 2u) (30,) + u v,. (4-18)

The proof is very simple and straightforward. Substituting

(4-12) to the l.h.s. of Eq.(4-6) divided by ZCi, we have
Uodb, + 6ubodb, + Yo (350.) + 3(3v.)(3%0.)
2 72 272 2 2 2 2
- wz{-(4K2 +2u) (39,) + u ) + 6ub, v,
U {(-u + K2)(00,) - u b} + 3(3U,)((~u + k2)u,) = 0. (4-19)
2 2 x"2 2 ' 27 = V-
(b) The sine-Gordon case: In this case
) (4-20)
where c; is a constant,
r = -u , (4-21)

-22-
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and

oy
1}

coso/ (4K)

C = sino/(4x). (4-22)

o
il

‘Using the following relations

2 2
w1aw1 - wzawz = K(kb1 + wz ) - 2uw1w2
and
VoAb, + B, = u(b, 2 - w2 (4-23)
1772 27 1 2 !
l.h.s. of Eg.(4-7) becomes
2 2
daui = ZCiB(w1dW1 + wzdwz) = ZCiB{A(\D1 - wz ) + ZBw1w2}

cia{cosa(w12 -y 2) + ZSinOw1w2}/(2K)

2

2

c,{-2usino(y % - wzz) v 20050(0, 30, - ¥,30,)

+ 4ucosOw1w2 + 251n0(¢18w2 + w28w1}/(2K)

2 2
= ci(d)1 + wz )coso = u,coso = r.h.s. of Eq.(4-7).

(c) The MKAV case: Similar to the sine-Gordon case, the
proof is simple and straightforward. 1In this case we use the
following relations obtained from Egs.(4-10) and (4-21):

2

2
T 2 L L R Pl B

-23-
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oY

1}
A
<

v.ob, - U

1

oV, - v, 9u, = -u(y

v 1

) - 2Kw1w2. (4-24)

1772 2

We have shown in this section that the solutions us of the
Int KdV, the Int sine-Gordon and the Int MKdV equations are
proportional to one of or a sum of the squared eigenfunctions of
the corresponding two-component equations, using only the
knowledge of the form of the equations. If we use the full
knowledge of the functional form of the exact N-soliton solution,
we can determine the values of cy in each cases: e.g. the
functional form of the MKAV solution is found in Ref.14). A
detailed discussion will soon be published elsewhere.

Similar treatment of the Toda equation is left for a future
study. There is also a problem left about the relation between
the dependence of u, on Y and the type of the equations under

consideration.

-24-
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