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1. Introduction

In the theory of computational complexity, it is well known

that coding schemes play important roles and a difference of

coding scheme often causes a drastic discrepanﬁy of\time or space
complexity. Many famous efficient algorithms for sequential
computation owe to discovery of good coding schemes.

In parallel computation, it also seems that the discovery of
- good coding schemes is a key to developping efficient algorithms.

Avizienis pointed out the advantages of redundant coding schemes

in design of high-speed arithmetic circuits [AVIZ6109]. In recent
years, we have been designed several VLSI oriented hardware

algorithms for arithmetic operations wusing a redundant binary

coding scheme [TAKAY8306] [TAKAY8404] [TAKAY8402] [TAKAA8501].

These results suggest that there are some possibilities for us to
design vefy high-speed hardware algorithms in various areas of
computer science using redundant coding techniques.

In the redundant binary coding, we can construct a carry-
propagation-free adder. Namely, we can compute each digit of the

sum from only each three digits of the addend and the augend in



this addition rule. Thus addition of two numbers can be done by a
constant depth circuit independent of the length of the operands.
It 1is <clearly impossible to <construct such a fast addition
algorithm'when we use the ordinary binary representation. In this
case, since the most significant digit of the sum depends on all
digits of the addend and the augend, the depth of circuits should
be at least 6(log n) 6n the assumption that fan-in of logic
elements is restricted to a constant number. Moreover, Winograd
showed that one can not construct a constant depth adder using
any nonredundant coding scheme [WINO06504].

Our inevitable question, which is mainly discussed in this
paper, is for what kinds of operations we can comnstruct
efficient parallel algorithms that are realized by constant depth
circuits., Of cause, we allow the wusage of redundant coding
techniques.

In order to clarify the relation between coding schemes and
the computational complexity on combinational logic circuits, we

will introduce a new concept called 'local computability'.  The

local computability is defined by the number of code digits of
operands required to determine each digit of the result.
Therefore our question will be reduced to what kinds of
operations have coding schemes wunder which they are k;locally
computable for some constant k independent of the size of the
domain of operatiomns.

The main result of this paper is that any operation of

finite Abelian group 1is k-~locally computable wunder certain
redundant coding scheme where k depends only on the size of an

alphabet of coding independent of the length of each code.
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2. Local Computability

2.1 Computation Model

In this ©paper, we adopt combinational circuits constructed

with fan-in restricted logic elements as a model of parallel
computation. A combinational circuit is represented by a directed
acyclic graph whose vertices and edges correspond to logic
elements (or terminals) and connecting lines (wires) in the
circuit, respectively. The complexity of a‘combinational circuit
is measured by its size (the nuﬁber of logic elements included in

it) and depth (the length of the longest path in it).

2,2 Coding Scheme

Let S be a finite set and o be a binary operation defined on

S. Assume that S 1s closed under o. We denote the number of

elements in S by |[S]. Let an alphabet A be a finite set of
symbols. ,.An represents a set of strings on A with length n. We

encode elements in S into strings on A of length n as follows.

In this paper, we only consider with fixed-length codes.

[Definition 1] C is a coding scheme for (S,°) on A if and only if

the following two conditions are satisfied:
(1) ¢: A™ - s u {1}, where L is not in S.
(2) For any element s in S, there is at least one element x in

- A" such that C(x)=s.

We can define a binary operation * on AT guch that



C(x*y)=C(x)°C(y) for any x and y such that both C(x) and C(y) are
in S. Namely, S is homomorphic to {x] xeA”™ and C(x)eS}. 1In this
paper, we assume that |A[>1.

Since a  coding scheme 1is defined as a mapping from a code
space A" to the original set S u {L}, we can specify a redundant
coding scheme. A coding scheme C is said to be redundant if there
~is an element/in S which is an image of two or more elements in

AT,

2.3 Local Computability

Here we define local computability of operatioms.

[Definition 2] A binary operation ° or S is k-locally computable

under a coding scheme C : A™ » su{l1} if and only if there exists

an operation * on A" such that in the computation of z=x*y each
z, is a function of at most k elements in {xl. Xos oo 2 X s Yy

Yoo eee s yn}, where XZX KpeeeX s YEY Ygeoe¥, and z=zlzz...zn.

If an operation is k-locally computable wunder some ;oding
scheme, one can construct a circuit computing the operation with
depth 0(k). From the view point of high-speed computation; we are
interested in the k-locally computable operation such that k is

independent of the set size.
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3. Residue Class Group Zm and Redundant Binary Coding

Let Zm be a residue class modulo m in the set of integers,

where + is usual integer addition to modulus m. It is well known
that (Zm, +) is a cyclic group. Namely, Zm is a finite group and
all elements in Zm is generated from '1l'.

Now we can show the following fact.

[Lemma 1] For any positive integer m, there is a coding scheme C
for (Zm,+) on {0, 1, -1} such that + is 1l6-locally computable

under C.

(Proof) Let alphabet A be {0, 1, -1} and r be TlogzmT. Then Zr-l
<m < 2%, Consider the following coding scheme.
C: A" »z_ v {1}
m
] if 0<s<nm,
C(xlxz...xr) ={m + s if -m<s<0,
1 otherwise.
where
L r-i
§= 2: X.2
: i
1=]
Next we define a binary operation * on the coding space AT, We

must define the operation * such that z=x*y iff C(z)=C(x)+C(y)

for any elements x and y whose images are included in Zm. Let x,
. T

y and z in A~ be denoted by K XgeeeX s Y VgeeoV, and ZiZypeeeZ s

respectively. We will give a computation rule of * such that each

z, depends on 16 digits in X XgeeoX, and MADSERED S Before

discussing the operation *, we first introduce a carry-

propagation-free addition on the redundant coding.

[Procedure ADD] (p is a positive integer)



Input xlxz...xP and ylyz...yp.
Output uju,...u s where>_  u.2 = > x.2 + 3> y.2 .
1 P - i — i R i
1=0 i=1 i=1
(Here + is the ordinary arithmetic addition.)
Step 1. Generate the intermediate sum slsz...sp and the
intermediate carry cocl...cp_lo from xlxz...xp and

ylyz...yp according to the addition rule in Table 1.

Step 2. Add s.s

1 2.;.sp and cocl...cp_lo. The sum is denoted by
uOulllﬂup.
*5 Yy *i+1 Yivrl €i-1 %%
1 1 - - 1 0
1 0 containing 1 1 -1
0 1 not containing 1 0 1
0 0
1 -1 - - 0 0
-1 1
-1 0 not containing -1 0 -1
0 -1 containing -1 -1 1
-1 -1 - - -1 0

Table 1. Addition Rule

Since, no carry is generated in Step 2, each u. is a function of

only X: Using this addition

Xip1® Fiegr Yir Yyep 384 V.5
procedure, we define * as follows:
[Procedure MODADD]

Input x=x1x2...xr and y=y1y%f.fyr.

. r . r .
_ r-i _ r-i r-i
Output 2z=z;Z,..02 s where'z z;2 -.Z x,2 +'§ v;2
i=1 i=1 :
mod m.

Step 1. Let u = ceou = ADD(x, y).

Yot

Step 2. If m=2" then z=u Ujeset and stop, otherwise go to Step

1
3.

Step 3. According to the value of Uy and U select one of the
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following operations:

If (u0 ul) (0,0),

If (uO
(1) 1£f (1,-1) then

(2) Vl 0 l."v

(3) 2=V VyeeaV .

If (uo, ul) = (09'1)

(1) 1f (-1,1) then

...V -

(2) v -1%0"1

(3) z=v,v,

ul) =

...v .
r

If (uo (1,0),

(1) v ~1VoVyceeu,

(2) z=v.,v celV .

1°2

1f (uoa u = (—190)

1)

(1) v —1VoVyt U,

(2) Z=V,V

l zocovro

If (ug, (1,1),

ul) =

(1) SRS SRERL

(2) z=v1v2.f.vr,

ul) = (0,1) or (1,-
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z=u,u

1 zt.au .

1),
rewrite it into (0,1).

ADD(u, -m).

or (‘191)’
rewrite it into (0,-1).

ADD(u, m).
ADD'(u,-m) .
m).

ADD''(u,

ADD'(u,-2m).

If (uys ul) = (-1,-1),
(1) v_ ;v Vieeeu, = ADD''(u, Zm}.
(2) ZEV VyeeaV .
where
(a) m MMy o oM is represented by the ordinary binary
representation and ~m = (-mo)(~ml)...(-mr). Note that
m0=0. 2m and -2m are represented by mlmz...er and (-ml)
(-mz)...(-mr)o, respectively.
(b) ADD' and ADD'' are modification of ADD. In ADD'(ADD''), if



(Xia yi) = (1,0) or (0,1) ((-1,0) or (0,-1)) then (ci_l,

Si) = (0,1) ((0,-1)). Moreover, (co, sl) is uncoditionally
(-1, 1) ((1,-1)).

It is easy to show that the operation * defined by MODADD

satisfies the ~condition of C(x*y)=C(x)+C(y). Since in the

computation of ADD, ADD' and ADD'' each sum digit depends on at

most only 6 digits of input operands, z:» the i-th digit of final

result of MODADD, depends on Xjs Xys Xas Yis Yoe Jq (uO and uy
are computed from them),and Xio Xoyps Koo Xooas Xoous Yoo Yoo
Yi+a® Yi+3® and Yivg® Thgs + 1s 16-locally computable under C.

Q.E.D.

4. Local Computability of Abelian Group Operations

From the result of the previous section, we can directly deduce

the following Lemma.

[Lemma 2] For any cyclic group(S,°) and any alphabet A, there is
a coding scheme C on A such that ° is k-locally computablg under
C, where k is a constant depending only on A.

(Proof) Since any cyclic group (S,°) is isomorhic to (Zm.;) where
m=|S|, this lemma is directly deduced from Lemma 1 in section 3.

Q.E.D.

It is known in algebra that any finite Abelian group (i.e. finite
commutative group) (S8,°) is a direct ©product of finite cyclic

groups. So we can directly derived the following theorem.
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[Theorem] For any finite Abelian group (S,°), there is a coding
scheme C on any alphabet A such that ¢ is k-locally computable

under C, where k is a constant depending only on A.

[Corollary] For any positive integer p, there is a coding scheme
C for (Zp-{O}, x) on any alphabet A such that x is k-locally
computable under C, where k is a constant independent of p and x
is the normal integer multiplication to modulus p.

(Proof) It is known in the group theory that (Zp-{O}, x) is a
finite Abelian group. So using logarithmic notation and redundant
coding technique, we can easily construct a k-locally computable
coding scheme for any p and A under which x 1is k-locally

computable where k is independent of p. Q.E.D.

5. Discussions

For the definition of local computability, we can introduce
more conditions from the view point of practical algorithm
design.,

(1) Efficiency

In general, a redundant code is longer than a nonredundant
code. It 1is desired that the length of <code is as short as
possible for reducing the hardware resources. When efficiency of
coding scheme C :A"™ > 5 is defined by n/flogaIS|1 where a=|Af|,
the efficiency of practical <c¢oding should be bounded by a small
constant.

(2) Homogeneity

From the standpoint of hardware algorithm design, it is
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Q)

desired that, in the computation of z=x*y, each function fi
computing each digit z. is homogeneous,
(3) Consecutiveness

In the design of VLSI oriented algorithms, it is important
that operands of each fi are consecutive in the strings of
X XyeeoX and ylyz...yn. since the area for wiring may be small
for such coding schemes.
(4) Universality

The concept of local computability should be extended for a
set S and a set of operatioms on S. Namely, we want to have a
coding scheme in which each operation is realized by local
coﬁputation; Fdr example, local computability of operations in
rings or finite fields should be investigated.
(5) Code Conversion

In the practical use, the computational complexity of code
conversion is a very important factor of total efficiency.
Especially, conversion between a redundant coding scheme and a
usual coding such as the binary representation should be

considered carefully in the design of the redundant coding scheme

for high-speed computation.
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