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ABSTRACT

A control strucure called "substitution" 1is introduced,
which dgenerates a balanced tree of the substitution module. ' The
function description ability of  substitutive programs is
ihvestigated in terms of the maximum depth of the nest for
substitution statements.

We obtain an interesting equivalence between looping (chain
generating) plus (loop) nesting, and substituting (balanced tree

generating) without nesting. The result provides a new and

intu;tive characterization of the Kalmar's elementary functions.

1. INTRODUCTION.

Control structures of a program is one of the essential
issues of the program theory. Because both theoretical and
software engineering properties of programs depend on them.

Sequential control structures (see e.g., [61) such as "for
do", “do‘while", "loop exit" and "loop exit(i)", and recursive
structures such as linear recursion and binary recursion [8]1 are
well Kknown examples. They have been introduced in order to
increase the ability of design and anélysis of programs from
software engineering requirements.

Meanwhile, the 2-dimensional graphical representation of
programs has been employed since Goldstein-Neumann flowcharts. In
1970's several structured flowcharts were proposed, corresponding

to development of structured programming methods. Most of them
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represent program modular structures by nesting structures of
charts, in which only the vertical locations of cells have
meaning, but the horizonal location does not any have meaning.

In 1978, we proposed a hierarchical flowchrt language called
"Hichart" [9]. In a Hichart flowchart, the sequential order of
statement execution 1is represented by vertical order of cells,
but the hierarchical level of statement corresponds to horizonal
distance from the root cell of the flowchart. In these
considerations, sequential control structures are considered to
control vertical repetition of the repetition (iteration) scope.

We introduced another class of control structures, called
"substitution”, that control the horizonal repetition of
the repetition (substitution) scope 1in Hichart type flowcharts.
The substitution 1is implemented by the "“"subst" statement. A
program with substituion statements is called a "subst" program
or, informally, a "substitutive" program. A substitutive program
has several superior software engineering characteristics such as
"visual", "easy to estimate” the complexities, "easy to
understand", etc.

"Substitution" is an extension of the iteration, because a
‘subst program is executed as an in-order traversal of a balanced
tree of the substitution scope, as the limited “recursion" is,
but an iteration program is executed as only a sequence of the
iteration scope. However, the function description ability of the
substitution programs is just limited to the primitive recursive
functions. Therefore, "substitution" is considered to lie between

iteration and recursion.
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We first define a "subst program”, which is a generalization

of a static recall program [101].

Definition 1. Let X and S be fixed mutually disjoint
countable sets of symbols. An element of X or S 1is called a
control wvariable or a simple variable, respectively. Let Var

denote the all variables, that is, Var = X U § . A subst

program is a sequence of statements over Var defined recursively

as follows:

u=u+tl {u:=u-1jJu:=0}u:=v

Catomic statement>::

{subst statement>::= subst <subst control> do begin

{statement list> end

<subst controld ::= x-k | x

{statement> ::= <atomic statement> } <subst statement> | resubst

{statement list>::= {(statement> | <statement>;<{statement list>
| null

{subst program>::= begin <{statement list)> end.,

where u and v are in Var, x is in X, null denotes the empty

sequence of a statement, and k is an nonnegative integer.

The computation of a subst program is defined below. Let 5

(1 < i =¢ N) be either a null or a list of statements other than

resubst (If Sy is null, then an associated semicolon 3§ 1is

eliminated). A subst statement of the form

subst x-k do begin slzresubst;s sresubst; ... 3 resubst;sN

2
end (2.1).
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is equal to one of the followings:

[t

(i) null (x-k = 0),
(ii) null (x-k > 0 and N<= 1, i.e., with no resubst
statement), or

(iii) 31; subst x-k-1 do begin Q end ;

52; subst x-k-1 do begin Q end

SN-1° subst x-k-1 do begin Q end

SN* (x-k >0 and N > 1), (2.2),

where Q = sl; resubst; 32; resubst; ... ; resubst: ENE We say

(2.1) is expanded to (2.1).

A loop statement, a loop prodram and the Cdmputation of a

Q0P Program are defined as in [7]. Proposition 1 and Example 1

[t

below show a simulation mechanism of a loop statement by a subst
statement. Accordingly, a subst statement is regarded as an

extension of a loop statement.

~which is expanded to :

subst n-1 do begin resubst; P end; P

= ... =P P35 ... s P(n time repetition).
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3. THE COMPLEXITY.

This section deals with correspondence relations beween
classes of subst and loop programs with respect to the function
description ability and to the maximum depth of nesting of loop
or subst statements, under a relation "mutualvbounding" ~defined

later.

Notation. Analogously to a loop(i) program [2], a subst(i)
program denotes a subst program having the maximum depth i of
the nesting for a subst end pairs. Si denotes the class of
functions computed by subst(i) programs. Li denotes the class of

fuﬁctions computed by loop(i) programs [1]. And

L

"
c
-

S

n
S
wn

The function tree(k,n) denotes the number of nodes in a k-

ary balanced tree with the depth n, which is defined by :
tree(k, n) = Zi ki
For a program P, f(P) denotes the function computed by P.

Definition 2 . A class C of functions is bounded by a class

D of functions, denoted by C <=, D, if for any function f in C

b
there exists a function g in D such that f(n) <= g(n) for any n.

If C <=, Dand D<=, C, we say C and D are mutually bounded,

b
denoted by C =

b

b D.



The following theorem provides an interesting equivalence
between “the looping plus the loop nesting” and "the balanced
tree generating”. It also gives a new and intuitive
characterization of the Kalmar's elementary functions.

Theorem 1. The class S1 and the Kalmar's elementary

Proposition 2. L; <=, S; <=, L,;.

Theorem 2. S = L.

Theorem 3. (The main theorem) Si 5 Li+1'

Theorem 3 showed that replacing sequence generaiing
operators by tree generating opérators is correqunding to
augmenting the maximimum depth of nesting by one, but not two, of
loop statements, that is, sequence generating operators. Theorem

3 is illustrated by the followng figure.
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Figure 4. The relations between S and L.
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APPENDIX I. HICHART FLOWCHARTS

We introduce here an outline of the Hichart flowchart
language [9,18781]. Hichart was designed to 1illustrate the
structured program. Hichart is based on trees and hierarchically
cyclic graphs for program modular structures.

Hichart 1is the first language that illustrates the programs
by hierarchical trees. Symbols and structures of Hichart have
been employed by several authors 1in succeeding structured
flowchart languages (e.g., PAD [11] and FESDD). Thus, several ten
thousands of programmers bresently use Hichart symbdls and

Hichart structures in several flowchart languages in Japan.

A Hichart flowchart is a labeled flowgraph written by the

following convensions.

Examples. Examples of flowcharts by several flowchart

languages.
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