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Note on the class of unit in KO(C(SUXng)

1%[3_&@ % B 7,}7“ — (Toshikazu Natsume)

1. Prologue:

In [2] A. Connes showed, among ofher things, that the unit of the
reduced crossed product C(ST)XrF is a torsion element of the KO—
group for every torsionfree cocompact discrete subgroup [ of
PSLZ(R) acting on S1, which we view as the boundary of the upper
half-plane, given by the linear fractional transformations. He
showed this in the framework of his noncommutative differential
geometry. More precisely, he showed that for a suitable element
x of the geometric group KO(S1,T) which corresponds to the class
of unit through the index map u : KO(S1,F) > KO(C(S1)er), the
Chern character <ch(x) 1is equal to zero. Consequently, x 1is a
torsion element, hence so is the class of unit. \

The purpose of this note is to give an elementary proof of

this result in a purely C*-algebraic manner.

This work was inspired during helpful conversations with G.A.
Elliott while the author was enjoying the hospitality of the Mathe-
matics Institute of the University of Copenhagen. He takes this

opportunity to express his gratitude to Elliott and the Institute.



2. The group Fg :

Let Tg be the fundamental group of a closed Riemannian surface
of genus g > 1. We can regard Fg as a torsion-free cocompact
-discrete subgroup of PSLZ(PJ.

It is well-known that Fg is generated by 2g generators Ay

1,---,ag,8g with a single relation:
[a1IB1]...[a«g'Bg] = 1.

Put Yy = [81,a1] ( = [a2,82]°--[ag,8g] ). Let G (resp. S) be
‘the group generated by a1,B1 (resp. a2,82,°°-,ag,8g). Then G
and S are free groups with 2 and 2g-2 generators, respectively.
From the above relation, it follows that

= *
Iy = G*4S,

where H is the infinite cyclic subgroup generated by vy .

Let A, AG' AS and AH denote the reduced crossed products

1 1 (N 1 s
C(s )erg, C(s )er, C(s )MrS and C(S )NrH, respectively. Let

K1 (resp. KZ) be a natural inclusion of A into A

H (resp.

G

AS), and let €1 (resp. 62) be a natural inclusion of AG (

resp. AS) into A. Then
E’IQK‘I = EZZOKZ 0y

In the latter sections, we compute the induced maps Kl and Ki

in K-theory.

3. Rieffel projection:



Let h Dbe an orientation preserving homeomorphism of S1L which

is not the identity.

Definition 1. A foundation of h is a quadruple T = (to,t1,t2,
t3) of mutually distinct points of S1 such that
1) h(to) = t2 ' h(t1) = t3 ;

2) to,”',t3 are contained in the same connected component I

of s'— Fix(h) and are sitting in the negative direction in

I, which we view as an oriented open submanifold of S1.

We give examples. Let h be induced from a matrix of the form

tH

with p > 0. Then h has no foundations. On the other hand, if
h is induced from a hyperbolic element, then h always has a
foundation. Thus, an orientation preserving homeomorphism h may
or may not have a foundation. However, at least one of h and

-1

h has a foundation.

T.at T = (to,t1,t2,t3) be a foundation of h . The homeo—
morphism h gives rise to an action of Z on C(S1). Consequen-
tly, the crossed product C(S1) X Z is defined.

For i = 0,1,2, let [ti,ti+1]» denote the closure of the
connected compopent of 81\\{ti,ti+1} which does not contain tk,
where k # i, k # i+1.

On [tO’tT] let f Dbe a continuous function with values in
[0,1] and with f(to) = 0 and f(t1) =1, On [t2,t3] define
f by

£(t) =1 - £(h” (1)),

while on [t1,t2] let £ have value 1. On the complement of

-3-



[tgrt 1V I, , 8,1V L, ,t5], let £ have value 0. Define g by

g(t) = (£(t)(1-£(£))) /2.

Put e = (gUh)* +f + gUh , where Uh is the canonical unitary
of C(S1) X'Z corresponding to h. Then, from the construction,
it follows that e is a projection of C(S') X Z . We call e a

Rieffel projection associated to h.

Notice that as h  1is orientation preserving, the action of Z
on K1(C(S1)) is trivial.

Let 61 be the connecting homomorphism from KO(C(S1) N Z)
into K1(C(S1)) associated to a six-term exact sequence obtained

in [6]. Let =2z Dbe the canonical unitary of C(S1). Then by a

direct computation (cf., [Appendix, 6]) we get:
Lemma 2. We have 61([e]) = [z] in K1(C(S1)).

By Lemma 2 together with the six-term exact sequence mentioned
above, it follows that KO(C(S1) X Z) 1is a free abelian group
generated by [1] and [e]l. We denote the class of e by B(h,T).

Let T, T' be foundations of h. Then:

Lemma 3. For some m € Z, we have

B(h,T) - B(h,T") = m[1].

The proof is easy and omitted here.

4. Computations:

In this section we compute the maps Kl and Ki .
First, notice that Fg has no elliptic elements, because it
acts freely on the upper half plane. By the construction of the
1

embedding of Fg into PSLZ(R), we can easily see that the a;'s
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and Bj's have their own foundations.

We compute Kl : KO(AH) — KO(AG). Choose a foundation of Yy
to get a Rieffel projection e corresponding to Y; Since Yy
has a fixed point, there exists a normalized trace 1T on AH.
Using the induced map T, : KO(AH) — R toge£her with Lemma 3,
we can show that the class [e] of e does’not depend on the
choice of a foundation.

Take foundations and construct Rieffel projections P, and a4
corresponding to a, and 81 , respectively. Consider the C*-dy-
namical system (C(S1), %Z, p) determined by a1 . Let B Dbe the
reduced crossed product of the system (C(S1), Z, p). By the same
argument as above, we can show that the class [p1] of Py in

KO(B) is independent of the choice of a foundation of «a because

'
a, has a fixed point. Consequently, the class [p1] in KO(AG)
is also independent of the choice of a foundation. Similarly, the
class of q4 in KO(AG) is uniquely determined.

As we have seen in the previous section, KO(AH) is a free
abelian group generated by [1] and [e]. By using a six-term
exact sequence for AG (cf., [7]), we can see that KO(AG) is a

free abelian group with generators [11, [p1] and [q1].

Obviously, «r([11) = [1]. Put
Kl([e]) = k[p1] +.m[q1] + n[1].

Consider the six-term exact sequence mentioned above:

1 1 '
KO(C(S )) — KO(C(S )er ) — KO(A

: f’
y 1

Ky (Ag) «— K1(C(S1)er') — K1(C(S1)),

-5-



b

where G' 1is the infinite cyclic subgroup of G generated by a, .
By a direct computation using the argument of [Appendix, 61, we

have that
§. (ki (lel)) = 0
1 * ¢

This means that m = 0, because 61([q1]) = [z].

If we exchange the roles of a1 and 81 , we can see that k

is also equal to zero. Thus we obtain:
Kl(lel) = k[1]

for some k € Z.

", N
Let a1, a1 and Y Dbe the lifts of a1, 81 and Y, respec-

tively, so that &1, %1 and Y have fixed points. As Y (B, 0,1,

we see that

n, n,
Y = [31. a1]Tn '

1
b

where T is the translation of R by n, namely, Tn(X) +n

with n € Z.
Proposition 4. We have k = n.

Proof. Let j €N be fixed. Consider the j-fold covering

m. = S1 — S1. The diffeomorphisms ?, o

j 1
o of the total space of ﬂj , re-

and %1 descend to
diffeomorphisms ?, u1 and §1
n
a

spectively. Since ? = [a ]Tn , we have that

17 M
y=[R, oldn/j),

where 1(n/j) is the rotation by the angle (2mn)/j.
Let D be the crossed product C(S1)x Z/(j), where the action

is given by the rotation <t(1/j) with angle (27)/3.
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It is easy to see that KO(D) is isomorphic to %, in partic-

] of the unit 1 is torsion-free.

ular the class [1 D

D

Notice that the diffeomorphisms o and §1 commute with

1

1(1/3). Let o be the action of the free group F, with two
generators, defined by 51 and §1 , and let E be the associ-
ated reduced crossed product. Using the six-term exact sequence

for crossed products by free groups [7], we can see that the class

of the unit 1E of E 1is not a torsion element of KO(E).
*
Let 1II = ﬂj : C(S1) —_— C(S1) be the map induced from ﬂj .
Put H(a1) = 61 and H(B1) = B& . Then I extends to a homo-

morphism from the full crossed product C(ST)XG into E. Since

G 1is K-amenable [3], I induces a homomorphism
M : Ke(Bg) — K (E),

and T, (ku(le])) = k[15].

Taking a foundation of ? which covers that of vy, we const-

ruct a Rieffel projection e' corresponding to Y. Then, by the

construction, we get:
1 . '
My(k,(lel)) = jle'l.

On the other hand, from the equality Yy = [§1, 51]T(n/j), it
follows that in KO(E), we have

[e'] = nle"] + il1g]
for some i € Z, where e" 1is a Rieffel projection corresponding

to T(1/j3). Therefore

= jnle"] + Jil1gl.
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It is not difficult to see that jle"] = [1,] in K,(D). Conse-

D

quently, jle"]1 = [1_.]1 in KO(E). Hence (k-n)[1.] = ji[1E].

E

Since [1E] is not a torsion element of KO(E), we see that k-n=

ji. This means that k - n is divisible by j. As j is arbit-

rary, k - n = 0. Q.E.D.
Since Y = [uz, 82]'--[ag, Bg], there exists m € Z vsuch that
Y o= tay, Byreeerdg, BT
Then as in the proof of Proposition 4, we see that
k2(lel) = ml1].
We have now an equality
Lo, B0, Byaeeerd, B o=t -

Then, by [8], we have k - m = 2g - 2.

Recall that 81' é =E22‘K2. Therefore,

1 = (elect) (Le])

2-;<2)*([e])

=(E
- m{1A1.

From this it follows

(k—m)[1A] = (29—2)[1A] = 0.
Thus we have:

Theorem 5 ([Corollary 6.7, 1]1). For the fundamental group

Fg C:PSLZCR) of a closed Riemannian surface of genus g 2z 2, in

the reduced crossed product A = C(S1)erg the unit 1A is a

torsion element of KO(A).



5. Epilogue:

The computations carried in the previous sections are exactly what
we omitted in [Epilogue, 5].
We briefly review the main result of [5]. Let G "be an amal-

gamated product of countable groups G1 and G2 along GO ,name-

1y,

Let (A, a, G) be a C*¥-dynamical system. In [5] we showed that

if one of (G1, G and (G2, Go) has property A, then there

o)

exists a six-term exact sequence:

KO(ANrGO) —_— KO(ANrG1) ® KO(ANer) _ KO(Aer)

}

K1(Aer) *———— K1(ANrG1) ® K1(Aer2) —— K1(AerO).

Let Fg = G*HS be as in the preceding sections. So far, it
is not known whether (G,H) or (S,H) has property A.

We have the following complex of abelian groups:

<1- K2 ex+el
Ky (By) — K, (Ag) € Ky (Ag) — K*(Arg).

, . 1 2
As we have seen in Section 4, the maps «K,-K, : KO(AH) > KO(AG) ®
KO(AS) is given by the following matrix:
ti1 0 0 -1 Qeee0} _ .2 3 2g-1
h10 0 2g-2-m QeeeQj ° z R ‘

It is rather easier to describe Kl—Ki : K1(AH) - K1(AG)®K1(AS)'

This map is given by

(1 00 -1 0eee0) . 2
000 0 0ess0] * 2% >z

o 2291,
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Now assume the existence of a six-term exact sequence given in

[Thm. A1, 5], for the C*-dynamical system (C(ST), Fg' a). Then
kK (c(sV)y» T ) = z%9*" @ z/(29-2), and
0 rg !

Z2g+1.

12

1
‘ K,I (C(S )Xrl"g)

Oﬁ the other hand, as C(S1)><r1"g is stably isomorphic to the C*-
algebra of an Anosov foliation on the unit fangent bundle of Mg,
we can directly compute K*(C(S1)Nrfg) by using the Thom isomor-
phism (cf., [1]). The result coincides with the one above.

To conclude this section, we give the following:

Problem. Show that (G,H) or (S,H) has property A.
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