DDDDDD@P@D

0 5600 19850 118-127

Approximate innerness of positive linear maps of

factors of type II

%:sz‘\ A {;\,fc,ﬁ;t (Hideo Takemoto)

We in this paper shall discuss the properties of positive
linear maps which continue from the former work by the author [7].
Let M be a o-finite, semi-finite von Neumann algebra,
- then there exists a faithful, normal semi-finite trace Tr and
we can define a norm ll-l]z on the ideal S = {x & M; Tr(x*x)
< 4o}, 1In particular, if M is a finite von Neumann algebra,
then S = M, |
Let A and B be C¥-algebras. A linear map p of A to

B 1is said to be n-positive if the multiplicity map p from the
matrix algebra Mn(A) over A to the algebra Mn(B) over B
defined by pn([aij]) = [p(aij)] is a positive map. If p 1is

n-positive for every positive integer n, we call p completely
positive. Many autors (for example, [1], [5]1, [7], [8] and [91)
studied the completely positive linear maps of C¥-algebras. In
particular, we have the following Stinespring's theorem [5]:

Let A be a C*—algebra and p a completely positive. linear map
of A to B(H) where B(H) is the von Neumann algebra of all
bounded operators on a Hilbert space H. Then, there exists a
representation w of A to a Hilbert space K and a bounded

operator v of H to K such that p(x) = v¥n(x)v for every
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"x ¢ A. In particular, if p 1is unital (ie. po(1) = 1), v is

an 1lsometry. Furthermore, A is a von Neumann algebra and p

is normal, then ®m 1is a normal representation. We in general
can not take the above operator v in A. For this problem,

we have the following result by Haagerup [3; Proposition 2.1]:
Let N _be a properly infinite von Neumann algebra and let F

be a finite dimensional subfactor. Let p be a completely pos-
itive map from F to N. Then there exists an element a € N
such that p(x) = a¥xa for every x € F. In this report, we
shall consider the above problem for finite von Neumann algebras
by using the approximate innerness and extend the obtained results
to the semi-finite von Neumann algebras. Thus, we here introduce

the notation of the approximate innerness.

Definition 1. Let M be a o-finite, finite von Neumann
algebra with a fixed faithful} normalized normal trace Tr and
A a C¥-gsubalgebra of M. A positive linear map p of‘ A into
M is approximate inner if there exists a net {al} (not neces-
sarily bounded) in M satisfying fim||p(x) - ax*xakilz = 0 for

every X € A.

If we consider the approximate innerness for positive linear
maps, we can show that those positive linear maps are closely
related to the ¥-homomorphisms. Before we denote the theorems,

we shall mention the following lemma by Choi [1] (and also see

91,



Lemma 2. Let A and B be unital C¥-algebra and p a
unital completely positi?e map of A to B, If p 1is a C¥-
homomorphism (ie., p(a?) = p(a)? for every self-adjoint element

a of A), then p 1is a ¥-homomorphism of A to B.

Consider Lemma 2, we have the following theorem that a pos-
itive linear map with the approximate innerness is closely rela-
ted to ¥_homomorphism. The following theorem is in a sense a

generalization of Theorem 3 in [7].

Theorem 3. Let M be a o-finite,finite von Neumann alge-
bra and A a C¥-subalgebra with the unit in M. Let p be a
positive linear map of A to M and approximate inner with

respect to a net {a,} such that |[|a,*a, - eH2 + 0 and

IIéAaX* - f||2 + 0 for a projection e of M and a projection

f in A. Then, p 1is a ¥-homomorphism of fAf to elMe,

Proof. By the assumption for the net '{ak} and the appro-
‘ximate innerness of p with respect to {ax}, p(1l) = e and
p(l - £) = 0, Thus, we can assume that faxe = a, for every

A e A, By the remark before Definition 1, p 1is completely pos-
itive map. So p is a unital completely positive map of C¥-
algebra fAf to von Neumann algebra eMe. To show that p 1is

a ¥-homomorphism of fAf to eMe, we must show by Lemma 2 that
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p(x%) = p(x)? for every self-adjoint element x e fAf. Given

an arbitrary self-adjoint elément x € fAf., Then,

- ¥ 2 = 2y . ¥ * *
[le(x) - a, xa)\ll2 Tr(p(x)*) - 2Tr(p(x)a,¥*xa,) + Tr(a,*xa,a,*xa,).
Now, since

* ¥ - %y 2
lTr(aA xa,a,¥*xa, - a,*x aA)l

]Tr(ak*x(axax* - f)xax)l = ]Tr((axax* - f)xaAaA*X)I

Tr((a - f)z)l/zTr(xaAa *xzaxa)\*x)l/2

A

*
A& A

lla,a,® - f||2-HxHoTr(xakak*a)\aA*x)l/2

[ FaY

x| [2]]a,a,% - fl]; Tr(aka}\*a)\ak*)’/2

A

2, ] . ® _
[xl 12001 2y, * 1] lagay® = £l

'{llakak*||2} is bognded and tim||a,a,* - f‘H2 = 0, we have

a5

the relation
$ % * - ¥y2 =
llm(Tp(aA xa,a,¥xa,) - Tr(a,*x ak)} 0.
Thus, since 2im Tr(ax*xzak) = Tr(p(x?)) by the assumption,

i
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2im Tr(ax*xaxax*xax) = Tr(p(xz)).‘ Furthermore, since
|Tr (0 (x)a, *xa,) - Tr(p(x)*)| = |Tr(o(x)(a,*xa, - o(x))]
hS ,Ip(x)llz'llp(x) - al*xaxllz9

2im Tr(p(x)a,*xa,) = Tr(p(x)?). By the above considerations and

the relation #im ||p(x) - ax*xa}\ll2 =0,
Tr(p(x)?) - 2Tr(p(x)?) + Tr(p(x?)) = O.

So, Tr(p(x?) - p(x)2) = 0. Now, since p is a completely posi-
tive map, p(x)? < p(x?). Therefore, p(x?) = p(x)? and so, by

Lemma 2, p 1is a ¥-homomorphism of fAf to eMe. g.e.d.

Under the definition of approximate innerness, if p 1is
approximate inner, then p is completely positive like as [7].
Furthermore, we can replace the conditions in Theorem 3 as the
following by the remark in [7]. That is, if p 1is approximately
inner with respect to {aA} and p(l) = e 1s a projection, then
the conditions in Theorem 3 is equivalent that A has a projec-
tion f satisfying p(l - £f) = 0 and Tr(e) = Tr(f).

By considering Theorem 3 and a Sakai's result [4], we have

the following theorem.
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Theorem 4. TLet M be an approximately finite dimensional
factor of type II1' Let p Dbe a positive linear map of M into
M such that p(l) = e 1is a projection, p(l1 - f) = 0 and Tr(e)
= Tr(f) for a projection f of M. Then p is approximately
inner with respect to a nét {ax} if and only if p 1s a *-

isomorphism of fMf to eMe.

Proof. Necessity: By Theorem 3, p is a ¥-homomorphism
of fMf to eMe, and so the kernel of p in fMf is a closed
two-sided ideal. .Since M 1s a finite faétor, the kernel of
o = {0} and so p 1is a ¥*-isomorphism of fMf to eMe.
Sufficiency: Since M 1s an approximately finite dimensional
factor of type II1’ both fMf and eMe are so., Let fMf =

kJAn (7 means the weak closure of « ) where An is a sub-

factor of type I n of fMf satisfying An e An

5 +1

n
o). Let {elm)2 be the matrix units of A . Put B

ij "i,j=1 n

P4

= p(An), then p(fMf) = N = UBn eMe and B 1s a factor of

(n) _ (n) ¢ (n) .
type 12n . Furthermore, put ej5° = p(fij ), then {eij } is

the matrix units for Bn' It is sufficient for us to show that,

for an arbitrary finite set {al,... R ak} in fMf and each

e > 0, there exists an element u € M such that ]]p(aj) -
u*aju||2 <e (3 =1, 2, ... , k). Given any finite set {al, -

ey ak} in fMf and € > 0, then there exist a positive integer

-6



124

m and ’{bl, e 5 bl din A such that llaj - b < g/2

s,
(3 =1, 2, ... , k). Since Tr(e) = Tr(f),

m
(m)

11

2
b} (m) e and
- €i1 4

o~

= 1,
1

Tr(ffT)) = Tr(efT)). And so, there exists a partial isometry

v in M such that vv¥* = ff?) and v¥y = efT). Put u =
ol
b iT) f?), then u 1s an element of M and u*u = e,
i=1

Furthermore, we have the following;

2m
(m) = _ (m) (m)\ .(m) (m) (m)
u¥fyyiu = (Sfl eg, VAL )Ty (tfl fe, Ve g )

2" < )p(m) o (m)__(m) _ 2" () (m)y._(m)
_ m m).(m)_.(m m m m m
= s§t=lesl V*f 1j t1 1t Sft:les v*(sslgtJfll Yve t
_ (m) (m) (m) (m) (m) _ (m) (m) (m)
= ey *f 1j 11 v*ve1 i1 1j 13 .
Thus, u*f(m) el™  por 1,5 =1, 2, ..., 2™ And so, u*xu

iJ iJ

p(x) for every Xx € Am' In particular, p(bj) = ﬁ*bju (J =

1, 2, «.. , k). vFurthermore, we have the following rélations;

= _ - 1/ 2
Ilp<aj> - p(bj>llz = Tr((p(a; - by)¥e(ay - by))

1/ 2 - _ 1/2 _ 1/ 2 _
Tr () Tr((a; - by)¥(a; - b,)) Tr(f) llaj bjl12
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Ilaj - bjllz < g/2 and

| |lu*a,u - u*bju||2 = Tr(u*(aj - bj)*(aj - bJ.)u)l/2

J

_ - 1/2 _ _ _ 1/2
Tr(uu*(aj bj)*(a bj)) Tr((a‘j bj)*(aj bj))

J

llaj - bjll2 < g/2.
Thus, we have

Hp(aJ) - u*ajul lz

) - . + ;) - u¥b, + ¥b,u - u¥a,
lotagi= o1l + [1p(,) = wroul| + |[u%bu - urayul |,

A

e/2 +e/2<¢e for J=1,2, ... , k.

Therefore, we have the complete proof of Theorem 4, “q.e.d.

Remark. In the former work [6] by the author, we have the
error in the proof of.Theorem 1 in [6] and so we must replace
that. Because the results in this report are closely related
to the results in [6]. Consider the results in this report and
[2] and [3] in the references we have the following considerations
for [6]. We replace Theorem 1 in [6] as Theorem 4 in this report

and Proposition 2 in [6] as Theorem 3 in this report. Further-

~8-
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more, if we consider a Haagerup's result [3], the C¥-subalgebra
A appeared in Theorem 2 in [6] was an MAF-C¥-subalgebra but we
must replace the algebra A as an AF-C¥-subalgebra. The last

result (Corollary 4) in [6] is right by [2].

Acknowledgement. The error in the proof of Theorem 1

in [6] was pointed by Professor Choi and so the author want to

express the thanks to Professor Choi.
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