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AN ELEMENTARY PROOF OF Hw—MINIMIZATION THEOREM

k- & Kzt

1. INTRODUCTION

The Hm-minimization theory, which was initiated by Zames [1] and devel-
oped by Zames and Francis [2][3], receives increasing attention as a new
methodology for control system design. The core of the preseﬁt Hm—minimiza—
tion theory is a geheralization of the classical interpolat;on theory which
dates back to Pick [4] and Nevanlinna [5]. Since the application of the
classical4interpolation theory was innitiated by Youla and Saito [6], it
plays important roles in many fields éf system theory such as network syn-
thesis [7][8], Hankel-norm model reduction [9], modeling filter of stochastic
process [10][11] and robust stabilization of feedback systems [12][13][14].

Recently, Francis and Zames [3] used an advanced result in interpolation
theory due to Sarason [15] to obtain an efficient algorithm of H -minimiza-
tion. The Sarason's theorem gave an essentially new formulation of the clas-
sical interpolation problem and solved its generalized version. Though the
underlying idea of Sarason's theorem is clear, its proof (particulary, of its
multivariable version) is not easy to follow for a non-mathematician, because
it heavily relieé on some advanced tools in functional‘analysis [16].

The purpose of this paper is to give an éleméntary proof of the key
theorem in Hm—minimization theory with no recourse to Sarason's theorem.
Functional analysis is not used except some basic notions like operator norm
and innef product. Since this theorem, as a generalization of the classicgal
interpolation theorem, plays a key role, not’'only in the Hm—minimization
theory but also in many branches of system theory mentioned above, to make
its proof understable‘for engineers is bélieved to be warranted. Also, the
proof itself gives a new light on the fundamental structure of Hw—minimiza—
tion theory.

After the statement of the problem in Section 2, we give a characteri-
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zation of Hw-norm using the adjoint operator of the multiplication operator
"in H2 (Section 3). This is the most essential point of departure of our
approach from the Sarason's theorem, which uses the characterization of H -
norm via a multiplication operator in H2. The highlight of our arguments is
the direct proof of the stability of the optimal interpolation function
(Lerma 7 in Section 4). This generalizes the theorem by Genin and Kung [9]

with much simpler proof.

2. STATEMENT OF THE PROBLEM

For a complex function h(z), we define its Hw—norm as

Inl_ = ess. sup |n(e?)]. (1)

w
The set of all analytic functions in the open unit disc satisfying Hh”m < @
is called the Hardy space (of exponent ) and denoted by Hw. For complex
functions h(z) and g(z), we define an inner product as

4, o == [ nehg@eta, (2)
21T] JU

where U denotes the unit circle and h(z) = h(z). This is usually referred
2 ‘ : .
to as the L -inner product. The set of all complex functions h(z) analytic

/2

1 .
on the open unit disc satisfying ”h“z = <h, h> <o becomes a Hilbert space
under the definition of the inner product (2). This is the Hardy space (of

2 0 2 X
exponent 2) and is denoted by H~. Obviously, H C. H”. It is well-known that

2 . .
any h € H® has a Taylor series representation
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2 s 2
2 + hz" + e, Z|hil < . | (3)

h = +
i=1

1

For the sake of notational simplicity, we drop the suffix 2 in the expression
2 : .
of L°-norm. Therefore, | h| always denotes the L2-norm "h”z of h.

A function u € H°° is called inner if
]u(er)l =1, =T < w < M. (4)

If u(z) is a real rational inner function which has no zero on U, then it is

always of the form

_—) . (5)

Note that, for each z,
-1
u(z)u(z 7) = 1. (6)

CO
A function £ € H is called outer if it has no zero on the open unit disc.

Ko o]
Now we state the H -minimization problem:

(e
H -minimization problem

Assume that t(z), u(z) € H® and u(z) is inner without zeros on U. Find
e . « 3

v(z) € H such that |t - uv”oo is minimum.

This problem is originally formulated as the problem of minimizing the

o0

sensitivity of closed-loop systems with respect to its weighted H -norm [3].
The reduction of the sensitivity minimization problem to the above problem is
done by the parametrization of all stabilizing controllers and the inner-

- o0
outer factorization of H--functions. For detail, see [3].



3. CHARACTERIZATION OF Hm-NORM AS AN OPERATOR NORM
in comparison with H2(L2)—norm, the calculation of H -norm is not easy
even for simple functions. Straightforward maximization of lh(ejw)l with
respect to w 1s usually not feasible. An effective way of calculating"h"oo
is given by regarding it as the norm of an operator.
Let I be the projection operator from 12 to Hz. Associated with a given

h(z) € H", we define an operator Fh : H2 > 2 as
-1 .
th(z) = Th(z 7)x(z). ’ (7)

If both h(z) and x(z) are rational functions in Hm, rhx(z),represents the

portion of the partial fraction expansion of h(z_l)x(z) corresponding to the

poles of x(z). In particular, we have
1 1 :
Th 152 = h(X)if:fXE-, for |A| < 1. (8)

We state some properties of Fh for later use.
Lemnma 1
(Z) For any f ¢ H2,
sl < D aaThs,
the equality holds <if and only if h(z_z)f(z) e K2

{itz) If h, g e Hw, then

(iii) If g € H® is outer, then rf=0, fe H2, implies f = 0

‘ 2
(Proof) (i) Since x - IIx is orthogonal to H? for any x € L”, we have

<h(z’l)f - f T £=o0.

Therefore, |h(z 1) £ - rth2 = <n(z £ - £, nizhe s> =|nzhel? - <T, £,
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h(z—l)f> =|}h(z_l)f"2 - "Fhfuz, from which the assertion follows immediately.

Tz gz E(z) = iz gz e(z) + Tz

(ii) For any f Esz, ?hgf

(g(z_l)f(z) - Hg(z_l)f(z)) Hh(z—l)Hg(z_l)f(z) . This proves the assertion.

s . . -1
(1ii) I‘gf = 0 implies that all the poles of f£(z) must be the zeros of g(z 7).

C e . -1
This is impossible because g(z ~) does not vanish for lz] > 1. H

The norm ” Ph ” of the operator I‘h is defined as usual by

Ir el
I I = supt "h” ;£ e HYY. (9)
g

The following result gives a characterization of " h”oc as an operator norm.
Lemma 2  For h ¢ Hm, I h]]w = I‘h Hm
(Proof) Due to (8), | I’h(l - )\z)—l“ = |[h(n) | - I 1 - )\z_l) | for each
IA| < 1. This implies Hrhﬂ > sup{|h(W) | 5 |A] <2} =] n]_. From Lemma 1 (i),
Ir £l 5l|h(z'l)fH < InlJ £l, wnich implies |n, > |1 [. his establishes »

the assertion. -]

Lemma 2 providés an effictive way of computing ” h“w. Assume that h(z)

2
is represented by a Taylor series h(z) = ho + h.z + h2z + -... We define

1

an infinite matrix of Toeplitz type

~ -

hy by  h,
N 0 hy B,
T, =
o o0 hy *o

If x(z) € H2 is also represented by a Taylor series x(z) = X, + x,z + x222 +

‘ . . _ ..\ T 3 Y - .
-, then, if we define x = (xo, x )7, we see that (th)i+l = hoxi +

l,
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h1Xi+l + -+« is equal to the coefficient of zl in the Laurént series of h(z_l)

Vv
x{z). Therefore, the matrix T

h is a representation of Fh in the space of

coefficient sequences. This gives an alternative definition of|]Fh” as

v
¥ x

Ir, | = supt-

P AR
. i
X| i=0

ny
If we take the nXn principal submatrix of Fh and calculate its maximum sin-
gular value o (h), then it can be shown that o _(h) > | rhll = |n|_ (n>=). The
convergence 1is expected to be nice because On(h) is obviously non-decreasing
with respect to n. A function theoretic proof of Lemma 2 along this line
was given by Grenander and Szegd [17].
2 -1 -1 -1
For x, y € H®, we have <y, th> = <y, h(z 7)x> - <y, h(z 7)x - IIh(z ")x>
- *

= <y, h(z l)x> = <h(z)y, x>. This implies that the adjoint operator Fh of

Fh is the multiplication operator

*
Fh x = h(z)x. (10)

l

o
Usual characterization of H norm is "P ;, which is dual to Lemma 2. Our

h
characterization of “h”co has some advantages over the usual one, which will
be made clear in the subsequent developements.

In the definition (9) of ”Th”,,the supremum is usually not attained by
any € € H2 ; in other words, the supremum is usually not replaced by the maxi-
mum. In the case where the supremum is actually attained by some £ € H2,

h h

*
”Ph"2 becomes equal to the maximum eigenvalue of I' '’ and £ is the corre-

sponding eigenfunction. More generally, consider the eigenvalue problem

re=wE £ (11)

n

If this eigenvalue problem is solvable, it follows from (10) that



- tle) 2 (12)

h(z) =
ThE(z)

The relation (12) suggests that the eigenvalue problem (11) is solvable only
for a limited class of h(z). This is clarified by the following lemma.
Lemma 3  The eigenvalue problem (11) is solvable, <if and only if h(z)

18 of the form
hiz) = ub(z) (13)

where b(z) is an inner function. The eigenvalue u2 18 always equal to Hh”i
2
=z, 1.
(Proof) Assume that h(z) is given by (13).  Since b(z) is inner, b(z)
b(z ) = 1 for each z. Therefore, h(z-l)b(z) = u, from which h(z)Hh(z_l)b(z)
2
= u b(z). This implies that b(z) is an eigenfunction corresponding to the
. 2
eigenvalue y
Tb prove tha converse, it is sufficient to show that

_ _E(=)
b(z) = ?;ETET u (14)

is an inner function. From (12), it follows that

hiz"He(z) - Thiz HE(z) 1)

Th(z ") £ (2)

b(z)b(z 1) = 1 +

The second term in the right-hand side of (15) should be invariant if z and
- ce s s . . . . 2
z are exchanged. But it is impossible because its denominator is in H~ and
. 2 ' .
its numerator is orthogonal to H~. Therefore, the second term should vanish.

This establishes the assertion. The last statement of the lemma follows im-

mediately from Ih(ejm)l = u, V. =



4. SOLUTION TO THE H -MINIMIZATION THEOREM
The Hm~minimization probiem formulated in Section 2 is now treated based
on the results obtained in the preceding section.
We assume that u(z) is given by (5). Since u(z) is real for real z,

each non-real Ai in (5) must be accompanied by its complex conjugate Xi.

The integer n = vl + v2 + e + vm denotes the total order of u(z). Let

h(z) = t(z) - ul(z)v(z), v(z) € H. (16)

In view of Lemma 2, our objective is to find v(z) € H” for which HFh” is min-
imized.

In order to exploit a convenient form for representing the constraint
on h(z) dictated from the form (16), we denote by F the kernel of the operator
Fu in H2, i.e., |

F={feH . rf = Tu(z" 1) £ = o). (17)

The structure of F is quite simple. Since u(z) & H, Hu(z_l)f vanishes if

and only if the denominator of f£(z) is cancelled out by the numerator of

-1 . -V, v
u(z 7), which equals (1 - Alz) (1 - X2z) < (1 - Amz) ™ Therefore, F
is spanned by the n functions
1 .
f,(z)=-———_——]2~, lfkf\).;lfjfm. (18)
* (1 - 3,2 >

In other words, F is the n-dimensional subspace of'H2 spanned by the basis
{fl(Z), f2(z), ey, fn(z)}.

Lemma 4 h(z) e H is of the form (16), if and only if

I‘.f- =Ff.l lfifn. (19)



(Proof) 1If h(z) is of the form (16), then, due to Lemma 1 (ii), Fhfi

= (I‘t - Fuv)fi = thi - rvrufi = thi. Conversely, assume that (Fh - I‘t)fi

= Fh—tf' = 0. This implies that h(z—l) - t(z—l) cancelles out all the denom-
i -1 -1 - 1 - m

inator of fi. Hence, h(z 7) - t(z 7) has a factor (1 - Xlz) cee (1 - Amz) .

Thus, taking into account that ncon-real A, appears with its complex conjugate,
: 1 V2

we conclude that h(z) - t(z) is divisable by (z - Al) (z - A2) cee (z -

v

A) ™. This implies that h(z) is of thé form (16). | |

For later use, we need the following result.

i

v
. Lemma 5  For g(z) ¢ H2, <féj g> =0 1f and only if rgf; 0.
(Proof) Since <fi(z), g(z)> = <1, fi(z_l)g(z)>, <fi’ g> = 0, if and
.Y -1 -1 2 e -1 Y 2
only if fi(z Yg(z)z g H°. This implies that g(z )fi(z) has no H® part,
which establishes the assertion. |

-1 -
Since t(z) € Hw, the partial fraction expansion of t(z ") (1 -~ Ajz) k has

1

. . . . - -2
the H2 projection as a linear combination of (1 - Ajz) , (1 - Ajz) PR

(1 - Ajz)-k. Therefore, F is an invariant subspace of Pt i.e.,
: 4

rtF C_F. (20)

- o
Denote by Pt the restriction of Tt on F. 1In view of Lemma 4, the H -mini-
mization problem is restated as follows:

Find h € Hm such that HFh” is minimum satisfying

rlF =T, (21)

The constraint (21) obviously implies

ing |1 || = inell € - wl_ s v e 7} 2 0r ] (22)



The rest of this section
actually achieved, i.e.,

the noxrm.

Since Ft : F > F is

70

is devoted to showing that the equality in (22) is

there exists Fh which "extends"” Ft without increasing

finite dimensional operator, its norm||Ft” is easily

calculated. In order to derive its explicit characterization, define an n-
‘tuple F(z) + [fl(z), ceey, fn(z)]. Due to (20), we can find an nxn constant
matrix S such that
FtF(Z) = F(z)S. (23)
If all the zeros of u(z) are simple, i.e., vl = v2 = .= vm = 1, then
s = diag[t(il), t(Xz), t(im)]. (24)
.y . -1 - -1 - -
This is easily seen from IIt(z ) (1 - Aiz) = t(Ai)(l - Aiz).
From the definition of Ft'llrt” = |y where
2 2
5 |lFtE“ ‘|TtF(z)x” N
p =max{ —— ; £€e F}=max{ ——— ; xe C }. (25
i 2 2
| &l | F(z)x|

Here, C" denotes the set of complex n-tuples.

Define a nxn Hermitian matrix ¢ as

(®).,. = <£,, £.>.
1] 1 3
2 * | ' 2 2 * *
Then,|iF(z)x“ = x dx. Also, due to (23), ”PtF(z)x” = ”F(Z)SXH = x S ®Sx.
Therefore,‘lrtnz is equal to the maximum number u2 for which
2 *
det(u ® - S ¢s) = 0. (26)
The maximum in (24) is attained by
= (27)

x(z) F(z)x,

- 10 -
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where x is the eigenvector corresponding to u2, i.e.,
2 *
(¢ - s ¢s)x = 0. (28)

*
If the equality in (22) holds, Fh Ph have the eigenvector corresponding
to\]Ft” = u in F, which is equal to x(z) given by (27). Thus, we conclude

that the equality in (22) holds, only if
. I'.x =y x. (29)

Due to (12) and th = th, we have

__x(=z) 2

h(z) = th(z)

(30)

In orxrder to show that h(z) given by (30) is actually optimal, it is nec-
essary to prove that (i) h(z) = Hw, (ii) h(z) is of the form (16). This will
be shown in the following lemmas. We can assume, without loss of generality,
that x(z) and th(z) have no common zero. Indeed, if they have a common zero,
the reduced pair ;(z) and Ft;(z) after cancelling it constitutes another so-
lution to the eigenvalue problem (29). Hence, we can consider ﬂ(z) = (;(z)/
I‘t;:(z))u2 instead of h(z)..

Lemma 6  For x(z) given by (27), th(z) 18 outer. A

(Proof) It is sufficient to show that th(z) does not vanish for |z| < i.
Assume that th(z) vanish at z = A, [k| < 1. If we define an inner function
b(z) = (z - A)/(1 - Az) and ;(Z) = FbX(Z)} we have, from Lemma 1 (ii), Ft;(z)
= Fthx(z) = Fthx(z). From the assumption, b(z_l)Ttx(z) € Hz. This implies

Ft;(z) = b(z_l)Ttx(z). From Lemma 1 (i) and x()A) # 0, it follows that ”ﬁ(z)“

<llb(z_l)x(z)u =||x(z)u. Therefore, we have

-11 -
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Irexl Ioe™hrx | o el

| x| I =l I=l Il

since x(z) € F, this contradicts the maximality of p in (25). The proof has

peen completed. '

Lemma 7  h(z) given by (30) belongs to H .

(Proof) 1In view of Lemma 6, it is sufficient to prove that th(z) has
no zero on the unit circle lzl = 1. This can be easily shown by a slight
modification of the proof of Lemma 6 with the use of some limiting arguments.

The details are omitted. =

Lemma 7 is a generalization of the stability theorem on classical in-
terpolation problem which was proved by Genin and Kung [9]. Actually, we can

prove the converse of Lemma 7, that is, the function h(z) given by (30) be-

. 2, . .
longs to Hm, only if p  1is the maximum eigenvalue of (26). In fact, we can
. 2 2 2 . .
go further as in [9]. Let ul > uz > e > un be the solutions of the equation

(26) . Then, the corresponding hi(z), which is defined by (30) wiﬁh X being
replaced by the eigenvector xi corresponding to ui, has exactly i-1 zeros on
the open unit disc. The proof of this fact will be reported in the forthcoming
paper. We just remark that an analogous connection between the maximality
and the minimum-phase property of the solution, exists in the context of the
spectrum factorization through Riccati equation [18].

It rem#ins to show that h(z) given by (30) is of the form (16). According
to Lemma 4 it is sufficient to show the following assertion.

Lemma 8  For each fé,

T £. =.0. (31)

-12 -
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(Proof) Due to (28) and the definition of ® and S, we have, for each

j_. I, .’.’ n,
<f > < E x> =0
.r U X . 7 ’

where x(z) is given by (27). Since <thi, th> = <fi, Ft*FtX> = <fi, t(z)th>,

we have <fi' u2x - tth> = 0 for each i. Due to Lemma 5, this implies that

wai = 0, for each i, where Y(z) = uzx(z) - t(z)th(z). Here we used the fact

that each non-real Ai appears as a conjugate pair. From the definition of

h(z) in (30), ¥(z) = (h(z) - t(z))th(z). Since Ptx(z) is outer, Lemma 1

(iii) implies that rh—tfi = 0 for each i. This completes the proof. =
Now we state the main theorem which solves the Hm—minimization problem.

Theorem Let u be the largest positive number which satisfies (26) and

x be the corresponding eigenvector satisfying (28). Then,

min{| t(z) - u(z)v(z)”°° ;ue H} = uz, (32)

and the optimal h(z) = t(z) - u(z)v(z) for which the minimum (32) is attained

is given by (30). The optimal h(z) is of the form
h(z) = ub(z),

where b(z) is an inner function.
(Procf) The main part of the proof has already been done in Lemmas 6

to 8. The last statement follows immediately from Lemma 3. |

In the case where all the zeros of u(z) are simple} i.e., vl =V, = cee

= vm = 1 in (5), the eigenequation (26) can be explicitly written. Since in

- 13 -
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this case <fi, fj> = (1 - Aiij)~l and S is given by (24), we have
2 -
5 N po- t(Ai)t(A.)
(We - s°98) ., = — .
J 1 - A
13

For u = 1, this is the well-know Pick matrix.

5. CONCLUSION

An elementary proof of the Hm—minimization;theorem is given based on
~the adjoint characterization of the H -norm. This éharacterization enables
to represent the constraint on the interpblation function in a clear way and
léads naturally to the eigenvalue problem. The stability argumeng gives a
new light on the fundamental structure of Hm—optimization problem.

Using the adjoint formulation given in this paper, we can solve more
complicated H -minimization problem, such as the two-sensitivity problem dis-

cussed by Kwakernaak [19], in a straightforward way. This will be reported

in the forthcoming paper.

- 14 -
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