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Weighted inequalities for operators
on discrete-time martingales

$itx- 12 FoRR W

( Masataka IZUMISAWA )
l.Introduction. Let M be a family of martingales with
discrete time-parameter on a probability system ( £, F, P; F =
( Fn )n>1 ) . It was showed in [7] that the weighted norm

inequality for operators of matrix type on M holds. The
operators of matrix type which were introduced by Burkholder,
Davis and Gundy[3,4] are a generalization of the square
function S(X) or of the maximal function M(X) on
martingales X . (see §2 for the precise definitions of these
operators.) On» the other hand, Chou[5] showed that the
weighted norm inequalities for the operators M(X)V S(X) = Max1
M(X), S(X) } and M(X)AS(X) = Min{ M(X), S(X) } on M in the
continuous time-parameter case.

Our purpose 1in this paper is to unify these two type
inequalities. Our method is Dbased on distribution function
inequalities and on the Davis decomposition of martingales
which were used by Bonami, Lé&pingle and Choul[l,5].

Throughout the paper, we fix a strictly positive random
variable W with E[ W ] = 1 as a weight. We set‘the
weighted probability measure aP" = W dP and denote by Ew[-]
the expectation over ¢ with respect to p¥ . put W= E[ W

]Fn] . The weight W is said to satisfy the condition (b+)
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[resp. (s7) ] if there exist constants k > 1 and C > 0 such
that, for all n ,
(b)) E[ W
[resp. (s ) W >k W 1.

Let us denote by U(X) or V(X the operators of matrix type

)

T 2 1/2
for X €& M and put s(X) = { n£1 Bl (x, - X _{) an—ll }
: L Yoo v 2 11/2
and r(x) = { ngl E| Ixn Xn—ll an—l] t . Clearly r(X)
< s(X) . For a predictable increasing process D = ( Dn )n>1 ’

we denote by M(D) the family of X € M such that

| x -x | < D for all n . We say that a function @
n n-1 = n
on R, is moderate if ¢ is a nondecreasing continuous
function satisfying @(0) = 0 and the growth condition

®(2x) < ¢ ®(Ar) for all XA > 0 .

We are now in a position to state the results.

Theorem 1. Let ¢ be a moderate function and 0 £ g < p
< ® , Suppose that W satisfies the condition (b+).

Then  there exist constants ¢ = ¢(®,w,U,V) and c¢' =

c(p,q,W,U,V) such that

(1) EV[ o( J(X) ) 1 < c BV O K(X) + D ) ]

and
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(2) 'l 3(0P/{ k(x) + b 191 <ot B 3(x)PTY ]

for every X & M(D) where K(X) = U*(X))SV*(X) or K(X) =
U*(X) As(X) and J(X) = U**(X)VV**(X)Vv s(X) .

Theorem 2. Let o be - a convex moderate function.
Suppose that W satisfies the conditions (b') and (S7).

Then there exists a constant ¢ = ¢(9,W,U,V) such that
(3) B[ (U (X)VV**(X)vr(X)) ] < c BV 0(U*(X)AV*(X)) ]

for every P-martingale X .

Sekiguchi[11], Kazamaki[8], Izumisawal[7] and Muramoto[10]
obtained partial forms of the above inequalities (1) and (3) by
using a "BMO-martingale method"” which 1is based on Fefferman's
inequality, the square function and the relation between the
condition (A_) and the class of BMO-martingales.

On the other hand, the same type inequality as (2) was
treated by Fefferman, Gundy, Silverstein and Stein[6] for
ratios of functionals of harmonic functions and by Yor[12] for
continuous processes. Our method follows along the same line
as in [6].

This paper contains the main results of the author’s

dissertation of Doctor of Science in T8hoku University, 1984.

2.Definitions. For an F-adapted process X = ( X_ )
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we denote by its small letter x the difference sequence of

X , so that X = Z Xy - For convenience, we assume that
k=1 .

X =X = ' \V/ n>1 o and Fy is generated by all

p-null sets.

A matrix ( u > 1, k21 ) will be called type B-G

‘ ik 73
(B-G stands for Burkholder and Gundy) if it has the following

properties:

is an F -measurable random

(a) Each entry u k-1

jk
variable.

(b) There is a constant d > 1 such that for all k 2 1,

2
/a4 £ Uik d

I

Il ~8

=1

We define u(x), Un(X), U;(X) and U;*(X) for a matrix

) of type B-G as follows:

( ujk
< g 2 . 1/2
U(X) = () 1lim sup | ) LU 1<) ,
j:]_ n > o« k=1 J
o n
U (X)) =( J | ] wu. x }2 y1/2 ,
n j=1 k=1 kK
U*(X) = sup Uk(X)
n;k
and
¢ H 2 1/2
U**(X) = ( ) sup | E Uiy Xy 1<)
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We write simply U*(X) and U**(X) instead of U*(X)
and U*x*(X) . U(X) is called an operator of matrix type and
U**(X) is called an operator of maximal martix type. In the
same way, for a matrix of type B-G, we can define V(X)) ,
V* (X) and V**(X) by using Vik instead of Uy - The

square function 8(X) of X is an operator of matrix type and

of maximal matrix type with ( ujk ) the identity matrix, so
[s o]

that S(X) = ( ) sz )1/2 The maximal function M(X) =
k=1

sup |an of X is an operator of maximal martix type with

n
( ujk ) the single-row matrix. Martingale transforms and the
" Littlewood-Paley " operator are examples of operators of

matrix type.
For later use, we give here some properties of operators

of matrix type or of maximal matrix type.

U*(X) £ U**(X) .
[sub-linear] U* (X+Y) < U*(X) + U*(Y) .

U** (X+Y) < U**(X) + U**(Y)

(4) (1//a) U**(x ) < Ix | & 2/d u*(x)

Note that the conditioned square function s(X) of X
and the operator r(X) -are not of matrix type and that r(X)

is sub-linear but s(X) is quasi-linear, 1i.e. s(X+Y) <

V2{s(x) + s(Y)}.

For a process H = ( H )n>1 with the difference sequence

( hn ) , we define the predictable projection process H =
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( H ) of H as follows:

Let us denote by T(F) the class of all F-stopping times.

Many times, we denote by ¢ or C a positive constant

and by cp a positive constant depending only on the parameter
p - Both letters are not necessarily the same at each
occurence.

3.Preliminary Lemmas. In this section, we prepare four
lemmas which are of use in subsequent sections. Let ( @, F,
vo) be a finite measure space and denote by EV[s] the

integral with respect to the measure v, i.e., EV[-] = [ « dv.
2

Lemma 1. Suppose that f and g are nonnegative
measurable functions and g>1 , 8§ >0, > 0 are real

numbers such that

v(E>Br , g<dr) LeviE>X) A>0.

Let ® be a moderate function, y = sup 2(BA) and n = sup
A>0 O(X) A>0
2O/8) . If ~vye <1 , then
o(A)

EV[ o(f) ] < L= EY[ o(g) ] .
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For the proof of Lemma 1, see Burkholder[2].

Lemma 2. Let L = ( L, )n>1 be a predictable increasing
process and g be a nonnegative measurable function. Suppose
that

V[ (L - Ly ) I 1 <E'[ g1 o
‘ [T <o} { T <=}
for all T € T(F)
If o) is a moderate convex function with the right

derivative ¢ , then

E'[ ¢( L_ ) ] <E'[ g o(L_) ]

and there exists a constant c’ depending only on ¢ such

that
EV[ o( L_) ] <c' E'[ o( g ) ]

For the proof of Lemma 2, see Lenglart, Lépingle and

Pratelli9].

Lemma 3. Let f and g be nonnegative measurable
functions. Suppose that { f=0 } = { g=0 } and ¢ >1 , r > 0

are real numbers such that

VO E>Bx , 9 <A ) < {e/BT v E > )
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for all B >4 and A >0 . If 0 < g<p<r, then

V[ £P/g9 1 < 4P c/(aTTPI_1) 4 1} BV £PTY )

Lemma 3 is proved in Feffereman, Gundy, Silverstein and
stein[6] for the case where f and g are functionals of

harmonic functions. Their method is valid in our case.

Lemma 4. Let & be a convex moderate function and B be
the predictable projection process of an F-adapted process H
Suppose that W satiesfies the condition (S ) and that there

exists a Pw—intagrable random variable g satisfying ) [hk|
k=1

g . Then, there exists a constant c independent of H

N

and g such that

ENl o( g ) ]
W .
> (1/c) E'[ 0 U**(H)V V¥*(H)\vr(H) v U** (H) v vr*(H) ) ]
4.Proof of Theorem 1. We prove the case of K(X) =

U*(X)A V*(X) . 1In the rest of this paper, we fix a constant

d > 1 such that

First, we prove the following inequality:



(5) PY( Ux*(X) > BA , V*(X)VwD, < SA )

PV Ur*(X) > A )

lIA

€4,8,8

for all X € M(D) where B >3 , 0 < ¢ < {(82/3d)—(l/d)}1/2

and A > 0 . Let
T = inf { n ; U;*(X) > A},

u = inf {n; U;(X) > BX ),

G=1nf{n;V;(X)VDn+l>6>\},
- _ ? -
X =1 X and X _ = X, . Since D 1is a
k ft<kg o} ¥ noogdp K
predictable process and { T< kg0 } € Fk—l , these 1T , U
and 0 are stopping times and X = ( in ) € M(D) . Using an

elementary inequality (a + b + c)z < 3(a2 + b2 + cz) , we

obtain on a set { T < n }

rz‘ 2
{ u.. X. )
k=1 jk Tk
-1 n
2 2 N L2

<30 () u., o x )%+ (u._x_ )+ () u., %, )< .

= k=1 jk "k jT 7T Kk=T+1 jk Tk
Put a set A = { U**(X) > Bx , V¥(X)wvD_ < SA } . Then A =

{1 <o} N{nu<eoe}N{oc=wo1} . Hence we have, on 2 ,
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? 2
sup ( u., x, I )
n k=1 X K1k
er nA(1-1) 5
> = sup ( u x, )7 - sup ( u X, )
37n k=1 KK n k=1 JkK
2
- o, x|
jT 1

Taking a sum with respect to j , we get, on the set A ,

2 1

UR(X)% 2 3 urr ()7 - orr (0% - a x|

> (82/3) 2% - A% - g 6% 2
= {(82/3) - 1 - a 82} 22
So we obtain
(6) E[ I. |[F.1 =E[ I, I lF_1]
. A T A { T < g } T
< 1(8%/3-1-a6%)22}7 L Bl vs* (%)% 1 7]
{1t <o}
= ( A2 4.8, 8 )7L gl § sup | ? Uy ik |2 |FT] I
r Py j=1 n k=1 J {T<O}
( A2 4.8 s )"t ? E[ sup | E UL X, |2 P11
By =1 n k=1 ¢ ¥ {1<0}

J

Note that the following inequalities hold for every locally
nAT

bounded martingale Y = ( Yn )n;l with kzl v, = 0 ;

10
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e 2 2 B 2
(7) Bl vo [P ] < EL s(x)® [F ) =€l 1 " |F]
k=1+1
and
(8) E[ S(Y)2 |[F.] < c' E[ ¥ 2 IF_]
T = o T
n -
As { Z ujk X, } is a locally bounded martingale with
nAT k=1
Z ujk X, = 0, by Doob’s maximal inequality and (7) , we have
=] .
T w5 120
E[ sup u,, X F_11I .
n k=1 Jk Tk T T < 0 }
| ow E 12
< 4 sup E| u., X F 11
= n k=1 JK K T T <o}
T - 2
= 4 B[ l z u., X l lF_] 1
k=1 3K Kk T T <o}
T - 2
<4El ] Ju,x |[“|F ]I
- k=1 BLIE T T <o}
2 2
= 4 E[ ) ou.. . x. ¢ |F_] 1 o
k=r+1 K K T [t <o}

Hence, using inequalities ( ) ujk2 ) < d < d2 ) vjk2 ) and
J J

(8) , we get

v 2
LoBL ) lag ox |[TfFDT
j=1 k=1+1 Jk ok T T <0}
o-1 0 ®
~ 2 2 2 2
=gl { )} x°( ) u. )b+ x () u ) |F_1 1 ‘
k=141 © =1 Ik g j=1 Jk K <0}

11
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G-_j_]. ©

< El 2 ) ) Iv.k xkl2 +d DOZ F .1 1T
k=T+1 j=1 {t<o}
o o-1

<cta® Bl I |1 vx PRI+ as)?

j=1 k=T+1 J <0
< 2¢'@® Bl V. ()% + v_(x)% |F.] T + as2r2
= o-1 T T

<0}

< 4cra® Bl vx_(x)? [F_] + a8%a? ¢ (4crarl)as?r? .

o-1

Combining the above inequality with (6), we have
Bl I, [F) < cq,g,s

and, by the condition (b+) and by HBlder'’'s inequality,

W
E'l I, |FT] =E[ I

(ww_ ) [F_]

A

IIA

(Bl 1, e 1P et Cwm 0% e YR <oy gog

Since { 1< >} € F_ and A C{ 1T < o} , we obtain

.
o
Rmasaad

17N

c I
{1 <=}

and P'(A) < ¢ P ( 1< «) . Thus the inequality (5) is
established.
Secondly we prove the inequality (1) in the <case of

®(a) = uz . By vertue of Lemma 1 and the inequality (5), the

12



following inequality is obtained:

(9) E"[ 8 U**(X) ) ] < c BY[ &( V*(X) + D_ ) ]
| ] ] P
for all X € M(D) . Set x, = x, I , X = X, , D =
- kKooK Tipek) T k=1 KOTOK
Dy I{T<k} o X = (X )nél and D = ( D, )ngl for T € T(F).

Using the inequality (9) for X € M(D) and @(a) = a , we get

E'[ U**(X) ] <c B

and
W ' W, = =
(10) E"[{U*(X) - U%_lj I 1 £ BUL(UX(X) + cD) T ]
{T<eo} 7 {T<e}
<c B[ V(X) +D_ 1< 2c E"[ (v*(X) + D) I ]

{T<o}

by the sub-linearity of operators and by the fact that X = 0

on {T=e} , X, = (X, - Xy_3) = Xg ;s D, =D, I{T<m} and - xy |

D on {T=w} . Applying Lemma 2 to ®(a) = uz and to the

[ o]

A

predictable increasing process ( U* _(X) ) , we get

n-1 n>1
BV U*(x)? ] < BV c(v*(X) + D_)(20*(x)) 1
W

=c E[ (V¥X) + D_ ) U*(X) ]

by (10). Combining this inequality with (9), we have



In the same way, we obtain EW[ V**(X)

W
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EW[ U**(x)2 ] < ¢ B[ U*X(X)® + D ]

c E"[ ( v*(x) + D_ ) U*(x) + p_2

I

]

0o

c E"[ (VX(X) + D_)(U*(X) + D_) ]

fiA

2 W

1+ BV s(x)2

]

A

cE[ (V¥(X) +D_ )( U*(X) + D_ ) ] . Therefore we have

Thus

2

V[ ( J(X) + D, )71

<c EV[ urx(x)2 4 ver(x)2 + s(x)2 + c'Dm2 ]
W 2

g ¢ ET[ (U*(X) + D) (V*(X) + D_) + ¢'D_" ]

< c BV (U*(X) + D_)(V*(X) + D_) ]

= ¢ B[ (UX(X)V V*(X) + D) (U*(X)AV*(X) + D_) ]

g c BVl ( J(x) + D, )( K(X) +D_ ) ]

(" o)+ % PY2E (rax) + D)% 112

VAN
Q

we obtain EV[ (J(X) + Doo)2 l £ ¢ BVl (K(X) + Dw)2 ] and

BV 3(x)% 1 < ¢ E"[ ( K(X) + D_ )?

[eo]

]

14
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which is the inequality (1) in the case of ©@(a) = a? .  Remark

that the constsant ¢ in (11) is independent of martingales

X .

Thirdly, we show the following inequality;

(c/Bz) PW( J(X) > X)) .

(12) PY( J(x) > BA , K(X) + Dy < A ) €
(r) _ T4°
set A= {J(X) > B, R(X) +D, <A} ,X = x,
= n k=1 k
3 (x) = 3¢ x™ ) ana K ( x(™) ) for T e T(F) . Put
T o=dnf {n; I (X)>2}, 0 = inf { n ; g (x) > Br 1}, n=
inf {n; g (X) >BA/3 1}, 0=14inf {n; K (X)+D,>x} and

al J(RF+

, we

X = X(G) - X(n_l) Then we have, on the set A, J(X)2 <
2{ 3@ +ax!") 12 gl a®? e g, 0%} ¢

(8r/3)2 1,

X% » (1/0)3(x)2 - (BA/3)? > (1/4 - 1/9) B2 22
and
K(X) + D, = Ky(X) + Dy < Ky_;(X) + |x | + Dy
<2 1R (X) + D5} g2h.

Applying the inequality (11) to the ( F__ . )-martingale X
obtain

15
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Pa) =P (H<w, 0= )

< /B B 3% st <o, 0= ]
< (c/8%2%) BV { R(X) + D, 125 1 <o ]
< (c/8?) PV 1 < w ) = (e/8%) P J3(x) > A )

Therefore the inequality (12) holds.

Immediately, by Lemma 1, we get the inequality (1) and
(13) E'[ 30T ) <c BVl { R(X) + D_ J° ] for 0 <r <

Using the inequality (13) and the same argument as in third
step, we obtain the inequality (12) with the constant (c/Br)
instead of (c/BZ) . Finally, by Lemma 3, we have inequality

(2) which completes the proof.

5.Proof of Theorem 2. We use the Davis decomposition of

X€ M . Let us define

D = sup |x.| ,2a={|x_| >2p } , h =x_ I
N kino1 k'’ k! & ““x T Y kK “A '
v e n N
A, =E[ h, |F_ .1 ,H = } h ¥ = 7 &,
k k Tk-17 R A
Z = H_-H and Y =X -1%
n n n n n

16



Note that D = ( Dn' )n>l is a predictable increasing process
and Y = (Y, )ngl € M(4D) . Indeed, [yk| = | X, = 7, | =
Y
] X, = h + hp | = | X IAC + El %, I, [Fk_l] | < ka| IAc +
| Bl X = %X I ]Fk—l] | < 4D,  because E[ %, IFk—1] =0
Let us set L(*) = U**(e)ywV**(s)Vr(*) - and K(e) =
U*(+)MV*(+) , for convenience. Since 2D, ; 2 2|x. | = [x. | +
]xki 2 lxkl + 2Dk on the set A , we have
Lodn =) x| I, < 2D
k=1 X k=1 K A=

Futhermore, the inequality (4) implies that D_ < 2/d K(X) .

By virtue of Lemma 4, we obtain
(14) E'[ o( L(H) ) + o( L(H) ) < c BE"[ o( 2p_ ) ]
W- W
<cEL o 4/dR(X) ) ] <c B o K(X) ) ]

From the sub-linearity of operators, we get

L(x) < { L(Y) + L(H) + L(H) }

and

K(Y) < {U*(X) + U*(H) + U*(H)] A{V*(X) + V*(H) + v*(H)]

(7N

K(X) + 2] U**(H) v U**(H) v Vk*(H) v V** () }

17aN

Thus, by (14), we obtain

B[ o( L(X) ) ]

17
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c{E" o n(y) ) 1+ BV o( n(m) ) + o( (X)) 1}

[17aN

cEV[ o( Ur*(Y)V VA (Y)vs(Y) ) ] + c'EV o K(X) ) ]

A

and

BV o( K(Y) ) ]

c BVl 0 R(X) ) ] + c'EV[ O(U**(H)VU** (H)VV** (H)wv**(H)) ]

A

c BV o( R(X) ) ]

172N

Finally, using Theorem 1, we have

BV o( L(x) ) ]

< c BV 00 U (Y)VVRR(Y)Vs(Y) ) ]+ c'EN[ o R(X) ) ]
< c EN] o K(Y) + 4D, ) 1 + C'Ewt o( K(X) ) ]

< c BV o R(Y) ) ]+ c'BV o(D_) 1+ CEV[ o( K(X) ) ]
< c B[ o( R(X) ) ]

which completes the proof.

18
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