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Nilpotent Orbits and Cavyley Transform

Jiro Sekiguchi |
(i K¥E FAnoRED)
§1. INTRODUCTION.

Let g be a real semisimple Lie algebra and let g = k + p

be its Cartan decomposition. Let 9cs gc and P be the
complexifications of g, k and p, respectively. Put

G = Int g, Gc = Int S, and let KC be the analytic subgroup
of Gc corresponding to gc. Then Kc acts on the vector
space p.. If N(p ) denotes the totality of the nilpotent
elements of Peo Kc also acts on g(gcj. On the other hand,
if N(g) denotes the totality of the nilpaotent elements of g,

G acts on N(g). Then B. Kostant proposed the follouwing.

CONJECTURE {(cf. [K1): Does there exist a bijective
correspondence between the set of K. -orbits of g(gc)”'and that

of G-orbits of N(g).

It is easy to generalize this conjecture to the case of the
nilpotent variety of the tangent space of a semisimple symmetric
space. The purpose of this note is to formulate this
generalization and explain the outline of its proof. For the

details, refer to [S3].
§2. EXAMPLE.

First we give a tvypical example.
E «



Take g = §l(2,®)< and put @X) = —tX for each X € g.

Then 6 1is a Cartan involution of g. Let g =k + p be the

carrespaonding Cartan decomposition. In this case

N = ¢ [E ) sty e R, 12

v —t + xy = 0 3%

and there are three G-orbits of N(g) .and we can choose the

representatives as follows:

= L 2 2 _
Np ) = { {x —t] s ty, x e €, t7 + x= =0 3.

There are three Kc—orbits of Q(gc) and we can choose the

respresntatives of them as follows:

-0 40 68
21 -1J* 201 1i)* o o)°
For any X € N(g), it is easy to show that there exist A,

Y € g such that

(D [A, X1 = 2X, CA, Y1 = -2Y, [X, ¥l = A.
For such a triple (A, X, Y), we define

(11> ad = 1o, x9 = Tovrim, vd = Zoev-iay.
Then ,

(11D a9, x93 = 2xd, [ad, vd7 = —ovd d, vd d

o [x%, v91 = A%

At this stage, we assume that

(IWV) X)) = =Y, 6(A) = -A.
Then 1t follows that
(V) e = ad, sax% = -x9, gvd)y = —v9,



This means that Ad € gc, X, ¥ € P

Now take a G-orbit O of N(g). Then one can show the

following by direct calculation:

CLAIM. There exists a triple (A, X, Y) such that X e o]
and that this satisfies the conditions (1) and (IV). DBefine
Ad, Xd and Yd by (11>, Then the Kc'orbits of Xd and Yd

only depend on Q.

Take a G-orbit QO of N(g). Using the notation in CLAIM,

we define the Kc—orbit of Xd in g(gc). Then CLAIM implies

that this map defines a required bijection.

For example, we take X = [8 é]‘ If we put ¥ = [? 8] and

A = [é _?], the triple (A, X, ¥) satisfies (I), (IV). Then we

. d _ 1(i 1 d _ 1(-i 1
pind that x9 = 4f1 1) ang vd - 2[ b,

$3. A GENERALIZATION.

Let g be a semisimple Lie algebra of the non-compact type
and let ¢ be its involution. Then we obtain the direct sum

g = h + 9, where h and g. are the 1- and (-1)-eigenspaces of

o, respectively. The pair (g, h) 1is called a semisimple
symmetric pair.
It is known that there is a Cartan involution & af g

commuting with o. Let g =k + p be the corresponding Cartan

involution. Since g0 1is also an involution of g, we obtain

.the direct sum g = ﬁa + ga. where ba and ga are the 1- and

(-1)-eigenspaces of 6o, respectively. Putting ga = g, we

a

obtain a symmetric pair (g%, h¥ (= (g, MW¥. This is called



the associated symmetric pair.

Let 9. be the complexification of g and we éxtent 8,
to g. as complex linear involutions. Put
¢ =kNh+ikNa +ipNh +pNq.
Then gd defines a real form of 9. Since # is an
involution of gd;.ue obtain the direct sum gd = hd + gd for

4

8 and a symmetric pair (g, bd

d

} (= (g, h)7), which is called

dual to (g, h).

The following diagram holds:

ad

assuciated’\(g’ hyd ¢ dual ){g, h)

(g, h>
I: dual i\ aésociated
(g, b)d assoc1ate€’ (g, b-)da dual 3(g, b)dad |

Let N(g9) be the totality of the nilpotent elements of
and let H be the analytic subgroup of Int g corresponding
h. Since H acts an N(g), we dencte by [N(g)1 the set of

H-orbits of N(g). It is known that [N(9)] 1is a finite set.

Similarly, we define Eg(ga)J‘ and Eg(gd)] for the pairs

d d

8, 9% and (g% hY, respectively.

§4. THE MAIN THEOREM.

Let (g, h) be a symmetric pair as above.

Lemma 1. For any X € N(g), there exist A€ h and Y &

Definition 2. A triple (A, X, Y) satisfying the

condition of Lemma 1 is called a normal S-triples

l
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Definition 3. A triple (A, X, ¥) 1is called a strictly

normal S-triple if A, X, ¥) 1is a ndrmal S-triple such that

gAY = -A, (X)) = =Y.

Lemma 4. If (A, X, ¥} 1is a normal S-triple, there is
h € H such that <(h+A, heX, h*¥) is a strictly normal

S-triple.

Lemma 5. Let (Ai, Xi’ Yi) (i = 1, 2> be strictly normal

S—triples. If Xl and *Xé are H-conjugate, there is

k € HMN K such that (k‘Al, k*Xl, k’Yl) = (AQ, XQ, YQ).

For the details of the proof of the above lemmas, refer to

£sd.

o

We are now going to formulate our main result. Let be
an H-orbit of N(g). Then it follows from Lemmas 1 and 4 that
there exist X € 0, A€ h and Y € g such that - (A, X, Y) is

a strictly normal S-triple. Put

ad = io-vy, %9 = Soeveimy, ve = %(X+Y;1A).
Then (Ad, Xd, Yd) is a strictly normal S-triple for the pair
(g9, h% . HMoreover it follows from Lemma 5 that the H9-orbits
Hd'Xd and Hd'Yd only depend on X. Noting this, we define
maps

¢, + [N(@©T > [N(aD]
by &,(@ = H%x? and 8_@ =HIvd. By a similar argument,
we also define maps @f : [g(gd>3 - [N(g>1. Then we find that

39, (Hx0) = Hex, 89, (H0) = Hev.

This, in particular, implies the bijectivity of @i.

{
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Let (A, X, ¥Y) be a strictly normal S-triple. Put

A = X+Y, X' = %(X—Y—A), v = %(—x+v—A>}

Then it follows that (A, X*, ¥Y’) is a strictly normal

a

S—-triple for the pair (g, ba). Noting this, we also obtain a

bijection [N(g)] - [g(ga)J by an argument similar to the above

ghe.

Hence we obtain the following theorem.

THEQREM 5. [N(g)1 = [N(g® 1 = cg<gd>3 = [N(g®9) ]

da

~ [N(g9% 1 = [N(g¥99) 1.

§5. PROOF _OF THE CONJECTURE.

We return to the situation in §1. By definition, (gc, gc>
and (gc, g) are symmetric pairs. HMoreover, if we define an
involution of g® g by (X, ¥) = (Y, X), we find that

(g ® g, g) 1is also a symmetric pair. In this case, the

"following diagram holds:

(g ® g, @) égggl? (gc’ Ec) iassoc1ateq> (gc’ )
A | v
associated _ dual
Let [N(g)>] be the set of G-orbits of N(g) and let
[g(gc)] be that of Kc—orbits of N(p). Then we find that the

conjecture stated in 81 is a special case of THEQREM 5.

Corgllary 6. [g(gc)] = [N(g)]

Let Rc and G be the normalizers of gc .and g in Gc’

respectively. Let [N(g)Jy, be the set of G-orbits of N(g) and



lTet Eﬁ(gc)le be that UFCRC-beiiS af Nep ) Then an analogy

of Corollary holds:

Theorem 7 (B. Kostant). EE(EC>3 = [N(g>1

8 g

Remark 8. #ssume that 9. is simple of the classical
type.

(i) The G-orbital structure of N(g) 1is determined by
Bourgoyne and Cushman ([BCD).

-{ii)> D. King proves. Corollary 6 in this case by using the

classification (LK1).
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