Nilpotent Orbits and Cayley Transform

Jiro Sekiguchi

(都立大理 関口次郎)

§ 1. INTRODUCTION.

Let \underline{g} be a real semisimple Lie algebra and let $\underline{g} = \underline{k} + \underline{p}$ be its Cartan decomposition. Let \underline{g}_{c} , \underline{k}_{c} and \underline{p}_{c} be the complexifications of \underline{g} , \underline{k} and \underline{p} , respectively. Put $\underline{G} = \mathrm{Int}\ \underline{g}$, $\underline{G}_{c} = \mathrm{Int}\ \underline{g}_{c}$ and let \underline{K}_{c} be the analytic subgroup of \underline{G}_{c} corresponding to \underline{k}_{c} . Then \underline{K}_{c} acts on the vector space \underline{p}_{c} . If $\underline{\underline{N}}(\underline{p}_{c})$ denotes the totality of the nilpotent elements of \underline{p}_{c} , \underline{K}_{c} also acts on $\underline{\underline{N}}(\underline{p}_{c})$. On the other hand, if $\underline{\underline{N}}(\underline{g})$ denotes the totality of the nilpotent elements of \underline{g} , \underline{G}_{c} acts on $\underline{\underline{N}}(\underline{g})$. Then B. Kostant proposed the following.

 $\underline{\text{CONJECTURE}} \text{ (cf. [K]): Does there exist a bijective}$ correspondence between the set of K_c -orbits of $\underline{\underline{N}}(\underline{P}_c)$ and that of G-orbits of $\underline{\underline{N}}(\underline{q})$.

It is easy to generalize this conjecture to the case of the nilpotent variety of the tangent space of a semisimple symmetric space. The purpose of this note is to formulate this generalization and explain the outline of its proof. For the details, refer to [S].

\$2. EXAMPLE.

First we give a typical example.

Take $\underline{g} = \underline{sl}(2,\mathbb{R})$ and put $\theta(X) = -{}^{t}X$ for each $X \in \underline{g}$. Then θ is a Cartan involution of \underline{g} . Let $\underline{g} = \underline{k} + \underline{p}$ be the corresponding Cartan decomposition. In this case

$$\underline{\underline{N}}(\underline{g}) = \{ \begin{pmatrix} t & x \\ y & -t \end{pmatrix} ; t, x, y \in \mathbb{R}, t^2 + xy = 0 \}$$

and there are three G-orbits of $\underline{\underline{N}}(\underline{q})$ and we can choose the representatives as follows:

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

On the other hand,

$$\underline{\underline{\mathbb{N}}}(\underline{P}_{\mathsf{C}}) = \{ \begin{pmatrix} \mathsf{t} & \mathsf{x} \\ \mathsf{x} & -\mathsf{t} \end{pmatrix} ; \; \mathsf{t}, \; \mathsf{x} \in \mathbb{C}, \; \mathsf{t}^2 + \mathsf{x}^2 = 0 \; \}.$$

There are three K c-orbits of $\underline{\underline{N}}(\underline{p}_c)$ and we can choose the respreshtatives of them as follows:

$$\frac{1}{2}$$
 $\begin{pmatrix} i & 1 \\ 1 & -i \end{pmatrix}$, $\frac{1}{2}$ $\begin{pmatrix} -i & 1 \\ 1 & i \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

For any $X \in \underline{N}(g)$, it is easy to show that there exist A, $Y \in g$ such that

(I)
$$[A, X] = 2X, [A, Y] = -2Y, [X, Y] = A.$$

For such a triple (A, X, Y), we define

(II)
$$A^d = i(X-Y), \quad X^d = \frac{1}{2}(X+Y+iA), \quad Y^d = \frac{1}{2}(X+Y-iA).$$

Then

(III)
$$[A^d, X^d] = 2X^d, [A^d, Y^d] = -2Y^d, [X^d, Y^d] = A^d.$$

At this stage, we assume that

(IV)
$$\theta(X) = -Y, \quad \theta(A) = -A.$$

Then it follows that

$$\theta(A^d) = A^d, \quad \theta(X^d) = -X^d, \quad \theta(Y^d) = -Y^d.$$

This means that $A^d \in \underline{k}_c$, X^d , $Y^d \in \underline{P}_c$.

Now take a G-orbit $\underline{0}$ of $\underline{N}(\underline{g})$. Then one can show the following by direct calculation:

<u>CLAIM</u>. There exists a triple (A, X, Y) such that $X \in \underline{Q}$ and that this satisfies the conditions (I) and (IV). Define A^d , X^d and Y^d by (II). Then the K_c -orbits of X^d and Y^d only depend on \underline{Q} .

Take a G-orbit $\underline{\underline{0}}$ of $\underline{\underline{N}}(\underline{g})$. Using the notation in CLAIM, we define the K_c -orbit of X^d in $\underline{\underline{N}}(\underline{p}_c)$. Then CLAIM implies that this map defines a required bijection.

For example, we take $X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. If we put $Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, the triple (A, X, Y) satisfies (I), (IV). Then we find that $X^d = \frac{1}{2} \begin{pmatrix} i & 1 \\ 1 & -i \end{pmatrix}$ and $Y^d = \frac{1}{2} \begin{pmatrix} -i & 1 \\ 1 & i \end{pmatrix}$.

§3. A GENERALIZATION.

Let g be a semisimple Lie algebra of the non-compact type and let σ be its involution. Then we obtain the direct sum $g = \underline{h} + \underline{q}$, where \underline{h} and \underline{q} are the 1- and (-1)-eigenspaces of σ , respectively. The pair $(\underline{q}, \underline{h})$ is called a semisimple symmetric pair.

It is known that there is a Cartan involution θ of g commuting with σ . Let $g = \underline{k} + \underline{p}$ be the corresponding Cartan involution. Since $\theta\sigma$ is also an involution of g, we obtain the direct sum $g = \underline{h}^a + \underline{q}^a$, where \underline{h}^a and \underline{q}^a are the 1- and (-1)-eigenspaces of $\theta\sigma$, respectively. Putting $\underline{g}^a = g$, we obtain a symmetric pair $(\underline{g}^a, \underline{h}^a)$ (= $(\underline{g}, h)^a$). This is called

the associated symmetric pair.

Let ${\bf g}_{\bf c}$ be the complexification of ${\bf g}$ and we extent θ , σ to ${\bf g}_{\bf c}$ as complex linear involutions. Put

$$\underline{\mathbf{g}}^{d} = \underline{\mathbf{k}} \cap \underline{\mathbf{h}} + \mathbf{i}(\underline{\mathbf{k}} \cap \underline{\mathbf{q}}) + \mathbf{i}(\underline{\mathbf{p}} \cap \underline{\mathbf{h}}) + \underline{\mathbf{p}} \cap \underline{\mathbf{q}}.$$

Then \underline{g}^d defines a real form of \underline{g}_c . Since θ is an involution of \underline{g}^d , we obtain the direct sum $\underline{g}^d = \underline{h}^d + \underline{g}^d$ for θ and a symmetric pair $(\underline{g}^d, \underline{h}^d)$ (= $(\underline{g}, \underline{h})^d$), which is called dual to $(\underline{g}, \underline{h})$.

The following diagram holds:

Let $\underline{\underline{N}}(\underline{q})$ be the totality of the nilpotent elements of \underline{q} and let $\underline{\underline{N}}(\underline{q})$ be the analytic subgroup of Int $\underline{\underline{q}}$ corresponding to $\underline{\underline{h}}$. Since $\underline{\underline{N}}(\underline{q})$, we denote by $\underline{\underline{N}}(\underline{q})$ the set of $\underline{\underline{N}}(\underline{q})$. It is known that $\underline{\underline{N}}(\underline{q})$ is a finite set. Similarly, we define $\underline{\underline{N}}(\underline{q}^a)$ and $\underline{\underline{N}}(\underline{q}^d)$ for the pairs $(\underline{\underline{q}}^a, \underline{\underline{q}}^a)$ and $(\underline{\underline{q}}^d, \underline{\underline{h}}^d)$, respectively.

§ 4. THE MAIN THEOREM.

Let (g, h) be a symmetric pair as above.

Lemma 1. For any $X \in \underline{\mathbb{N}}(q)$, there exist $A \in \underline{h}$ and $Y \in \underline{q}$ such that [A, X] = 2X, [A, Y] = -2Y, [X, Y] = A.

<u>Definition 2</u>. A triple (A, X, Y) satisfying the condition of Lemma 1 is called a normal S-triple.

<u>Definition 3.</u> A triple (A, X, Y) is called a strictly normal S-triple if (A, X, Y) is a normal S-triple such that $\theta(A) = -A$, $\theta(X) = -Y$.

Lemma 4. If (A, X, Y) is a normal S-triple, there is $h \in H$ such that $(h \cdot A, h \cdot X, h \cdot Y)$ is a strictly normal S-triple.

Lemma 5. Let (A_i, X_i, Y_i) (i = 1, 2) be strictly normal S-triples. If X_1 and X_2 are H-conjugate, there is $k \in H \cap K$ such that $(k \cdot A_1, k \cdot X_1, k \cdot Y_1) = (A_2, X_2, Y_2)$.

For the details of the proof of the above lemmas, refer to [S].

We are now going to formulate our main result. Let \underline{Q} be an H-orbit of $\underline{N}(\underline{q})$. Then it follows from Lemmas 1 and 4 that there exist $X \in \underline{Q}$, $A \in \underline{h}$ and $Y \in \underline{q}$ such that (A, X, Y) is a strictly normal S-triple. Put

$$A^{d} = i(X-Y), \quad X^{d} = \frac{1}{2}(X+Y+iA), \quad Y^{d} = \frac{1}{2}(X+Y-iA).$$

Then (A^d, X^d, Y^d) is a strictly normal S-triple for the pair $(\underline{g}^d, \underline{h}^d)$. Moreover it follows from Lemma 5 that the H^d -orbits $H^d \cdot X^d$ and $H^d \cdot Y^d$ only depend on X. Noting this, we define maps

$$\Phi_{+}: [\underline{N}(\underline{q})] \to [\underline{N}(\underline{q}^d)]$$

by $\Phi_+(\underline{0}) = H^d \cdot X^d$ and $\Phi_-(\underline{0}) = H^d \cdot Y^d$. By a similar argument, we also define maps $\Phi_\pm^d : [\underline{N}(\underline{q}^d)] \to [\underline{N}(\underline{q})]$. Then we find that $\Phi_-^d(\Phi_+(H \cdot X)) = H \cdot X, \quad \Phi_+^d(\Phi_+(H \cdot X)) = H \cdot Y.$

This, in particular, implies the bijectivity of Φ_\pm .

Let (A, X, Y) be a strictly normal S-triple. Put A' = X+Y, $X' = \frac{1}{2}(X-Y-A)$, $Y' = \frac{1}{2}(-X+Y-A)$.

Then it follows that (A', X', Y') is a strictly normal S-triple for the pair $(\underline{g}^a, \underline{h}^a)$. Noting this, we also obtain a bijection $[\underline{N}(\underline{q})] \to [\underline{N}(\underline{q}^a)]$ by an argument similar to the above one.

Hence we obtain the following theorem.

THEOREM 5.
$$[\underline{N}(\underline{q})] \simeq [\underline{N}(\underline{q}^a)] \simeq [\underline{N}(\underline{q}^d)] \simeq [\underline{N}(\underline{q}^{ada})] \simeq [\underline{N}(\underline{q}^{ada})]$$

§5. PROOF OF THE CONJECTURE.

We return to the situation in §1. By definition, $(\underline{g}_C, \underline{k}_C)$ and $(\underline{g}_C, \underline{g})$ are symmetric pairs. Moreover, if we define an involution of $\underline{g} \oplus \underline{g}$ by $(X, Y) \to (Y, X)$, we find that $(\underline{g} \oplus \underline{g}, \underline{g})$ is also a symmetric pair. In this case, the following diagram holds:

$$(g \oplus g, g) \xrightarrow{\text{dual}} (g_c, k_c) \xrightarrow{\text{associated}} (g_c, g)$$
associated dual

Let $[\underline{N}(\underline{g})]$ be the set of G-orbits of $\underline{N}(\underline{g})$ and let $[\underline{N}(\underline{p}_{c})]$ be that of K_{c} -orbits of $\underline{N}(\underline{p})$. Then we find that the conjecture stated in §1 is a special case of THEOREM 5.

$$\underline{\text{Corollary 6}}, \quad [\underline{\underline{\mathbf{N}}}(\underline{\mathbf{p}}_{\mathbf{C}})] \simeq [\underline{\underline{\mathbf{N}}}(\underline{\mathbf{g}})]$$

Let \widetilde{K}_{c} and \widetilde{G} be the normalizers of \underline{k}_{c} and \underline{g} in G_{c} , respectively. Let $[\underline{N}(\underline{g})]_{\theta}$ be the set of \widetilde{G} -orbits of $\underline{N}(\underline{g})$ and

let $[\underline{N}(\underline{p}_c)]_{\theta}$ be that of K_c -orbits of $\underline{N}(\underline{p}_c)$. Then an analogy of Corollary holds:

Theorem 7 (B. Kostant). $[\underline{\underline{N}}(\underline{P}_c)]_{\theta} \simeq [\underline{\underline{N}}(\underline{g})]_{\theta}$

Remark 8. Assume that g_c is simple of the classical type.

- (i) The G-orbital structure of $\underline{\underline{N}}(\underline{g})$ is determined by Bourgoyne and Cushman ([BC]).
- (ii) D. King proves Corollary 6 in this case by using the classification ([K]).

References

- [BC] N. Bourgoyne and R. Cushman, Conjugacy classes in linear groups, J. of Algebra, 44 (1977) 339-362.
- [K] D. King, The Cayley transform of a nilpotent conjugacy class in a real semi-simple Lie algebra (preprint).
- [OS] T. Oshima and J. Sekiguchi, The restricted root system of a semisimple symmetric pair, Advanced Studies in Pure Math., 4(1984), 433-497.
- [S] J. Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair, to appear.