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Selected results on functions*of

uniformly bounded characteristic

Shinji Yamashita
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It is a great honor for me to be able to speak in the
opening session of this asSémbly;*
. Functions ofyrdfonﬂy'qurkﬁ.dmmzxxsristk:are ﬁnxﬁjanImeMmqidc
QheiRiammu1surﬂxxawi£ﬁ'ﬁmﬁ&nmﬂyﬁ'hﬁnﬁbd ﬂﬁndz&ﬂ%ﬂfbrsfmaniﬁerrﬂjc
fhncﬁﬁimn so‘du#:WEImmt.beghxmdth'Uuadeﬁhﬁxidnﬁﬁfthe characteristic

function.

1. Shimizu—Ahlfdrs' characteristic function.

Let R be a Riemann surface, each point of which will be
Iidentified with its local-parametric image in the complex plane
€ = {|z] < «} if there is no risk of misunderstanding. By a
pair, w, D, we always mean a point. w € R and a domain‘(open
and connected set) D, w € D < R, such that the boundary 3D con-
sists of a finite number of mutually disjoint, analytic, simple,
and closed curves. The radius r = r(W,D) of D with respect

to w is defined by

r = exp{lim(g,(z,w) + log|z - w|)},
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where 2z >~ w within the parametric disk of center w, and I9p

is the Green function of D. Set:

D, = {z € D; gD(z,w) 2 log(r/t)}, 0 <t <r.
Let M(R) be the family of meromorphic functions on R, and set
£ = |£]/(1 + |£]%) for £ € M(R), the spherical derivative of £ (not

a function in general). The Shimizu-Ahlfors characteristic func-

tion is then defined by

r
T(D,w,f) = ﬂ_1f t-1[ff f#(z)zdxdy]dt.
0

Thé’terminology is justified because we obtain the familiar one
. in the specified case R = {z € C; |z| <0}, 0 <p s +®, w = 0.
Since R € OG cannot carry ﬁonconstaht, nonnegative, and

superharmonic function, we shall hereafter assume that R Q OG’

or, there exist the Green functions gl(z,w) = gR(z,w). Set

where D 4+ R, the directed limit. Then T(w,f) is the function
on R. By définition,~‘f € UBC(R) (of’ﬁniformly bounded characte-
ristic on R) if the supremum of T(w,f) for w € R is finite.

By elementary considerations we obtain

Theorem 1.1. For £ € M(R) and for w € R, we have

T(w,f) = n_1jj f#(z)zg(z,w)dxdy (z = X + iy).
R , . , _ '

Thus, £ € UBC(R) if and only if the Green potential T(w,£)

of the measure ﬂ-1f#(z)2dxdy is bounded on = R.
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2. Harmonic majoration and F. Riesz' decomposition.

It follows from the celebrated Florack-Behnke-Stein
theorem that for £ € M(R) there exist holomorphic functions

f1 and f2 with no common zero on R such that f = f1/f2.
Then ¢ = (1/2)109(|f1!2
# 2

+ llez) > -® is subharmonic because

2f7 (2)

Ad(z) 2 0. With the aid of the Green formula we have
T(D,w,£) = o5 (w) = ¢ (w)

for each pair w, D, where ¢g is the least harmonic majorant of

¢ in D, namely,
oM w) = = ==f ¢ (2)dg* (z,w)
D 2T 3D D'/ ’

the Poisson integral of ¢ on 3D being positively oriented.
Let BC(R) be the family of f € M(R) such that there exists

w=w(f) € R with T(w,f) < =,

Theorem 2.1. (The F. Riesz decomposition of ¢ on R.)

For each f € BC(R) there exists the least harmonic majorant

of ¢ on R, the smallest among all the harmonic functions

not less than ¢ on R, such that

¢ (w) = ¢p(w) - T(w,£), w € R.

Remark. The function T(w,f) is of (:°° with respect to

the real variables u and v with w = u + iv.

Corollary 2.1.1. If £ € BC(R), then T(w,f) < ® for

each w € R.
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Corollary 2.1.2. If f € BC(R), and if f has two ex-

pressions £ = f1/f2 = F1/F2, described at_the beginning of this

section, then we set

o |2

(1/2)log(|£,]% + llez) and

(=]
n

(1/2)10g (|7, |2 + |F,|?).

Then the difference ¢ - @ is harmonic in R.

Here we consider the Nevanlinna-Parreau-Sario characteristic

function TS(D,w,f) of f € M(R). Set
1 +
mg (D.w,£) = —7f log |£(2) |agg (z,w) .

Let n(t,f) be the number of the roots of the equation f = ®

in Dy and let n(0,f) be the limit of n(t,f) as t + 0. Set
to-1

f t In(t,f) - n(0,£f)]dt + n(0,f)log r,

0 , » . L

Ny (D,w,f)
T(w,£) = lim T.(D,w,f).

wEDHR S

We compare T with TS in

‘Theorem 2.2. For £ € M(R),

|T(w,£) = ToGw,E) | S k(w,£), CweRr,

|

S

where k 1is a constant; read T = «» 1if and only if T, = .

Corollary 2.2.1. Let f € M(R). Then £ € BC(R) 4if and
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only if there exists w € R such that TS(w,f)‘< w0,

3. Removable singularity; classification of Riemann surfaces.

A closed set E on R is said to be of capacity zero if
the intersection of  E . with each parametric disk, considered to
be a subset of €, is of logarithmic capacity zero. We claim
that a compact set on R of capacity zero is alwéys UBC-removable,

namely,

Theorem 3.1. Let E be a compact set of capacity zero

on R. Then, for each f € UBC(R~E) there exists F € UBC(R)

such that the restriction of F to R ~ E coincides with £.

Let BMOA(R) be the family of functions £ holomorphic

in R with

sup T*(w,f) < =,
wER

where

T* (w,£) = T*(R,w,£f) = lim T*(D,w,£)
weED4R

with

-1,% -1 2. |
T*(D,w,£) = [t [ff |£f'(=2)]|“dxdyldt.
0 D, o ,

An easy calculation yields the Green potential expression:

T* (w, £) = ﬂ—1ff |f'(z)|2f(z,w)dxdy, w € R.
R . : » : -
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If lfl2 admits a harmonic majorant on R, then

2 |2 = (JE]2) 5w - 2T*(w, ), w € R,
where (If[z)g is the least harmonic majorant of lf]z. This
is the F. Riesz decomposition of the subharmonic function lflz.

Let UBCA(R) be the family of all the pole-free members of

UBC(R) .

Theorem 3.2. BMOA(R) <« UBCA(R) and the inclusion relation

is proper in case R is the open unit disk A = {]z| < 1}.

- Let OX be the family of Riemann surfaces R such that

R €0, or R ¢ OG‘ with X(R) = C.

Theorem 3.3. Ousca : OrMoa*

4. Counting function.

For £ € M(R) and for w, D we set

N(D,w,£f) z gD(w,b).
f(b)== .

beD

Then N(D,w,f)

NS(D,w,f) if f(w) # «=. Actually,

N(D,w,f)

L -1
[t 'n(t,f)dt.
0

For 2z € C* = C U {=}, we set

N(D,w,z,f) = N(D,w,§%E) = X gD(w,c),
f(zg)=z
. .CED ;
with N{(D,w,~,f) = N(D,w,f). We further set
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N(w,z,f) = 1lim N{(D,w,z,f).
weD4R

We call £ € M(R) Lindeldfian if N(w,z,f) < « for each pair of
points w € R, z € €* ~ {f(w)}. It is known that £ € BC(R) if
and only if f is Lindel&fian. Thus, N(w,z,f) serves for deci-
ding whether f € BC(R) or not.

The Riemann sphere &* has the chordal distance Yx(a,b),

the Euclidean distance fbr the subspace &* of R3. Let

T(a,p) = {z € €C*; x(z,a) = p}, a €gC*, 0 <p < 1.

For w € R, 0 <p <1, and f € M(R) we set

C(w,p,f) = sup - N(w,z,f).
z€T (£ (w), p)

Theorem 4.1. The following are mutually equivalent for

£ € M(R).
(1) £ € UBC(R).

(2) There exists p, 0 < p < 1, such that sup C(w,p,f) < =.
WER

(3) For each oo, 0 <p <1, sup C(w,p,f) < o,
WER ’
5. The case R = A.
By the uniformization theory there exists an analytic
projection map m from A onto R £ Oé.‘ In many cases we can
reduce the problems on R to A wvia m. The following result

is fundamental.

* Theorem 5.1. For £ € M(R) and for 6 € A, we have

Page 7



T(Rlﬂ-(a) lf) = T(Alsrf"ﬂ-) .

Corollary 5.1.1. For £ € M(R) we have

f € UBC(R) & fom € UBC(A).

"~ Set
N(A) = {f € M(A); sup(1 = |z|2) £t (z) < =}
ZEA
and ,
N(R) =

{f € M(R); fom € N(4)},;

each member of N(R) is called a normal meromorphic function on R.

It immediately follows from UBC(A) < N(A) +that
Theorem 5.2. UBC(R) c N(R) .

In case R = A, the inclusion is sharp; there exists a holo-
morphic function £ in A which is

(i) normal in?. A} |

(ii) of Hardy clésé HP (A) for each 0 < p <

(iii) not a member of UBC(A).

Each f € UBC(A) has, as a member of BC(A), the decomposi-
are Blaschke products

2

without common zeros, and F € BC(A) is pole- and zero-free.

tion f = (b1/b2)F, where .b1 and . b

Theorem 5.3. £ € UBC(A) = F € UBC(A).

The converse is false. There exists a Blaschke quotient
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b1/b2 g€ N(A) so that we have only to let F = 1.

Algebraically UBC(A) 1is not good:

Theorem 5.4. UBC(A) is closed neither for summation nor

for multiplication.
For f € M(A) and w € T* we let n(w,f) be the number
of the roots of the equation f = w in A. Our next result is

concerned with exceptional sets.

Theorem‘5.5.‘ Let f € MKA) and let k 2 0 be an integer.

Then,

cap{w € &*; n(w,f) £ k} >0 = £ € UBC(A), .

where cap means the logarithmic capacity.

Another theorem on the value distribution is

Theorem 5.6. Suppose for £ € M(A) that

5 f#(z)zdxdy < =,
A .

Then

lim T(A, w,f) = 0.

|w|>1

A sequence {zn};;1 of points in A is called interpola-
ting if -
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® z, - 2
inf n k — n > 0.
nz21 k=1 1 - 2,2,
k#n
I1f {z_} is interpolating, then ZX(1 - Iznl) < o,

(k) y o .
Theorem 5.7. Let {an }n=1 (k = 1, 2) be disjoint in-

terpolating sequence of points in A. Set for k = 1, 2,

| o la(k)
B (z) = n21 ";%ET—(aék) -z)/(1 - aék) z)
n
(laék)l/éék) =1 if aék) = 0). Then the following are mutually
equivalent.

(I) B1/B2 € N(A).
(II) B1/B2 € UBC(A).

(III) {aé1)} u {aéz)} is interpolating.
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