Brownian Motions on Riemann Surfaces of Inverse Functions

Hiroshi YANAGIHARA

(柳原宏)

Department of Mathematics
Tokyo Institute of Technology
Oh-Okayama, Meguro-ku, Japan.

§1. Introduction.

Let $B = (B_t, t \ge 0)$ be a complex Brownian motion starting at 0 defined on a probability space (Ω, F, P) and f be a non-constant analytic function in the unit disc Δ . Define φ_+ and W by

$$\varphi_t = \int_0^t |f'(B_s)|^2 ds,$$

up to the first exit time σ of B from Δ and

$$W = (W_t) = (f(B_{\varphi_t^{-1}})).$$

Then the process W is also a Brownian motion up to the time φ_{σ} . It is known that $\mathrm{E}[\ \varphi(\sigma)^{\mathrm{p}/2}\]\approx \|f\|_{\mathrm{p}}$ for $0<\mathrm{p}<\infty$ (Burkholder, Gundy and Silverstein [2]). In 1979 Davis [3] noted that φ_{σ} is the first exit time of the Euclidean Brownian motion W from $\mathrm{f}(\Delta)$. Precisely let S be the Riemann surface of f^{-1} such that S is a covering surface of $\mathrm{f}(\Delta)$ with the natural projection p and that there exists a one-to-one onto mapping f^{-1} with $\mathrm{f}^{-1} \cdot \mathrm{f} = \mathrm{p}$. Such a surface is called the Riemann surface of inverse function. The

Brownian motion $\mathbf{W} = (\mathbf{W}_{\mathbf{t}})$ can be lifted continuously on S. Let \mathbf{W}^{\star} = $(\mathbf{W}_{\mathbf{t}}^{\star})$ be the lifted Brownian motion on S. Since the generator of \mathbf{W}^{\star} is 1/2 times the Laplace-Beltrami operator corresponding to the pull-backed metric on S from the Euclidean metric on $f(\Delta)$, \mathbf{W}^{\star} is a Brownian motion corresponding to this metric and φ_{σ} is the first exit time of \mathbf{W}^{\star} from S.

In the present paper we shall study analogously spherical Brownian motions on Riemann surfaces of inverse functions.

§1. Result.

Let w=f(z) be a non-constant meromorphic function in the z-plane to the w-sphere. We may regard f and its restriction $f|_{\{|z| < r\}}$ as one-to-one onto mappings from the complex plane C and $\{|z| < r\}$ onto Riemann surfaces of inverse functions S and S_r respectively. We may assume $S_r \subset S$. Now we can define a spherical metric on S by

$$\rho(w^*)dw^*dw^* = \frac{dwdw}{(1+|w|^2)^2},$$

for each local coordinate w^* with $w = p(w^*)$. Let A denote the spherical area on S, then

$$A(r,f) \equiv A(S_r) = \int_{|z| \le r} \frac{|f'(z)|^2}{(1+|f(z)|^2)^2} dxdy.$$

Define the Ahlfors-Shimizu characteristic T(r,f) by

$$T(r,f) = \int_{0}^{r} \frac{A(x,f)}{x} dx.$$

Then it is well-known that

$$T(r,f) = \frac{1}{\pi} \int_{|z| < r} \frac{|f'(z)|^2}{(1+|f(z)|^2)^2} g(z) dxdy,$$

where g is the Green's function of $\{|z| < r\}$ with a pole at 0 and z = x+iy.

Let $w_0^* = f(0) \in S_r$. The spherical metric ρ does not only define A(r,f) and T(r,f) but also generates a Brownian motion $\mathbf{W}^* = (\mathbf{W}_t)$ starting at \mathbf{w}_0^* on S defined on some probability space (Ω^*, F^*, P^*) such that

$$\lim_{t \downarrow 0} \frac{1}{t} E^* [u(W_t^*) - u(W_0^*)] = \frac{1}{2} (L_{\rho} u)(W_0^*), \qquad (2.1)$$

for each C^2 -bounded function u on S where E^* denotes the mathematical expectation with respect to P^* and L_{ρ} is the Laplace-Beltrami operator corresponding to ρ . Let $\sigma_{\mathbf{r}}^*$ be the first exit time of \mathbf{W}^* from $\mathbf{S}_{\mathbf{r}}$. Then we have,

Theorem. For each r, r > 0, it holds

$$\mathbf{E}^* \left[\sigma_{\mathbf{r}}^* \right] = \mathbf{T}(\mathbf{r}, \mathbf{f}).$$

§3. Proof. We can construct \mathbf{W}^{\star} by the standard time change-argument (Blumenthal and Getoor [1] p.212). Define φ_{t} by

$$\varphi_{t} = \int_{0}^{t} \frac{|f'(B_{s})|^{2}}{(1+|f(B_{s})|^{2})^{2}} ds,$$

and put $\psi_t = \varphi_t^{-1}$. Then $W = (W_t) \equiv (f(B_{\psi_t}))$ is a spherical Brownian motion on the w-sphere. Let $W^* = (W_t^*)$ be a lifted process of W such that W^* has continuous paths a.s. with $p(W_t^*) = W_t$ and $W_0^* = W_0^*$. Without loss of generality we assume $f'(0) \neq 0$. Then a simple application of Itô's formula (Ikeda and Watanabe [4] p.66) shows (2.1). Since σ_r^* is the first exit time of W^* from S_r , we have

$$\sigma_r^* = \inf \{ t ; W_t^* \in S_r \}$$

= inf { t;
$$f^{-1}(W_t^*) \in f^{-1}(S_r)$$
 }

= inf { t; $|B_{\psi_t}| \ge r$ }

= inf { φ_t ; $|B_t| \ge r$ }

= φ_{σ_r} ,

where σ_r is the first exit time of B from {|z|<r}. Hence we have

$$E[\sigma_{\mathbf{r}}^{*}] = E[\varphi_{\sigma_{\mathbf{r}}}]$$

$$= E[\int_{0}^{\sigma_{\mathbf{r}}} \frac{|f'(B_{\mathbf{s}})|^{2}}{(1+|f(B_{\mathbf{s}})|^{2})^{2}} ds].$$

Let $p(s, z) = P(s < \sigma_r, B_s \in dxdy)$ is the density function of the random variable $B_{s \wedge \sigma_r}$ with respect to the Euclidean area element. Then it is well-known (Itô-McKean [5] p.237) that

$$\int_0^\infty p(s,z) ds = \frac{1}{\pi} g(z).$$

This shows

E[
$$\sigma_{\mathbf{r}}^{*}$$
] = $\frac{1}{\pi} \int_{\{|z| < \mathbf{r}\}} \frac{|f'(z)|^{2}}{(1+|f(z)|^{2})^{2}} g(z) dxdy$
= $T(\mathbf{r}, f)$.

REFERENCES

- [1] Blumenthal, R.M., and R.K.Getoor (1968). Markov processes and potential theory. Academic Press, New York.
- [2] Burkholder, D.L., R.F.Gundy, and M.L.Silverstein(1971). A maximal function characterization of the class H^p . TAMS.157:137-153.

- [3] Davis, B.(1979). Brownian motion and analytic functions. Ann. Prob. 7:913-932.
- [4] Ikeda, N. and S.Watanabe (1981). Stochastic differential equations and diffusion processes. North Holland, Amsterdam.
- [5] Itô, K. and H.P.McKean, Jr(1964). Diffusion processes and their sample paths. Springer Verlag, New York.