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ON AUGMENTED SCHOTTKY SPACES 'AND INTERCHANGE OPERATORS

H‘iroki ~ Sato L 1% ﬁ% %Iﬁ

Department of Mathematics,'Shizuoka UniVersity

80. Introduction.

Problem 1. Let S be_a_éompacthRiemaqq;su;face withthodes.
Does theré exist a point in an augmented Schottky space repre-
senting the surfage s 2 |

Problem 2. We give a point ‘T 'in an augmented Schottky space
2%5(%5) associated With a‘'basic system of Jordan curves EB',
which represents a compact Riemann surface S with nodes. Then
for any sequence of points' {T,} in the Schottky space (@é(ﬁg)
tending to the point T , does the Riemann surface S(Th) repre-

sented by T, converge to S as marked surfaces as n > » ?

The answer to Problem 1 is affirmative:

THEOREM 1. There exists a point in an augmented Schottky

space which represents a given Riemann surface with nodes.

‘vThe aﬁswer'to Problem 2 is negative in the general‘case,
namely’ih the“case where Eb is‘a basic system Qf Jordan curves.
However the answeriis affitmat;ve‘in a spectial case, nahely in
the case where Eb is a standard system pf‘Jorgan curves. Now

the following question arises: To what Riemann surface does the
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sequence of Riemann surfaces S{t..) converge as marked surface
q n

as n » o in the general case ?

A A
THEOREM 2. Given a point T € G?&(ZO). Then there exists a
sequence of points {1} C G;g(Eb) tending to <t such that

S(t,) converges to S(t) as marked surfaces.

THEOREM 3. Let <Gp> and Eb be a fixed marked Schottky
group and a fixed basic system of Jordan curves for <Gy>, respec-

tively. Given a point T e GI“TG;Q(EB), where I DI(J) # #. Let

EE , I¥ , and J* be a basic system of loops, a subset of I ,

and a subset of J , respectively, obtained from ZO r I and J
I*x J* [o-d

by applying certain interchange operators. Let e 87, ng(zg)

be a point representing a compact Riemann surface with !I*} +

[J%! nodes. Then there exists the following sequence of points
{Tn} C @g(zo) :
T, > T and S(t,) = S(t*) as n >,

as marked surfaces.

§1. Definitions.

DEFINITION 1. Let Cj r Cgu17 Cp v Cgypi®®®*®i Cq v Cyg be
a set of 2g mutually disjoint Jordan curves on the Riemann sphere

€ which comprize the boundary of a 2g-ply connected region W,

Suppose there are g Mobius transformations Aq """'Ag‘ which

have the property that Ai maps Cj ‘onto Cg+j and ‘Aj(w)tﬁ w=9

(1 £3 g9). Then Ay (j=1,2.¢¢¢,q9) genérates a marked Schottky
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group $G”> = <Aj,Ay, *°*%A > Cl,"-,CZg ~are called defining

9

curves of <G>,

We say two marked Schottky groups < G> =< Al""'Ag> and

<6> =,<Sl,'°',3g> being equivalent if there exists a Mobius

transformation T such that ‘Rj = TAjT’l (3=1,2,++°+,9), and we

denote it by < G>~< G>.

DEFINITION 2. The Schottky space of genus g , denoted by

@39 , is the set of all equivalent classes of Schottky groups of

genus g 2 l.

DEFINITION 3. Let Cj ,--°,ng be defining curves of <G>

=<Al,"‘,Ag>.,If mutually disjoint Jordan curves Cl"”'CZg;C29+l’
"',C4g_3 on 6 have the following properties (i) and (ii),

then we call 2% = {Cl,"-,ng;C2g+l,--o,C4§;3} a basic system of

;(j=1,000,29—3) lie

Jordan .curves (B.S.J.C.) for <G>: (i) C2g+j
C28-3

in W, (ii) Each component of @\\ LIC2g+j is a triply connected
=

domain. In particular, if a B.S.J.C. ¥ has the following property

(iii), we call % a standard system 6f Jordan curves (S.S.J.C.)

for <G >: (iii) For each i=1,2,***,g and j=1,2,*++,2g9-3, C; and

Cg+i lie on the same side of CZg+j' See Examples 1 and 2 op p.13.

DEFINITION 4. Let S be a compact Riemann surface. We call

the set I = {al,°",ag;yl,-i-,yzg_3 } of loops on S having the

followihg property a basic system of loops (B.S.L.) : Each com-
23-3 i

. 8 ‘ .
ponent of S\ Ua, \ L}Yj is a planar and triply connected re-
i=4 =l o

gion. If, in particular, the humber of nondividing loops is equal



42

to g, we call a B.S.L. I a standard system of loops (S.S.L).

Let Q(G) be the region of discontinuity of <G>. Let I:

. o~
Q(G) » Q(G)/<G> = S be the natural projection. If I = {le°°"
ngFng+1;“‘5C4g—é} is a B.S.J.C. (resp. S.S.J;C.), then the

projection I = II(Z) = {alfii-;ag;yl;cib}yzg_3} ' ai'=H(Ci)f and

Yy = H(C2g+j , is a B.S.L. (resp. S.S.L.). We call £  the pro-

)
jection of E: See Examples 1 and 2 on p.l1l3.

§2. - Introduction of new coordinates to @Ggy-

We fix a marked Schottky group <Gg>= <A1 gs°°*®/Bg, o> Let
£y = {Cl,O""’CZg,O;CZg+l,0";'fc4g—3)0} be a fixed B.S.J.C.

- for <Gyp>. Let <G> ='<A1,"°,A§> be a marked Schottky group. Let

A5 (ijl > 1), P5 and pg+j:.bewthe multiplier, the repelling

and the attracting fixed points of Ay , respectively. We nor-
malize <G> ' by setting pq = 0, Pgsl = @ and p, = 1l. Then a

point in the Schottky spacé @Zé‘ is identified with
'-E : (}‘1 ,,..7"}\g;pg+2v’p3,pg+3"} .""p(gi':ng) ¢ c3g—3.
‘Now we will intrpduce new' coordinates with respect to Eb:
T = (tl?té';"'tg'p1""{DZg;B) € é3g-3,
First define t; by setting t; ;‘1/Aik (i%ll...,gj_ fhﬁg ti €

D* = {z|0 < |z| € 1}. Next in order to define P53

with Cpguq = Clig,ij,ee+,i,) € Iy (3=1,2,°++,29-3), we determine

associated

-

integers k(j), £(3), m(j) and n(j) which are > 1 and = 2g as



follows, where C(ig,ij,***,i,) is the multi-suffix of Cog+j

u
(see [4) for the definition): k(3) =1, Cp(y) = Cligsiy," ",

iu_l,l—iu,O,"'IO)r Cm‘]) = C(io'il,"'liutol."lo‘) and Cn(:])
= Clig,iy,***,ip,0,°%*,0). The coordinate pj is now defined as
follows:

(P () P2 (5)"Pm(3)’Pn(j)) = (O,l,m,pj)',
where (a,b,c,d) means the cross ratio of a,b,c, and d.

We define a mapping ¢ by ¢(<G>) = T. We note that if <G>

~ <8> , then ¢(<G>) = ¢ (<G>). We denote by Q;Q(Eb) the set
G’g(’z‘:‘o) = iT - ¢(<G>)I <G>é @g}.

Then @g(’zvo)g Gg and @’g(’i'o)C D*gx(C\(Q,l})Zg"‘3. We call

~ ¢ L . ' . . R ot N
G;g(zo) the Schottky space associated with ZO.

§3. Augmented Séhottky spaces.

Let <Gy> and %, be a fixed Schottky group and a fixed

B.S.J.C. as in §2.

DEFINITION 5. We say Cpg,q = C(ij,***,iy) (resp. C; =
5 R e, S . ) . . ~
C(jpr***+Jg)) 1is behind Cpyy,q = C(ll,"’,ls) if V< U  and
R ! S ‘
ik = 1p (k=1,2,°°**,V) (resp. v < 0 and jk = iy (k=1,2,°°",V)),

and denote the fact Cpq,q < C29+j-(resp.fczg+£ < C;). Otherwise,

we say that C29+j (resp. C;) is not behind ng+2 ‘and we denote

the fact by Cog+l { Crg+j (resp. C2g+2‘¥ C;)-

We define the ordered cycle corresponding to aj as follows.



We denote the shortest path from C; to Cg+i on the tree of

o~

5 5 5
(1) cir 81y Q8 2yttt 8K (k) r Cgui

(see [4) &nd Fig. 1 on p.l3 in this paper for trees.) Here &(2)
(2=1,2,+¢¢,k) are determined by 6(L) = +1 or ¢6(L) = -1 ac-

cording as C2g+2 < Cg+i or C29+2 <Cj.
DEFINITION 6. The projection

@ 1 v e i) )

of (1) onto 8§, = Q(GO)/<GO> is called the ordered cycle corre-

sponding to aj , and is denoted by LO,i'

Let I be a subset of {1,2,***,g} and J a subset of {1,
2,°*¢,2g-3}. We denote by [I| and |[J| the cardinarity of I
and J, respectively. Let LO,j(l)' LO,j(Z)"""'LO,j(t) be the
complete list of cycles containing Yg! and let ag, k be the "g-
loops" contained in Lo,k (1 =k =t), where t = t(j) depends

on j. We define the subset I(J) of {1,2,¢°¢,g} by

I(J) = {i € {1,2,---,g}|a0'i is contained in Lj 4(x) for

some k (1 =k £ t(j)) and for some je€& J}. -
Remark. If Eb is a S.5.J.C. , then I(J) = ¢.

We define the following sets X = GI'J@Bé(EB) with IDI(J):

(i) When I =J =§ , we define X as @4(Z;), the Schottky
a4 .
space associated with ZO.‘
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(ii) When I % @4, j = @6, we define X as follows:

L0 EG(T) = {t=lty oertgrops ooty ppg 3} | t3=0 (1 €1), tjX
0 (i&1), °y% 1 (j=1,°°*,29-3), and T rep-
resents a Rienann surface with nodes such that

only o; (i€I) are nodes}.
(iii) When I =@, J ¥ ¢ , we define X as follows:

§9:T@(Ty) = {1 =(ty,eeestyrpyronerppgo3)| 540 (iz1,ee0,9),
Dj=l (5 J), Dj#l (j §J) and T represents a
Riemann surface with nodessuch that only Yj
are nodes!.

(iv) When IDI(J) % @, X 1is defined as follows:

GIIJ@’g(ZO) = {T =(tl,°°‘tg,pl,"'; ng_3) |ti=0 (i€ I), ti*
0 (i¢ 1), pj=1 (3€J), P5%1 (1 §J) and p rep-
resents a compact'Rienann surface such that

only ¢; (i€ I) and ﬁj(j €J) are nodes}, 

DEFINITION 7.

AN o~ '
Gty = UstIGg(zp | 1ct1,2,0,9}, 3 {1,2,°°°,39-3)

with IDI(J)!}

lad
is called the auqmented Schottky space associated with Zo.

Remark. Let - S(T) be the Riemann surface represented by T.
el
{s(1)] re(gg(ﬁb)} is the sets of all Riemann surfaces in Fig.2

and Fig.3 in the cases of Example 1 and Example 2, respectively.
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8§ 4. Interchange operators.

For simplicity, we will only consider interchange operators
in the case of Example 1 (see Fig.4). For detail, see Sato [5].
Choose j with I({j}) % #. Let ie€I({j}). For these i and j,

we introduce the interchange operators Ig(i,j).

Remark. Since I(J) . is always empty in the case where X
is a 5.5.J.C., we can not define an interchange operator in this -

case.

For simplicity, we only consider Ig(l,2), which is defined

as follows (see Fig.4 on p.15): For a B.S.J.C. ET,
~ ~
1501, (%) = TF = {c},c5, 00, cdicrcied)

‘where ¢] = Atl(cg), C3 = Apl(cy), C3 = C5, C; = Cg, C5 = Cg, Cf
= C6, C§ = C7,C§ = Cl, and CS = C9.

For a B.S.L. I ={83,85,83iY1,Y2,Y3} » Ig(1,2)(Z) = a7,
o3,035v5,v5,v3) » where 0] = v,, aF = a5, oF = a3, Y] = Y3, V3

*
Q1r Y3 = Y3-

For ordered cycles Ly, Ly and L3, L{ =,Ig(1'2)(Ll) = (a{;
Y3 L = Ig(l 2)(Ly) = (a3i¥3,Y],¥3) and 13 = I (1,2)(L3) =

(a3:Y3'l,Y1"l), where we write Y; for Y§+l for simplicity.

For a marked Schottky group <G> <Aj B, ,A3>, <G*> =

Ig(1,2)(<G>) = <AI,A§’A§>, where A = Ay, A} = AA,, A} = Ag.

We obtain Theorem 1 by using interchange operators. See Sato

[5) for details.
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§ 5. Relations between limits of Schottky groups and limits

of Riemann surfaces.

Here we will consider Problem 2. Lef S be a compact Riemann
surface of genus g withror without nodes. We denote by N(S)
the»set of éll nodes on S, We assume that each component of
s\ N(S)_ has the Poincaré metric. The Poincaré metric A(z)|dz|
on S 1is defined as the Péincarérmetric on each component of

S\ N(S).

"~ DEFINITION 8. If the following conditions are satisfied, a

sequence of Riemann surfaces {Sn} converges to a surface S as
marked surfaces: There exists a locally quasiconformal mappingl

by = S\N(S) =+ S,\P(S,) such that (i) A (¢ (2z))|dd,(2)]
uniformly converges to ¢(z)|dz| on every compact subset of

S\ N(S), where A,(z)|dz| and A(z)|dz| are the Poincaré metrics
on S, and S, respectively, (ii)' dn maps a deleted neigh-
borhood N(ai)\‘{ai} (resp; N(yj)\ {yj} ) of @ib(resP-ij) to a
deleted neighborhood ‘N(“i,n’\ {ai'n}.(rgsp. N(len)\ {Yj,n}) of

a (resp. v; ) if o;€ N(S) (resp. yjé N(S)), and (iii) ¢p

J.n

maps a neighborhood N(a;) (resp. N(yj)) of aj; (resp. yj) to a

i,n

neighborhhod N(ai,n) (resp. N(Yj,n)) of ®i,n (resp. Yj,n) if
a; & N(S) (resp.'ﬂjQBHS)), where ‘P(Sn) = fﬁl(N(S)). and £, Sy

> S is a deformation. -

By constructing locally quasiconformal mappings, we have

Theorem 2. See Sato [6) for details.



Let <Gp> and Eb be a fixed marked Schottky group and a
fixed B.S.J.C. for <Gy>, respectively. Set S§; = Q(Go)/<GO>.
Given a point 1€ 6IsJ @'g(fo), where IDI(J) ¥ @. Then S(T) is
a compact Riemanﬁ surface with III + IJI nodes of genus g. Wex
define the following sets: Jlr={;jeéﬂ Yj is a dividing loop on
SO}, 32 = ahy subset of J\Jy ,"Ei = Ig(ik(l)'jl(l))(gb) with
ix(1)€ Iag 1))y dp(1)€ 3, and Jyy = J,\{3dg(1)}- Choose
je(2)€ Ja7 such that I;({3g2)1)n (T(I3)\ {ig(1)}) ¥ #. Set
Ty = Tglika)rdnc2)) B1) with igp)€ I(lig(2))) o ik(z) ¥ ix(n)-
We set - Jyp = J21\;{j2(2)} = Jo\ {J2(1),3%(2)}+ By the same way,
we determined the following: Jg(3)r ix(3)r J23» E;, I3(Jy3)5°°°
LK jﬂ(s)' ik(s)' les,‘fs : Here s ‘is the integer satisfying
the following (i) and (ii) : (i) Ig_31({ig(g)})NI(I2)\
Uy ikt rikgs-nt ¥ 90 (i1) Is({j})g{ik(l)".“'ik(s)}

for any jeJdy\{ig(1)sdn(2)r°"rdn(s)’-

We set J3 = J\ ‘JlU J2)' J4 = {Jz(l)'JQ(Z)’...'JQI(S)}’ JS
= J2\J4 r Il = I\ I(J), I4 ={ik(l),ik(z),..',ik(s)}' 13 =
*

I" = I\I; and J*= I\ Jg- Then we have Theorem 3. See Sato [6]

for the proof.

COROLLARY. Given T€81+/J@,(Zy), where IDI(J) % #. Then
there exists a sequence of points {Tn}C1@5(Eb) such that (i)
T, *TtTas n->+o and (ii) S(t1,) does not converge to S(T)

as marked surfaces.

Remark. By a similar method to the proof of Theorem 2, we

10
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o d

have the following. If X3 is a S.S.J.C., then 8S(T,) converges
A, A~
to S(t) as marked surfaces for any point  Tt1é€ G;;(ZO) and for

any sequence of points {t1,} C GSg(EB) with T > T,

§6. Appendices.

We will consider the following in the forthcoming papers

(7,8).

1. Properties of'interchange operators; There are five kind

of interchange operators as follows: (1) Ig(di,ail)‘= Ig(ci’cg+i)'
' G, 0.) = . C. 1 oYzl o= .

(2) Ig(,i’ J) = Ig(cllcj)l (3) Ig(YJIYJ ) = Ig(C§g+J'C2g+J) ’

(4) Ig(Yi'Yj) = Ig(C2g+irczg+j) and (5) Ig(ai’Yj) = Ig(cilczg+j)-

Here we only considered and used interchaﬁged operators in case (5).

2. Relations between Nielsen isomorphisms and interchange
operators. Here Nielsen isomorphims are

Nl(Al,Ai) : <A11A27°°'1Ai1'°'1Ag> > <AilA21°”lAlr°°'lAg> .

N2(A1,Ail) : <A11A21"'1Ag> > <AillA2I..'lAg> .

NB(Al,Az) . <A1,A2,A3,"‘,Ag> -+ <A1,A1A2,A3,"',A > .

g

3. Boundary behavior of the space of marked Schottky groups

of real type of genus 2. We say <G> = <Aj,A,> a schottky group

of real type if Ay, A2€:SL(2,R).
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@ <G> = <Aj,A,,A3)
k | | Al\ ‘ {A3
 Example 1. ' @ Example 2.

ﬁ
©

B.S.J.C.  s.S.J.cC. I\ <:::) c
Cl,ooo CG'C7'C8’C9} @

C4v=C(O)
© Cy=C(1,0,0)

C2=C(O,O,1)

Cg=C(1,0,1)
C5=C(0,1,0)

C3=C(1,1,0)

C,=C(0,1,1)
3 ! Cg=C(1,1,1)

Fig.l
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Example 1.
(¢,98) ({]3,¢) €21, 9) (3t 8) ({l,2t,¢) (f2,3b¢) €1,3,0)

&&Jgé&

41,2,3,¢) (,34) . dL,2,30h 41,2620 @,2,3142) §2,3489  ¢1,2,3M43)

% & & & SRR

@,2,3,0,2) dq,2,3,02,30 (r,2,30,3) @|,2,3,n,2,3
Fig.2.

Example 2.

LU L DI D VL

(¢,8) (,9) (2(,8) (81,0) fL,2,8) 62,3,¢) «,3,8) (01,2,34,0)

L &b s &b s Lo

(gAah 0 dya @24,11) @341y d1,2,m) d2,3441)  d1,30n 61, 2,340

(829, d142r), d26020, (31429, 61,202), §2,34,2), 1,32, 1@L,2,3H2)

(@430, (U8, (2,80 , 03BN, d1,2%, 62,3480, @1,31B), (1,2,38
(B41,2D, (04,20, 624,20, 631,20, @,240,20, @2,348,2), (§,310L,3),
{({1,2,31,{1,2}) | |
(002,39, U, 62,3, @e,b, Q22,9 @42,%, Q1,3
(n,2,34,2,3) ;_ |
(8,1,3), 06,3, 420,39, 6318,3), d,240,3), «&@,3401,3), d1,350,3,
¢1,2,3t0,3) .‘
i(¢,§1,2,3b, diff,2,3), (ynh,2,3p, BLL,2,3), ({‘1,21,{1,‘2,33), e,34,2,3)h,

@L,3,,2,3, ¢1,2,3,1,2,3)

Fig.3.
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* * * * * *
Z‘: Ig(l,Z)(Z)={a1 ,}(12,(13;')’1 IY2IY3}

Fig,4.
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