ON AUGMENTED SCHOTTKY SPACES AND INTERCHANGE OPERATORS

Hiroki Sato 佐藤 宏樹

and a facility of the control of the state of

Department of Mathematics, Shizuoka University

those That had been by Di-

§0. Introduction.

<u>Problem 1.</u> Let S be a compact Riemann surface with nodes.

Does there exist a point in an augmented Schottky space representing the surface S?

Problem 2. We give a point τ in an augmented Schottky space $\widetilde{\mathfrak{G}}_{g}^{\star}(\widetilde{\Sigma}_{0})$ associated with a basic system of Jordan curves $\widetilde{\Sigma}_{0}$, which represents a compact Riemann surface S with nodes. Then for any sequence of points $\{\tau_{n}\}$ in the Schottky space $\widetilde{\mathfrak{G}}_{g}(\widetilde{\Sigma}_{0})$ tending to the point τ , does the Riemann surface $S(\tau_{n})$ represented by τ_{n} converge to S as marked surfaces as $n \to \infty$?

The answer to Problem 1 is affirmative:

THEOREM 1. There exists a point in an augmented Schottky space which represents a given Riemann surface with nodes.

The answer to Problem 2 is negative in the general case, namely in the case where $\widetilde{\Sigma}_0$ is a basic system of Jordan curves. However the answer is affirmative in a special case, namely in the case where $\widetilde{\Sigma}_0$ is a standard system of Jordan curves. Now the following question arises: To what Riemann surface does the

sequence of Riemann surfaces $\{S(\tau_n)\}$ converge as marked surface as $n \to \infty$ in the general case ?

THEOREM 2. Given a point $\tau \in \widehat{\mathfrak{C}}_{g}^{\star}(\widetilde{\Sigma}_{0})$. Then there exists a sequence of points $\{\tau_{n}\}\subset \widehat{\mathfrak{C}}_{g}(\widetilde{\Sigma}_{0})$ tending to τ such that $S(\tau_{n})$ converges to $S(\tau)$ as marked surfaces.

THEOREM 3. Let $<G_0>$ and $\widetilde{\Sigma}_0$ be a fixed marked Schottky group and a fixed basic system of Jordan curves for $<G_0>$, respectively. Given a point $\tau \in \delta^{\mathrm{I},\mathrm{J}} \widetilde{G}_{\mathrm{g}}(\widetilde{\Sigma}_0)$, where $\mathrm{I} \supset \mathrm{I}(\mathrm{J}) \neq \emptyset$. Let $\widetilde{\Sigma}_0^\star$, I^\star , and J^\star be a basic system of loops, a subset of I , and a subset of J , respectively, obtained from $\widetilde{\Sigma}_0$, I and J by applying certain interchange operators. Let $\tau^\star \in \delta^{\mathrm{I}^\star}$, $J^\star \widetilde{G}_{\mathrm{g}}(\widetilde{\Sigma}_0^\star)$ be a point representing a compact Riemann surface with $|\mathrm{I}^\star|$ + $|\mathrm{J}^\star|$ nodes. Then there exists the following sequence of points $\{\tau_n\} \subset \widetilde{G}_{\mathrm{g}}(\widetilde{\Sigma}_0^\star)$:

 $\tau_n \rightarrow \tau$ and $S(\tau_n) \rightarrow S(\tau^*)$ as $n \rightarrow \infty$,

as marked surfaces.

§ 1. <u>Definitions</u>.

DEFINITION 1. Let C_1 , C_{g+1} ; C_2 , C_{g+2} ; ...; C_g , C_{2g} be a set of 2g mutually disjoint Jordan curves on the Riemann sphere $\widehat{\mathbf{C}}$ which comprize the boundary of a 2g-ply connected region ω . Suppose there are g Möbius transformations A_1 , ..., A_g which have the property that A_j maps C_j onto C_{g+j} and $A_j(\omega) \cap \omega = \emptyset$ $(1 \leq j \leq g)$. Then A_j $(j=1,2,\dots,g)$ generates a marked Schottky

group $\langle G \rangle = \langle A_1, A_2, \dots, A_g \rangle$. C_1, \dots, C_{2g} are called defining curves of $\langle G \rangle$.

We say two marked Schottky groups $< G> = < A_1, \cdots, A_g>$ and $\widehat{G}> = \widehat{A}_1, \cdots, \widehat{A}_g>$ being <u>equivalent</u> if there exists a Möbius transformation T such that $\widehat{A}_j = TA_jT^{-1}$ (j=1,2,...,g), and we denote it by $< G> \sim < \widehat{G}>$.

DEFINITION 2. The Schottky space of genus g , denoted by \mathfrak{S}_g , is the set of all equivalent classes of Schottky groups of genus g ≥ 1 .

DEFINITION 3. Let C_1 , ..., C_{2g} be defining curves of $<G> = <A_1$, ..., $A_g>$. If mutually disjoint Jordan curves C_1 , ..., C_{2g} ; C_{2g+1} , ..., C_{4g-3} on $\hat{\mathbf{C}}$ have the following properties (i) and (ii), then we call $\tilde{\Sigma} = \{C_1, \cdots, C_{2g}; C_{2g+1}, \cdots, C_{4g-3}\}$ a basic system of Jordan curves (B.S.J.C.) for <G>: (i) C_{2g+j} (j=1,..., 2g-3) lie in ω . (ii) Each component of $\hat{\mathbf{C}} \setminus \bigcup_{j=1}^{2g-3} C_{2g+j}$ is a triply connected domain. In particular, if a B.S.J.C. $\tilde{\Sigma}$ has the following property (iii), we call $\tilde{\Sigma}$ a standard system of Jordan curves (S.S.J.C.) for <G>: (iii) For each i=1,2,..., g and j=1,2,..., 2g-3, C_1 and C_{q+i} lie on the same side of C_{2g+j} . See Examples 1 and 2 on p.13.

DEFINITION 4. Let S be a compact Riemann surface. We call the set $\Sigma = \{\alpha_1, \cdots, \alpha_g; \gamma_1, \cdots, \gamma_{2g-3}\}$ of loops on S having the following property a basic system of loops (B.S.L.): Each component of $S \setminus \bigcup_{i=1}^g \alpha_i \setminus \bigcup_{j=1}^g \gamma_j$ is a planar and triply connected region. If, in particular, the number of nondividing loops is equal

to g, we call a B.S.L. Σ a standard system of loops (S.S.L.).

Let $\Omega(G)$ be the region of discontinuity of $\langle G \rangle$. Let Π : $\Omega(G) \to \Omega(G)/\langle G \rangle = S$ be the natural projection. If $\widetilde{\Sigma} = \{C_1, \cdots, C_{2g}; C_{2g+1}, \cdots, C_{4g-3}\}$ is a B.S.J.C. (resp. S.S.J.C.), then the projection $\Sigma = \Pi(\widetilde{\Sigma}) = \{\alpha_1, \cdots, \alpha_g; \gamma_1, \cdots, \gamma_{2g-3}\}$, $\alpha_i = \Pi(C_i)$ and $\gamma_j = \Pi(C_{2g+j})$, is a B.S.L. (resp. S.S.L.). We call Σ the projection of $\widetilde{\Sigma}$. See Examples 1 and 2 on p.13.

§2. Introduction of new coordinates to $\mathfrak{G}_{\mathfrak{q}}$.

We fix a marked Schottky group $\langle G_0 \rangle = \langle A_1, 0, \cdots, A_g, 0 \rangle$. Let $\widetilde{\Sigma}_0 = \{C_1, 0, \cdots, C_{2g}, 0; C_{2g+1}, 0, \cdots, C_{4g-3}, 0\}$ be a fixed B.S.J.C. for $\langle G_0 \rangle$. Let $\langle G \rangle = \langle A_1, \cdots, A_g \rangle$ be a marked Schottky group. Let λ_j ($|\lambda_j| > 1$), p_j and p_{g+j} be the multiplier, the repelling and the attracting fixed points of A_j , respectively. We normalize $\langle G \rangle$ by setting $p_1 = 0$, $p_{g+1} = \infty$ and $p_2 = 1$. Then a point in the Schottky space \mathfrak{S}_q is identified with

$$\tilde{\tau} = (\lambda_1, \cdots, \lambda_g, p_{g+2}, p_3, p_{g+3}, \cdots, p_g, p_{2g}) \in \mathbf{c}^{3g-3}.$$

Now we will introduce new coordinates with respect to $\widetilde{\Sigma}_0$: $\tau = (t_1, t_2, \cdots, t_g, \rho_1, \cdots, \rho_{2g-3}) \in \mathbf{c}^{3g-3}.$

First define t_i by setting $t_i = 1/\lambda_i$ (i=1,...,g). Thus $t_i \in D^* = \{z \mid 0 < \mid z \mid \le 1\}$. Next in order to define ρ_j associated with $C_{2g+j} = C(i_0, i_1, \cdots, i_{\mu}) \in \widetilde{\Sigma}_0$ (j=1,2,...,2g-3), we determine integers k(j), $\ell(j)$, m(j) and n(j) which are $\ell(j)$ and $\ell(j)$ and $\ell(j)$ are $\ell(j)$ and $\ell(j)$ and $\ell(j)$ and $\ell(j)$ which are $\ell(j)$ and $\ell(j)$ are $\ell(j)$ and $\ell(j)$ and $\ell(j)$ which are $\ell(j)$ and $\ell(j)$ are

follows, where $C(i_0,i_1,\cdots,i_{\mu})$ is the multi-suffix of C_{2g+j} (see [4] for the definition): k(j)=1, $C_{\ell(j)}=C(i_0,i_1,\cdots,i_{\mu-1},i_{-1},0,\cdots,0)$, $C_{m(j)}=C(i_0,i_1,\cdots,i_{\mu},0,\cdots,0)$ and $C_{n(j)}=C(i_0,i_1,\cdots,i_{\mu},0,\cdots,0)$ and $C_{n(j)}=C(i_0,i_1,\cdots,i_{\mu},0,\cdots,0)$. The coordinate c_{j} is now defined as follows:

$$(p_{k(j)}, p_{k(j)}, p_{m(j)}, p_{n(j)}) = (0, 1, \infty, \rho_{j})$$
,

where (a,b,c,d) means the cross ratio of a,b,c, and d.

We define a mapping ϕ by $\phi(\langle G \rangle) = \tau$. We note that if $\langle G \rangle \sim \langle \widehat{G} \rangle$, then $\phi(\langle G \rangle) = \phi(\langle \widehat{G} \rangle)$. We denote by $\mathfrak{S}_g(\widetilde{\Sigma}_0)$ the set

$$\mathfrak{G}_{g}(\widetilde{\Sigma}_{0}) = \{ \tau = \phi(\langle G \rangle) \mid \langle G \rangle \in \mathfrak{G}_{g} \}.$$

Then $\mathfrak{S}_{g}(\widetilde{\Sigma}_{0}) \cong \mathfrak{S}_{g}$ and $\mathfrak{S}_{g}(\widetilde{\Sigma}_{0}) \subset D^{*g} \times (\mathbb{C} \setminus \{0,1\})^{2g-3}$. We call $\mathfrak{S}_{g}(\widetilde{\Sigma}_{0})$ the <u>Schottky space associated with</u> $\widetilde{\Sigma}_{0}$.

§3. Augmented Schottky spaces.

Let $<G_0>$ and $\widetilde{\Sigma}_0$ be a fixed Schottky group and a fixed B.S.J.C. as in §2.

DEFINITION 5. We say $C_{2g+j} = C(i_1, \dots, i_{\mu})$ (resp. $C_i = C(j_1, \dots, j_{\sigma})$) is behind $C_{2j+\ell} = C(i_1, \dots, i_{\nu})$ if $\nu < \mu$ and $i_k = i_k$ (k=1,2,..., ν) (resp. $\nu < \sigma$ and $j_k = i_k$ (k=1,2,..., ν)), and denote the fact $C_{2g+\ell} < C_{2g+j}$ (resp. $C_{2g+\ell} < C_i$). Otherwise, we say that $C_{2g+\ell}$ (resp. C_i) is not behind $C_{2g+\ell}$ and we denote the fact by $C_{2g+\ell} \not \subset C_{2g+j}$ (resp. $C_{2g+\ell} \not \subset C_i$).

We define the ordered cycle corresponding to α_{i} as follows.

We denote the shortest path from $\,{\rm C}_{i}\,\,$ to $\,{\rm C}_{g+i}\,\,$ on the tree of $\,\widetilde{\Sigma}_{0}\,\,$ by

(1)
$$C_i$$
, $C_{2g+1}^{\delta(1)}(1)$, $C_{2g+1}^{\delta(2)}(2)$, ..., $C_{2g+1}^{\delta(k)}(k)$, C_{g+1}

(see [4] and Fig. 1 on p.13 in this paper for trees.) Here $\delta(\ell)$ ($\ell=1,2,\cdots,k$) are determined by $\delta(\ell)=+1$ or $\delta(\ell)=-1$ according as $C_{2g+\ell} < C_{g+i}$ or $C_{2g+\ell} < C_{i}$.

<u>DEFINITION 6</u>. The projection

$$(\alpha_{i}; \gamma_{i}^{\delta}\{\frac{1}{1}\}, \dots, \gamma_{i}^{\delta}\{\frac{k}{k}\})$$

of (1) onto $S_0 = \Omega(G_0)/\langle G_0 \rangle$ is called the <u>ordered cycle</u> corresponding to α_i , and is denoted by $L_{0,i}$.

Let I be a subset of $\{1,2,\cdots,g\}$ and J a subset of $\{1,2,\cdots,2g-3\}$. We denote by |I| and |J| the cardinarity of I and J, respectively. Let $L_{0,j}(1)$, $L_{0,j}(2)$, \ldots , $L_{0,j}(t)$ be the complete list of cycles containing γ_j^{δ} , and let $\alpha_{0,k}$ be the " α -loops" contained in $L_{0,k}$ ($1 \le k \le t$), where t = t(j) depends on j. We define the subset I(J) of $\{1,2,\cdots,g\}$ by

 $I(J) = \{i \in \{1,2,\dots,g\} | \alpha_{0,i} \text{ is contained in } L_{0,j(k)} \text{ for some } k \ (1 \le k \le t(j)) \text{ and for some } j \in J\}.$

Remark. If Σ_0 is a S.S.J.C., then $I(J) = \emptyset$.

We define the following sets $X = \delta^{\mathrm{I},\mathrm{J}} \mathfrak{S}_{\mathrm{g}}(\widetilde{\Sigma}_0)$ with IDI(J): (i) When I = J = \emptyset , we define X as $\mathfrak{S}_{\mathrm{g}}(\widetilde{\Sigma}_0)$, the Schottky space associated with $\widetilde{\Sigma}_0$.

(ii) When I $\neq \emptyset$, j = \emptyset , we define X as follows:

 $\delta^{\mathbf{I}}, \emptyset \, \mathfrak{S}_{g}(\widetilde{\Sigma}_{0}) \, = \, \{ \, \tau = (\mathsf{t}_{1}, \cdots, \mathsf{t}_{g}, \rho_{1}, \cdots, \rho_{2g-3}) \, | \, \, \mathsf{t}_{i} = 0 \, \, (i \in I), \, \, \mathsf{t}_{i} \not \in \mathbb{I} \}$ 0 (i \(\mathbf{I} \)), \(\rho_{j} \neq 1 \) (j=1, \(\cdots \cdot, 2g-3 \)), and \(\tau \) represents a Rienann surface with nodes such that only \(\alpha_{i} \) (i \(\mathbf{I} \)) are nodes \(\mathbf{I} \).

(iii) When $I = \emptyset$, $J \neq \emptyset$, we define X as follows:

(iv) When IDI(J) $\neq \emptyset$, X is defined as follows:

 $\delta^{\mathbf{I},\mathbf{J}}\mathfrak{S}_{\mathbf{g}}(\widetilde{\Sigma}_{0}) = \{\tau = (\mathsf{t}_{1}, \cdots \mathsf{t}_{\mathbf{g}}, \rho_{1}, \cdots, \rho_{2g-3}) \mid \mathsf{t}_{i} = 0 \ (i \in \mathbf{I}), \ \mathsf{t}_{i} \neq 0 \ (i \notin \mathbf{I}), \ \rho_{j} = 1 \ (j \in \mathbf{J}), \ \rho_{j} \neq 1 \ (j \notin \mathbf{J}) \ \text{and} \ \rho \ \text{represents a compact Riemann surface such that}$ only α_{i} (i \in \mathbf{I}) and γ_{j} (j \in \mathbf{J}) are nodes}.

DEFINITION 7.

 $\widehat{\mathfrak{G}}_{g}^{*}(\widetilde{\Sigma}_{0}) = \bigcup \{\delta^{I}, J \widetilde{\mathfrak{G}}_{g}(\Sigma_{0}) \mid I \subset \{1, 2, \cdots, g\}, J \subset \{1, 2, \cdots, 3g-3\}$ with $I \supset I(J)$

is called the augmented Schottky space associated with $\widetilde{\Sigma}_0$.

Remark. Let $S(\tau)$ be the Riemann surface represented by τ . $\{S(\tau) \mid \tau \in \widehat{\mathfrak{G}}_3^*(\widetilde{\Sigma}_0)\}$ is the sets of all Riemann surfaces in Fig.2 and Fig.3 in the cases of Example 1 and Example 2, respectively.

§ 4. Interchange operators.

For simplicity, we will only consider interchange operators in the case of Example 1 (see Fig.4). For detail, see Sato [5]. Choose j with $I(\{j\}) \neq \emptyset$. Let $i \in I(\{j\})$. For these i and j, we introduce the interchange operators $I_{\alpha}(i,j)$.

Remark. Since I(J) is always empty in the case where $\tilde{\Sigma}$ is a S.S.J.C., we can not define an interchange operator in this case.

For simplicity, we only consider $I_g(1,2)$, which is defined as follows (see Fig.4 on p.15): For a B.S.J.C. Σ ,

$$I_g(1,2)(\widetilde{\Sigma}) = \widetilde{\Sigma}^* = \{c_1^*, c_2^*, \cdots, c_6^*; c_7^*, c_8^*, c_9^*\},$$

where $C_1^* = A_1^{-1}(C_8)$, $C_2^* = A_1^{-1}(C_2)$, $C_3^* = C_3$, $C_4^* = C_8$, $C_5^* = C_5$, $C_6^* = C_6$, $C_7^* = C_7$, $C_8^* = C_1$, and $C_9^* = C_9$.

For a B.S.L. $\Sigma = \{\alpha_1, \alpha_2, \alpha_3; \gamma_1, \gamma_2, \gamma_3\}$, $I_g(1,2)(\Sigma) = \{\alpha_1^*, \alpha_2^*, \alpha_3^*; \gamma_1^*, \gamma_2^*, \gamma_3^*\}$, where $\alpha_1^* = \gamma_2$, $\alpha_2^* = \alpha_2$, $\alpha_3^* = \alpha_3$, $\gamma_1^* = \gamma_1$, γ_2^* α_1 , $\gamma_3^* = \gamma_3$.

For ordered cycles L_1 , L_2 and L_3 , $L_1^{\star} = I_g(1,2)(L_1) = (\alpha_1^{\star}; \gamma_2^{\star}, \gamma_1^{\star})$, $L_2^{\star} = I_g(1,2)(L_2) = (\alpha_2^{\star}; \gamma_2^{\star}, \gamma_1^{\star}, \gamma_3^{\star})$ and $L_3^{\star} = I_g(1,2)(L_3) = (\alpha_3^{\star}; \gamma_3^{\star-1}, \gamma_1^{\star-1})$, where we write γ_j^{\star} for $\gamma_j^{\star+1}$ for simplicity.

For a marked Schottky group $\langle G \rangle = \langle A_1, A_2, A_3 \rangle$, $\langle G^* \rangle = I_q(1,2)(\langle G \rangle) = \langle A_1^*, A_2^*, A_3^* \rangle$, where $A_1^* = A_1, A_2^* = A_2A_1, A_3^* = A_3$.

We obtain Theorem 1 by using interchange operators. See Sato [5] for details.

§ 5. Relations between limits of Schottky groups and limits of Riemann surfaces.

Here we will consider Problem 2. Let S be a compact Riemann surface of genus g with or without nodes. We denote by N(S) the set of all nodes on S. We assume that each component of $S \setminus N(S)$ has the Poincaré metric. The Poincaré metric $\lambda(z)|dz|$ on S is defined as the Poincaré metric on each component of $S \setminus N(S)$.

DEFINITION 8. If the following conditions are satisfied, a sequence of Riemann surfaces $\{S_n\}$ converges to a surface S as marked surfaces: There exists a locally quasiconformal mapping $\phi_n: S\setminus N(S) \to S_n\setminus P(S_n)$ such that (i) $\lambda_n(\phi_n(z))|d\phi_n(z)|$ uniformly converges to $\phi(z)|dz|$ on every compact subset of $S\setminus N(S)$, where $\lambda_n(z)|dz|$ and $\lambda(z)|dz|$ are the Poincaré metrics on S_n and S_n respectively, (ii) ϕ_n maps a deleted neighborhood $N(\alpha_i)\setminus \{\alpha_i\}$ (resp. $N(\gamma_j)\setminus \{\gamma_j\}$) of α_i (resp. γ_j) to a deleted neighborhood $N(\alpha_{i,n})\setminus \{\alpha_{i,n}\}$ (resp. $N(\gamma_{j,n})\setminus \{\gamma_{j,n}\}$) of $\alpha_{i,n}$ (resp. $\gamma_{j,n}$) if $\alpha_i\in N(S)$ (resp. $\gamma_j\in N(S)$), and (iii) ϕ_n maps a neighborhood $N(\alpha_i)$ (resp. $N(\gamma_j)$) of α_i (resp. γ_j) to a neighborhood $N(\alpha_{i,n})$ (resp. $N(\gamma_{j,n})$) of $\alpha_{i,n}$ (resp. $\gamma_{j,n}$) if $\alpha_i\notin N(S)$ (resp. $\gamma_j\notin N(S)$), where $P(S_n)=f_n^{-1}(N(S))$ and $f_n\colon S_n\to S$ is a deformation.

By constructing locally quasiconformal mappings, we have Theorem 2. See Sato [6] for details.

Let $\langle G_0 \rangle$ and $\widetilde{\Sigma}_0$ be a fixed marked Schottky group and a fixed B.S.J.C. for $\langle G_0 \rangle$, respectively. Set $S_0 = \Omega(G_0)/\langle G_0 \rangle$. Given a point $\tau \in \delta^I, J \in G_0$, where $I \supset I(J) \not= \emptyset$. Then $S(\tau)$ is a compact Riemann surface with |I| + |J| nodes of genus g. We define the following sets: $J_1 = \{j \in J \mid \gamma_j \text{ is a dividing loop on } S_0\}$, $J_2 = \text{any subset of } J \setminus J_1$, $\widetilde{\Sigma}_1 = I_g(i_{k(1)}, j_{k(1)})(\widetilde{\Sigma}_0)$ with $i_{k(1)} \in I(\{j_{k(1)}\})$, $j_{k(1)} \in J_2$ and $J_{21} = J_2 \setminus \{j_{k(1)}\}$. Choose $j_{k(2)} \in J_{21}$ such that $I_1(\{j_{k(2)}\}) \cap (I(J_2) \setminus \{i_{k(1)}\}) \not= \emptyset$. Set $\widetilde{\Sigma}_2 = I_g(i_{k(2)}, j_{k(2)})(\widetilde{\Sigma}_1)$ with $i_{k(2)} \in I_1(\{j_{k(2)}\})$, $i_{k(2)} \not= i_{k(1)}$. We set $J_{22} = J_{21} \setminus \{j_{k(2)}\} = J_2 \setminus \{j_{k(1)}, j_{k(2)}\}$. By the same way, we determined the following: $j_{k(3)}$, $i_{k(3)}$, J_{23} , $\widetilde{\Sigma}_3$, $I_3(J_{23})$; \cdots \cdots ; $j_{k(s)}$, $i_{k(s)}$, $J_{2,s}$, $\widetilde{\Sigma}_s$: Here s is the integer satisfying the following (i) and (ii): (i) $I_{s-1}(\{j_{k(s)}\}) \cap I(J_2) \setminus \{i_{k(1)}, i_{k(2)}, \cdots, i_{k(s-1)}\} \not= \emptyset$, (ii) $I_s(\{j\}) \subseteq \{i_{k(1)}, \cdots, i_{k(s)}\}$ for any $j \in J_2 \setminus \{j_{k(1)}, j_{k(2)}, \cdots, j_{k(s)}\}$.

We set $J_3 = J \setminus (J_1 \cup J_2)$, $J_4 = \{j_{\ell(1)}, j_{\ell(2)}, \dots, j_{\ell(s)}\}$, $J_5 = J_2 \setminus J_4$, $I_1 = I \setminus I(J)$, $I_4 = \{i_{k(1)}, i_{k(2)}, \dots, i_{k(s)}\}$, $I_3 = I_s(J_3)$, $I_5 = I \setminus (I_1 \cup I_3 \cup I_4)$, $I_6 = a$ subset of I_5 , $I_7 = I_5 \setminus I_6$, $I^* = I \setminus I_7$ and $J^* = J \setminus J_4$. Then we have Theorem 3. See Sato [6] for the proof.

COROLLARY. Given $\tau \in \delta^{\text{I}}$, $J \not \in_{g}(\widetilde{\Sigma}_{0})$, where $I \supset I(J) \not = \emptyset$. Then there exists a sequence of points $\{\tau_{n}\}\subset \mathcal{C}_{g}(\widetilde{\Sigma}_{0})$ such that (i) $\tau_{n} \to \tau$ as $n \to \infty$ and (ii) $S(\tau_{n})$ does not converge to $S(\tau)$ as marked surfaces.

Remark. By a similar method to the proof of Theorem 2, we

have the following. If $\widetilde{\Sigma}_0$ is a S.S.J.C., then $S(\tau_n)$ converges to $S(\tau)$ as marked surfaces for any point $\tau \in \widehat{\mathfrak{G}}_g^*(\widetilde{\Sigma}_0)$ and for any sequence of points $\{\tau_n\} \subset \mathfrak{G}_g(\widetilde{\Sigma}_0)$ with $\tau_n \to \tau$.

§6. Appendices.

We will consider the following in the forthcoming papers [7,8].

- 1. Properties of interchange operators. There are five kind of interchange operators as follows: (1) $I_q(\alpha_i, \alpha_i^{-1}) = I_q(C_i, C_{q+i})$,
- (2) $I_g(\alpha_i, \alpha_j) = I_g(C_i, C_j),$ (3) $I_g(\gamma_j, \gamma_j^{-1}) = I_g(C_{2g+j}^{\dagger}, C_{2g+j}^{-}),$
- (4) $I_g(\gamma_i, \gamma_j) = I_g(C_{2g+i}, C_{2g+j})$ and (5) $I_g(\alpha_i, \gamma_j) = I_g(C_i, C_{2g+j})$.
- Here we only considered and used interchanged operators in case (5).
- 2. Relations between Nielsen isomorphisms and interchange operators. Here Nielsen isomorphims are

$$N_1(A_1, A_1) : \langle A_1, A_2, \cdots, A_1, \cdots, A_g \rangle \rightarrow \langle A_1, A_2, \cdots, A_1, \cdots, A_g \rangle$$
.
 $N_2(A_1, A_1^{-1}) : \langle A_1, A_2, \cdots, A_g \rangle \rightarrow \langle A_1^{-1}, A_2, \cdots, A_g \rangle$.
 $N_3(A_1, A_2) : \langle A_1, A_2, A_3, \cdots, A_g \rangle \rightarrow \langle A_1, A_1, A_2, A_3, \cdots, A_g \rangle$.

3. Boundary behavior of the space of marked Schottky groups of real type of genus 2. We say $\langle G \rangle = \langle A_1, A_2 \rangle$ a schottky group of real type if A_1 , $A_2 \in SL(2, \mathbb{R})$.

References

[1] W.Abikoff, Degenerating families of Riemann surfaces, Ann. of

- Math. 105 (1977), 29-44.
- [2] L.Bers, Automorphic forms for Schottky groups, Advances in Math. 16 (1974), 332-361.
- [3] H.Sato, On augmented Schottky spaces and automorphic forms, I,
 Nagoya Math. J. 75 (1979), 151-175.
- [4] H.Sato, Introduction of new coordinates to the Schottky space-The general case -, J. Math. Soc. Japan 35 (1983), 23-35.
- [5] H.Sato, Augmented Schottky spaces and a uniformization of Riemann surfaces, Tôhoku Math. J. 35 (1983), 557-572.
- [6] H.Sato, Limits of sequences of Riemann surfaces represented by Schottky groups, Tôhoku Math. J. 36 (1984), 521-539.
- [7] H.Sato, Interchange operators and Nielsen isomorphisms, in preparation.
- [8] H.Sato, The space of marked Schottky groups of real type of genus 2 , in preparation.

Fig.1

Example 1.

 $(\{1,2,3\},\{1,2\}) \quad (\{1,2,3\},\{2,3\}) \quad (\{1,2,3\},\{1,3\}) \quad (\{1,2,3\},\{1,2,3\})$

Fig.2.

 $(\emptyset, (2)), ((11, 12)), ((21, 12)), ((31, 12)), ((11, 21, 12)), ((2, 31, 12)), ((11, 31, 12)), ((11, 2, 31, 12))$

 $\{(\emptyset, \{2,3\}), (\{1\}, \{2,3\}), (\{2\}, \{2,3\}), (\{3,4\}, \{2,3\}), (\{1,2\}, \{2,3\}), (\{2,3\}, \{2,3\}), (\{1,2\}, \{2,3\}), (\{1$

 $\{(\emptyset, 11, 2, 3), (11, 11, 2, 3), (25, 11, 2, 3), (31, 11, 2, 3), (11, 21, 11, 2, 3), (12, 31, 11, 2, 3), (11, 31, 11, 2, 3), (11, 2, 31, 11, 2, 3)\}$

$$\widetilde{\Sigma}^{*} = I_{g}(1,2)(\widetilde{\Sigma}) = \{c_{1}^{*}, \cdots, c_{6}^{*}; c_{7}^{*}, c_{8}^{*}, c_{9}^{*}\}$$

$$\Sigma^{*} = I_{g}(1,2)(\Sigma) = \{\alpha_{1}^{*}, \alpha_{2}^{*}, \alpha_{3}^{*}; \gamma_{1}^{*}, \gamma_{2}^{*}, \gamma_{3}^{*}\}$$

Fig,4.