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Shunsuke Morosawa (?Eiﬂ;f%ﬁrﬁ
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0. Introduction.

A Fuchsian group is a discrete subgrdup of linear fractional
transformations each of which presérves‘a uniﬁ disk D = {z|
|z] <1} (or upper half plane H = {z = x+iy|y>0}). Denote the
boundary of D and of H by S and ﬁ respectively. Since a
Fuchsian gfoup acting on H 1s conjugate to some Fuchsian group
acting on D by some linear fractional transformation, we
cqnsider a Fuchsian‘group acting'on- D or H case by case.
We think that D and H are both equiped with Poincaré metric.
The ergodic‘propertiés of Fuchsian groups have been investigated
by many authors (e.g. [2],[6]). In this paper, we consider the
following property. Let T be a Fuchsian group acting on D.
We call a point ‘CéS is a transitive point under T 1if, for
all ordered pair (;l,cz) of two distinct points of S and all
zeD and for all €>0, there exists an element <yeéI' such that
lz,-v(2) | +|2,=v(2) |<e. In fact, the transitivity is independent
of the choice of z (see [4]). The transitivity associated to a
Fuchsian group acting on H 1is defined similarly. If ¢ is not
a transitive point, we call it an intransitive point under T.

For example, parabolic fixed points of T  are intransitive points
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under T (see [4]). 1In [5], it showed that if T 1is a finitely
generated Fuchéian grbup of the first kind, almost all points of
S are transitive points’under f. But what points are transi-
tive under T? We consider this problemrin the case of the
modular group GG. 1In thié case, Artin [i] investigated the
transitivity of geodesic lines és Quasiergodizitdt. The modular
group is a Fuchsian group acting on H and each of whose ele-
ments is of the form |

g(z) = i;:g a,b,c, and d are integers & ad-bc = 1.

By [no, nq, n2,---] ‘we denote the continued fraction

_ 1 1 ‘ P
X ngt D+ mpbe s » where n, is non-negative 1@teg§r and Ny
i >0, is a positive integer. If x<0, we define x = -[no, nq,
ny**+] for -x = n,+ 1 1 All rational numbers are
2 . 0 nl+ n2+°--'

parabolic fixed points of G, so we consider only irrational
numbers. Using continued fractions, we give a characterization

of transitive points under the modular -group, as follows.

Theorem 1. A point x = %[n,, ny, n,,**+] 1is a transitive
point under the modular group G if and only if, for an arbitrary
finite sequencé 8ns 875°°° &, where. a; is a positivevinteger,

there exists k such that NE= 8n, Npyq= 89,°°° Ny = a .

In 81, we prove some lemmas and a theorem on transitive
points under an arbitrary Fuchsian group. In §2, we shortly
explain the cutting sequence which is defined in [7] by Series.

-In 83, we give the proof of Theorem 1. In §4, using the cutting
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sequence, we give another proof of a certain theorem concerning

to continued fractions.

1. Theorem on;transitivity.u »
Let ¢, ¢y and ¢, be in S and let z "be in D. .By
L(Ci,cz) and R(z,z) we denote the oriented geodésic line

whose initial point and whose terminal point cz and the

“1
oriented geodesic ray whose initial point =z and whose terminal
pbintﬁ z reSpectively; We say that yR(z,c)' kor :L(él;c2)>
converges to L(ei,eg) if, for‘all é>0, there exists an éleﬁent
vel such that |v(z)-8,|+|v(z)-6,]<e (or [y(z;)-6,]+|v(5,;)-6,]
<g). Using th;s notation, we say the definition of transitivity
in §0 as foiiows. A point ¢ 1s called a transitive point under
I if, for an arbitrary geodesic line L(el,ez) .and an arbitrary
’geodesic‘ray .R(Z,g), R(z,z) converges to L(el,ez). We - also
say that L(El,cz) is a,transiﬁive geodesic line under T  1if,
for an“arbitrary geodesic line L(el,62),_the‘geodesic line
,L(gl’;2) converges to L(el,eg). If L(cl,cz) »is.not a tran-
sitive geodesic line under T, we call 1t an intransitive geo-
deéic,line under TI. For example, -let ;1 -and §2 be fixed
pointé of a hyperbolic element of T. Then L(cl,cé) is an
intransitive geodesic line. o -

In this section, we assume thaﬁ r is én érbitfary'Fuchsian
group, but not an elementary group. Hence T has hyperbolicb
and -

elements._ Let be fixed points of a hyperbolic

;l' C2
element of T'. The geodesic ray R(z,;z) converges to only
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L(cl,c2) and its I'-images. Thus c2‘ ié an intransitive pdint.
Similarly all the hyperbolic fixed points of T are intransitive
points under T.

In the proofs of the following lemmas'and a theorem; we only
consider Fuchsian groups acting on D. But the result is true

for Fuchsian groups acting on H.

~Lemma 1. Let L(cl,c2) be an intransitive geodesic line
under . If L(gl,gz) converges to some L(el’e2)’ then
L(®

6 is an intransitive geodesic line under TI.

1° 2)
Proof. Assume that L(el,ez) is a transitive geodesic 1line.
Then, for an arbitrary geodesic line _L(nl,ng)’ énd/for all €>0,
there exists an element <Y€l such that ly(el)-nl|+ly(92)—n2|<€.
Since each element of I' maps S +to S continuously; there
exists >0 such that, for |6,-67]|+|6,-61]<6, |y(6i)—n1|
+|y(eé)—n2]<s. For this 6§, there exists an element PBel such
that !B(al)—61|+[8(c2)-62]<6 since L(zy,Z,) converges to
L(6

0 Hence we have Iys(;l)-n1|+|ys(;2)-n2|<e. This shows

that L(;l,cz) converges to an arbitrary geodesic line L(nl,n2).

This contradicts the assumption of L(cl,c2). g.e.d.

Lemma 2. If the geodesic ray R(z,z) converges to an
arbitrary transitive geodesic line, then ¢ 1s a transitive

point under T.

Proof. We take a transitive geodesié line L(el,eé). For

an arbitrary geodesic line L(nlgnz) and all >0, there eXists
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an element vyeI' such that ly(el)—nll+ly(62)-n2|$;/2. Since
L(Y(el),y(e2)) is also a transitive geodesic line, there exists
an element B€I such that |B(z)-v(8,)|+|B(£)-v(6,)|<e/2. Hence
we have |B(Z)-n1|+|8(c)-n2|<s. This shows that ¢ is a tran-

sitive point under T. . . q.e.d.
Using above two lemmas, we prove the following theorem.

Theorem 2. Both ©and 52 are intransitive points under

°1
' if and only if L(cl3c2) is an intransitive geodesic line

under T.

Proof. Thé sufficientbcondition is élear‘from the défini-
tions. | | |

First, we assumé thaﬁ at least one of gi and s is“a
hyperbolic fixed»point of.‘F; say ';1. By Ci we denote énother
fixed point of the hyperbdlic glement which fixes ‘gl.i We take
zeL(cl,t2)nD. The gebdesic fay R(Z,Cl) converges to bnly
L(ci,;l) and its f—images. Hence R(z,cz) must converges to
an arbitrary transitive geodesic line, if L(cl,t2) is a tran-
sitive geodegic liné. Thgrefore, by Lemmé‘2; ;2 ié a transitive
point. This is contradicfion. Hence L(cl,cz) is an.intransi—
tive geodesic line.

Next, we assume that neither ;1 hér ;2 is a hyperbolic
fixed pgint. Takg an grbitrary hyperbolic fixed pqint c3. By
the above argument, L(c3,;2) is an intransitive geodesic line.
‘So,’by Lemma 1, R(z,;é) coﬁverges‘to only intransitive geodesic

lines. Hence R(z,;l) converges to ah arbitrafy transitive
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geodesic line, if L(cl,c2) ‘is a transitive geodesic line. This

means is a transitive point by Lemma 2. Therefor L(Cl’CZ)

31
is an intransitive geodesic 1line. = g.e.d.

2. Cutting sequences.

In the following sections, by G we denote the modular
group. We consider the Farey tesselétion F, the tesselation
of H by images of the imaginary‘axis under G. Each tessera
of F 1is a non-euclidean triangle whose vertices are all on ﬁ.
An arbitrary oriented geodesic line L(x,y) is divided into
oriented segments by the triangles of F. We label each oriented
segment either R or L according as two sides of the triangle
which the segment crosses meet to the right or left of the seg-
ment. If L(x,y) starts from a vertéx of some triangle or ends
in a vertex of some triangle, we may label the segment R or
L freely. We arrange the letters R and L as according to
the order of the directed Segmenté of L(X,y). If R’s (or
| L>s) are succeedingly arranged n times, we write R? (or 1L™).
In this way,’we associate a éequence' eo ORI N2RNS L. t5 the
directed geodesic line L(x,y). Series [7] called it the cutting
sequence of L(x,y). If L(x,y) starts from a vertex of some
triangle, then the cutting sequence is finite on the ieft side.
If L(x,y) ends in a vertex of some triangle, then the cutting
sequence 1s finite on the right side. Sinoe each element of G
is orientation preserving, labels R and L are invariant under

G. For simplicity, we define numbers of even order always denote
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L and numbers of odd order always denote R /and4we write the
cutting sequence <e** n_j, Ny, Ny, Ny,° 00>, Series [7]\§howed

the following theorem.

Theorem A. Let x be in [-1 0) and y Dbe in’ [1 ).
Then the cutting sequence of L(x,y) is of the form

<"”'n—1’|n0’ ny,tee>,
where the symbol | -corresponds to the position where L(x,y)
and the imaginary axis cross, if and only if

x = [0, n_ys N_ps***] and y = [ny, ny, ny,ecel.

3. Proof of Theofem l.

The modular group G 1is generated by 1(2) = -1/2 and
o(z) = z+l1. 1If kxA= é[no, ng, n2,--°], nO# 0 then o1(x) =
[1, ng, n1,°--]; If x = —[O,an; n2,?-~] then t(x) = [nq,
n2,°--]; If bx = tO,vnl, n2,---] then o(x) = [1, Ny, n2,---].
Hence we consider only the case x>1. It is well—known.(e.g.
[11) that the arbitrary directed geodesic 1ine>excépt for
'{L(g(O),g(é))IgeG} is equivalent under G to some directed
geodesic 1ihe L(Gl,ez) where 6, 1s in [-1 0) and 6, 1s in
[1 »). Since the point -1 is an intransitivé point, Theorem
2 implies that L(-1,x) 1is a transitive geédesic line if and

only if x is a transitive point. From the above fact, we prove

the following theorem for the proof of Theorem 1.

Theorem 1', Let the continued fraction of x Dbe of the

form [no, nl,'n2,°--], no# 0. Then the directed'geédesic line
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L(-1,x) converges to an‘arbitrary directedrgéodeSic line
’L(el,ez), eie[-l’o) and eeé[l ») if and only if, for an arbi-
trary finite sequence ans 895°°° ap, where ay is a positive

integer, therebexists k such that n, = %0’ Ny~ 87s°°°

Remark. The later condition implies the condition that, for
an arbitréry finite sequénce ad, ays°°c ay and for an arbitrary
integer i, 0 < i < m, there exists u such that Ny 1= 80s

a Ltsee 1.

TUC Doyt 84 Mou+1T 410" Toyrm-iT Zn

Proof. Since irrational numbers are dense in ﬁ, it is
sufficient to consider the case that Bl ‘and 62 arekirrational.
Set 6, = -[0, a_qs a_2,---] and 6, = [ao, al,'ag,---].‘ From
the theory of Diophantine approximatiohs, we see, for an arbi-
trary €>0, there exist positive integers t and s such that

iel+[o, a_qs
162—[a0, a1y 855°°0 a8, m2]|<;/2,

a_ps*tt 2 g w1]|<e/2 and

where Wy and w, are arbitrary numbers greater than 1. We

consider the finite sequence a_ts°*° 8_95 855 875°°° ag. By

. the assumption and the fact we remark, there exists u  such

that n

o 00
s -

ou-t- Z=t2" " Poy-1T 8.1 DoyT B Hoy+1T

Nout+s™ 8se Hence the cutting sequence of L(-1,x) 1is of the

form
Lolngs mpscee my, 1 @gs™"t 81, 805 87500 85, Myttt

There exists an element geG@ which maps the side of the tessera

whichﬂthe ségment corresponding to a_l; ay crosses to the
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imaginary axis. Hence the cutting sequence oflig(L(el,x))_

= L(g(-1),g(x)) 1is of the form

e e e
y

Dou-t-12 22t
By Theorem A, we have

s o0 ooo>.
a_yslags 21500t ags Mouug40s

<1,,n0, nl’...
g(—l) = —[0, a-l’... a—t, n2u-—t-—1’.°' nl’ 1] and
R g(X) = [ao, al’fo'”as’ n2u+s+l”.']'

Therefore we have
lg(-1)-8, [ +|g(x)-6,|<e.
2)'
To show the converse direction, we follow the above argu-

This shows that L(-1,x) converges to L(el,e

ment conversely. 1 o , g.e.d.

L, An application. #

Let x = [no, nl; n2,-~~] be an irrational number. We
call x of constant typé if there exists a constant M such
that hi< M for ali i (see [3]). By Theorem 1, nuﬁbers of
constant type are ihffansipive under G; We assume that
ny> 0. We consiaer the directed géédesic line _L(-i,x). The
‘cutting sequence of L{-xX,x) is of the form

Ko oo n

LICI I 2

o nls 2h0, nls n2>
‘We set the element of G '

rz+s
Qz+p

g(z) =

The geodesic line g(L(-x,x)) = L(g(4x),g(x)) is a semicircle
whose center is in R, and whose diameter is

lg(x)-g(-x)| = q2lx-p/qlix+p/q| °




On the other;hand, the cutting sequence.><f'-'n2, nq, 2n0, Ny
n,,*+*> dimplies that g(L(-x;x)) ‘cuts at most 2M axes which
are parallel to imaginary axis and whose endpqints are integers.
Hence we have

|e(x)-g(-x)| < 2m+2. |
Therefore, this ihequality is satisfied if and only if the
inequality

|x-p/a| > e/q® ,
where ¢ 1is a constant which is independent of p. and q, is
satisfied. |

Next, we consider the Riemann surface H/G. The fundamental

region of the modular group is F = {z = x+iy|0'; x <1, x2+y2

251 (1/2 < x <1)}. We iden-

21 (0 <x<1/2), and (x-1)%4y
tify the Riémann Surfape H/G with this fundémental région.

By = we denote the natural projection from H to H/G. All
the elemeﬁts of‘the set {L(g(-x),g(x))lgeG}' exist below the
line y = M+l 1if and‘énly if the gepdesic 1ine ﬂ(ﬁ(-x,x)) on
H/G is iﬁ. Fn{z = x+iy|y < M+1}. Hence we conclude the follow-

ing theorem.

Theorem 3. The following three conditions are: equivalent.
i) x 1is of constant type.
ii) lep/ql > c/q2 for all integers p and q which are
relatively prime numbers, where ¢ 1s a constant-which
is independent of p and aq. | | |

i11) mw(L(-x,x)) 1is in some compact set in ‘H/G.
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Remark. The equivalence of 1) and ’ii) has been already

proved by other method (e.g. [3]).
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