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VALUATIONS ON MEROMORPHIC FUNCTIONS OF BOUNDED TYPE

Mitsunu Nakai
M=y
Nagoya Tnstitute of Technology

We are concerned with the following question: When is i;‘true
that any valuation on the field of single valued meromorphic
functions of bounded type on a Riemann surface carrying nonconstant
bounded holomorphic functions is a point valuétion ? In this note
- we mentidn tﬁe following four results on this questioﬁ which are
natural growth of our personal-communucations with Professor
‘Frank Forelli at University of Wisconsin - Madison: 1. The cqvering
stability, 2. Stable surfaces, 3. Mawimality and stability, and
4, Weak stability. Proofs for these will in geral be omitted

except one last spot.

We start by fixing terminology precisely. We den@;e_by Me<W)
the field of meromorphic functions 6f bounded type on an open
Riemann surface W so that Mm(W) is the quotient field of the
algébra H (W) of bounded hélomorphic functuions on W. A
valuation v on Mé(W) is a group homomorphism of the multiplicative
group Mé(W)*-= MS(W) - {0} onto the nonzero subgroup of the

additive group I of all integers such that
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where we make the convention'that v (0) = 4o,
We see that 'v(Mm(W)§) = {me; m e I} where e is the
minimum of the set of pbsitiVé'numbers in v(Mw(W)*). The valuation

¢ defined by
. -1 ®
V() =e v(£) (feM (W)

is referred to as the normalization of v. Two valuations v, and
are said to be equivalent if ¢, = ¢

v 1 ‘2.

2
Take a local parameter z at a point a in W with z(a) =

Let f be meromorphic at a and
v L s
£(z) = Xv i G2 (e, ¥;°)

be the Laurent expansion of £f. The number k is uniquely determined
by £ and a and is usually denoted by BfCa) and called the

order of f at a. We can easily check that
8.(a): £ P (a)

_is a.téluation on Mé(w) if‘ M?(W) # E (the complex‘number field),
or what amounts to the same, 1f H (W) # L. Any valuation v on
M (W) is Sald to be a poznt valuation on M. (W) at a if v
isvequlvalent to the valuatlon 3.(a)v for a p01nt a. in W.

v For convehlence we say that a Rlemann’surface Wis H —stable,

or 31mply stable, if H (W) # T and every valuation on M W) is
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a point valuation. Then our problem is to‘clarify the stability
of Riemann surfaces under consideration.

A valuation v on M (W) is said to be distingutshed if the
followiﬁg condition is satisfied; If v(f)—;=0 for an f in Mw(w),'
then thére exists a A in € such that ka -A) >;0' Point
valuations clearly satisfy this condition. Except the last section
we do not a prioti assumé’the distinguishedness for our valuations
in this(hqte which is one of important points tovbe stressed in
oﬁr study. In this connectionrthe following question is very

important and is probably very difficult to resolve:

OPEN PROBLEM 1. Is there any W such that M (W) carries
a nondistingushed valuation or is any valuation on any M (W)

automatically distinguished ?

-.§:1~ THE COVERING STABILITY. -

‘Wé say that a Riemann surfacé R or more precisely ahtriple
(R, S, ) of Riemann surfaces R and S and an analytic mapping
m of R into 'S 1is a covering surface of S. The surface §S.
~and vwv afé referred to as the baée surface and the covering map
of the.covering.surface (R, 8, ™), respectively.’We say that the
coveriﬁg surféce (R, S,,ﬁ)’ is unbounded if for any curve C on
S with iﬁs initial point a in S and any o in n_l(a)
there exisﬁs a curve ‘PF on R with o« its initial point such

that 7(l') = C. Let a be in S and a in ﬂrl(a). We can

3



120

always find local parameters z and g about a and a
respectively such that the local expression of the covering map

z = W(C)‘ takes the form 2z = ;m. Here the positive integer m,
the mui;iplieity 6f a, does not depend‘on the choice of local
parameters z and c._If m>1, then o is referred to as a
b?anch point of order m - 1. For each a in S we let

#(vfl(a)) = o if ﬂ_l(a) is an infinite set and #(ﬂ-l(a))

=n if the set n-l(a) consiéts of a finite n number of
points where a branch poin;.of order m - 1 1is counted as ﬁ
points. When (R, S, 7) is unbounded, #(ﬂ_l(a)) is a constant
n < = for evéry a din S. If n ‘<v°°, then we say that (R, S, )
is  n sheeted or more roughly_finitely sheeted without referring
to the speéific sheet nﬁmber n. Note that there may or may not
be an infinite number 6f branch poin;s in R. The folldﬁing is

,the main and fundamental result in our study:

THEOREM 1. The unboynded finite covering surface R 1is

stable if and only if its base Riemann surface S is siable.

Identifying M?(S) with M?(S)ow we can view that M?(R)
is.a_field extension of Me(s). By the finiteness of R over S
we caﬁ see by the standard s&mmetrichfunction’argument that
Mé(ﬁ);ié a finite separable aigebraic extension of M (S). Using
thié we can prove the above theorem eaéily althodgh we need a .

long series of elementary discussions. In the course we.also use
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the fact that there is a valuation V :on M?(R); for any given

valuation v on Mé(S) such that V{Mé(s) is equivalent to v.

§ 2. STABLE SURFACES.

It is sufpriSing that not many stable surfaces are known.
Nonstable'plane regions are in plenty. Let Sd Be the surface
obtained from a plane regibn S with Hm(S) # T by remoQing
a point a in S. Then the valuation v on Mw(SO)' given by
3. (a) is seen not to be a'point V;luétion on ‘Mé(SO) and hence
S0 is not stable. If S is a suface of the Mfrbergltype, then

So ‘can be stable (cf. ExampléVZ'be16W).‘The following is , in

‘essence; the only one known stable surface:
THEOREM 2. The unit disk A is stable.

Take any valuation v on Mé(A). One need to show that v
is a point valuation. We can fiﬁd a propﬁvin an olq paper [7]
of Royden under the assumption that v is distinguished. Thus
we need to show that v is automatically distinguished which
is accomplished by using Blaschke products.

An m sheeted disk Am‘ is an m.éheeted unbounded covering
surface of the open unit disk  A. We also call A a finitely
sheeted disk without specifying the sheet number m. From

Theﬁrems 1 and 2 it follows ‘the following

EXAMPLE 1. Any finitely sheeted disk is stable.
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Plahe regions bounded by finitely many mutually disjoint
nondegenerate continuum are finitely sheeted disks by the
Bieberbach-Grunsky theorem or more generally finite open Riemanh
surfaces are~finitely sheeted disks by the Ahlfors theorem and
therefore these are examplesof stable surfaces.

Let A, be the 2 sheeted disk (Az,‘A, ™) with thé sequence

2

{xg}: of projections x = of branch points in 4, lying over

the positive real axis such that

/2 <%y <%, < e < xn'< ee. <1,

lim x =1, and
n'n

Jop @-x)=+=.

Let {ck}: be a sequence of disjoint closed disks contained in
A N {Re z < 0} converging to -1. We demote by E one of two

connected pieces of n_l(A11 {Re z < 0}). Finally let
B Lk -l .ww‘.
U= A2 -ENT (Uk=1 on).
By the Myrberg type argument and the Blaschke theorem we have

H(U) =H (A) = H (A)or.

2)
Using this relation we can see the following
EXAMPLE 2. The surface ‘U is of infinite comnectivity and

of infinite genus and not representable'as a finitely sheeted disk

but stable.



In these connections the most important and-interesting
question is the following
- OPEN PROBLEM 2. Is there any ‘stable plane region of infinite

connectivity 7.

§ 3. MAXIMALITY AND STABILITY.

A Riemann surface 'Wi‘ is aﬁ Hméexténsion of a Riemann
surface W if WCW' and H”(w')lw = Hw(ﬁ). A‘Riémann surface
W is.éaid to be H -maximal when thezfollowing condition is
satisfied; if there is an‘ Hw—extension W' of W, then W' = W.
Because of Example 2 there can exist a stable surfaée whiéh'is
not H -maximal. However, for plane regions, the staBility implies
the Hmfmakimality. What happens té the converse ? It would beb
very nice if the converse is trué but unfortunately we have

the following

EXAMPLE 3. There exists an H -mazimal bounded plane region

which is not stable.

We will seek such a region améng (modified) Zalcman L-domains

which are of the following form
X= 8o 7 Uy Ao 1

Here AO. is the punctured unit disk .0 < |z| <1 and
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<r.}

chk, rk) ={|z - ckl T

where '{ck}: and-'{rk}; are zero sequences of positive real

numbers such that

c + r <c

Kl T Tkl — T < try <1/2 (kfl,.Z,...).

k k 1 1

First we observe that any Zaleman L-domain X is H -maximal. We
do nof know whether X can be stable or not but we will see that
X can be unstable by a suitable choice of  {rk} for any fixed
cenggrsb {ck}.

- We need td consider the following auxiliary region
A 2) = Yoy B |
Y = 0(03 l/ ) - U k=1 A(cka pk)
where AO(O, 1/2) is the disk 0 < |z| < 1/2 and '{pk} is a
zero sequence of positive real numbersvsudh that

<c

1‘+‘91 <1/2 | (k = 1,2,...).

kel Pl < %k T Pk
We choose {pk}. convergent to zero enough rapidly so as to make

the following condition valid:

- [Al z = 0 <8 an irregular boundary point of the region Y

with respect to the Dirichlet problem.

Now we:chobse {rk} in such a fashion that 0 < r, < for

, , = k Pk
all k ='1,2,... and we further choose {rk} so small that



[B] Zkzl rk/pi <t (n=1,2,...).

The choice of rk

Because of the above condition [B] we can see the existence L

= ﬁ: is an example. Clearly iﬁ— {0} C'x.

of the formal nth derivative f(n)(O) of f at 0 given by

M), _ . ~ (n)
£777(0) = lim 2z ¢ T-{0},250 £ (2)
‘—(n+l) :

= (n!/Zﬂj.)f‘ak_f(C) : d’i-_

Concerning these formal derivatives we have the unicity theorem:
If f(n)(O) =0 for every n=1,2,..., then f 1is identically
Zero on .X. This is deriﬁed by a potential'theQretic argument by
uéing the condition [A].

For each f in Hw(x) bwe set
v(£) = min{n; f(#)(O),¥ 0}

if f 'is not identically zero, and set v(0) = + =, For any pair

fl and f2 ‘of functions in Hw(X) with £

zero we set

2 not identically

v(fl/fz) = v(fl) - V(fz);
It is easy to check that the above value is certainly determined
uniquely by the ratio, 1.e;"“fl/f2 =,f3/f4 implies v(f1/f2) =
v(f3/f4). Thus v can be defined on Mé(X). It is simply a matter
of checking formélly_to ascertain that v is a valuation on Mé(X)

which is not a point valuation on M (X).



§ 4. WEAK STABILITY.

We éay that a Riemann surface W is‘wédkly Hm-stdble,kor
simply weakly stable, if H (W) ¥ T and'eQéry’distinguished
valuation on Mé(w) is a point valuation on Mm(w)._Hence the
stability of W obviously implies the weak stability of W.
The converse of this is closely related to Open problem 1 and

we ask the following

OPEN PROBLEM 3. Does the weak stability automatically:

imply the stability-?.

A boundary point ¢ of a bounded plane region S 1is said
to have‘an'Hm-barrier bC on S if b§>'is a nonzero member
of Hm(s) and (z - c)_nbc(z) is bounded on ‘S for every .
n=1,2,... . We élso say that bC is an H -barrier at ¢ on
S. The importance of Hw—barriefs 1ies’iﬁ the followiné féct: If
every boundary point of a?bounﬁed'plané region S has an
B -barrier on S, then $ ‘iéxwedey stable. |

In view of the abovelfact it is iﬁﬁbrtanf tb deférmine‘when
a boundary point ¢ of S ‘has an Hm;Bérrief. Coﬁcérning ﬁﬁié

the first conclusion easily proved is the folldwing

PROPOSITION 1. If a boundary point t of a bounded plane
region 'S has an H -barrier on S, then S is regular with

respect to the Dirichlet problem for S.

-10-



It would be very nice if the converse of this is true but we
do not have even the faintest idea at this moment to attack this

question. Hence we mention the following

OPEN PROBLEM 4. Does a boundary point ¢ of a bounded plane
region S which is regular with respect to the Dirichlet problem

for S have an H -barrier on S ?

The following result is very special and of auxiliary nature

but it is certainly in the‘positive direction to the above question.

PROPOSITION 2. ILet F Abe a closed subset of the open unit
-disk A such that S = A'- F is comnected. Then any boundary
point T of - S lying on the unit circle has an H -barrier

On .S'

This techniéal resultrisvnow uégd ﬁd prove the follo%ing fact
which is‘the ﬁain résult iﬁ this section. At this péint we stress
that weak staBility is a conformall§ invariant property. Thus, if
we have a true stateméﬁt that A impliés the weak stability, then
the statement that A' implies the weak stability is also true where

A' is the conformal image of a property A.

THEOREM 3. If any connected component of the boundary of a
bounded plane region R is nondegenerate continuum, then the

region R s weakly stable.

-11-
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The above theorem assures the existence of a weakly stable
bounded plane region of infinite connectivity (cf. Open problem

2). The following is one such example:
R=A- UblKk

where {Kk} is a family of mutually disjoint closed disks Ky
in A converging only to the boundary point 2z = 1. Compare
this with Zalcman L-domains. There are also weakly nonstable

regions among L-domains (cf. Section 3).

As an illustration of (omitted) proofs in this note we give
here a selfcontained:complete proof of the above theorem 3 since
it is relatively simple and elementary. In order to make the
whole discussion self contained we also need t§ meﬁtion a proof

of Proposition 2 which is, however, extremely simple.

PROOF OF PROPOSITION 2. Let T = —c-lS + 1 which is in
the right halh plane Re w > 0. The point w = 0 is in the

boundary 9T which is the image of * I under the mapping
2o w= g (z - 1)

from S onto T. Consider the branch of vYw in Re w > 0 with

Y1l = 1. Then it is easy to see that

bo(W) = exp (—I/G)

~12-
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"supR |£]. Since (f + c)l

[
s

is an Hﬁ—barrier on T at w. = 0. Thus ¢ has an.Hm-barrier
b, (2) = by(-2 7 (z - 7))
4 0
on- S. !::]

PROOF OF THEOREM 3. Let A ¢ & and v be a valuation on

1/n

Mé(R){'Sinée ﬁv(k ) = v()\) shows that n divides v(}) for

all n=1,2,..., we must conclude that v(}) 0, i.e.

v(T*) = {0}.
Next let f ¢ Hm(R) and take a positive number c with c >

/n £ Hm(R) and nv((f + o:)]'/n

Y = v(f + ¢),
we must conclude , as above, that v(f +vc) = 0. Thus v(f) =

v(f + ¢ = ¢c) 2 min(v(f + c), v(c)) = O; and we have shown that
v 1is nonnegative on Hf(R).

Now fix an arbitrary distinguished valuation v bn‘ Mm(R)
an& we will show that this v is a point valuation on Mé(R).
Fdr thé“purpqse_we may replace Vv by its normalization and thus
we may assume Vv as normalized from the very begining so that
v (R)*) = I. |

Let I: be the identity ﬁunction; I(z) = z identically. We
assumed that R is a bounded plane rggion, and therefore, I is
a member of Hm(R). Hence v(I) > 0. By the distinguishedness of

v there exists a point a in € such that

-13-



V(I_— q) > 0.

If an a' in € different from a also satisfies v(I - a') > 0,
then we have the following contradiction:

0=v(a-a")

v((I -a") - (I-a))

min(Q(I -a'"), v(I - a)) > 0.

v

fhus the point a in T with v(I - a) > 0 is uniquely
determined by v. Such an a 1is said to be the support of wv.

We claim that the support a of .v satisfies a ¢ R. In
fact, if a ¢ X, then (I - a) L e H°R) and v((I - a) }) 2 0.
However, since v(I - a) > 0, we Have the following contradiction:
v((I = a)—l)_= - v(I - a) < 0. Hence ae R or a € 3R.

Wé now assert that a-<e R. Contrariwise assume that a 1is -
in 93R. Let K be the component of 3R qontaining the point a.
By our assumption 'K is a nondegenerate continuum. Let ¢ be

a conformal mapping of the component of the complement of K

containing R onto the unit disk A. Then we set-
S=yR) =A-F

where ¢ sends K to 3A and F 1is a closed subset of A. Let
u(f) = v(fop) (fe M (S)).

Then u is a distinguishéd valuation on Mé(S). Let o be the

support of u which is now known to be in S.

-14-



We maintain that o e 3A. Suppose contrariwise that o €
A - TF - 3A. Then , since o € A, there exists a point vy in
w_l(A) such that ¢(y) = a. Since ¢ € HQ(R), we have

v = 9(¥)) =u@ - a) > 0.

Observe that (¢ - Y(v))/(I - v) is zero free on the simply
connected region. w_l(A). Hence we can find an fn in the

subclass Hm(w_l(A)) of Hm(R) such that

: 4

b= 9()/@T -y = £,

for each n:=1,2,... . Then

v((W = ¥/ (T = 1)) = av(E)

for every n= 1,2,... and we can conclude, as before, that the left

hand side of the above must be zero. Hence
v(IL-v)=v({@-y{y)) >0

and‘ v must be the support of v. By the uniqueness of the
support of v we have a = vy whicﬁ must be in w_l(A). This
contradicts the fact that a ¢ K.

Since a eHBA, there exists, by.Pfoposition 2, an Hw;barrier

ba at o on S. Hence we have'
T-a) b, eH () (=12,...)

and therefore

u((I - a)-n"ba) >0

-15-
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1,2,... or equivalently

]

for every n

u(by) 2 nu(I - @)

[

for every n 1,2,... . This is clearly a contradiction since
u(l - a) > 0. Thus we have éhown that a e R.

‘Take ‘an arbitrary f in H (R) and let Bf(a) =n > 0.
et g = £/(I - a)”. Note that g(a) # 0. Since (g - g(a))/(I - a)

belongs to Hw(R), v((g - g(a))/ (1 - a)) ;=0' and thus

v(g - g(a)) > v(I - a) > 0.

Since v(g - g(a)) # v(g(a)) = 0, we must have the equality
instead of the inequality in

v(g) = v(g - g(a) + g(a) 2 min(v(g - g(a)), v(g(a))) = O

and thus we conclude that v(g) 0, or equivalently

v(f) = ov(I - a) = v(I - a)af(a).

The relation can obviously be éxtended to f ¢ M?(R) and, since
v(M?(R)*) = I, we must have v(I - a) = 1. Thus
v = 3.(a)

on M (R) and v is a point valuation on Mé(Rj.‘ )

-16—-
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