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ON THE CRITICAL PHEHOMEKA FOR PIECEWISE LINEAR TRA RSFORMATIONS
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ABSTRACT
We will determine the decay rate of correlation
for piecewise linear transformations and as an
applicatioﬁ, we will consider two critical

phenomena of dynamical systems.

1.  INTRODUCTION

We will determine the decay rate of correlation for a certain class
of piecewise linear ‘oranéformations explicitly in terms of Fredﬂolm
determinant ( ef. (103 s for‘more general cases, cf. [11) ,(12) ),
and apply it to the critical phenomena in dynamical systems.

We will consider a power series ® , called fhe Fredholm determinant
associated with.a piecewise linear trapsfomation ’ F, whosé definition
will .be gi\}eﬁ in §3, anci we vcall solutions of B(1/2)=0 Fredholm
eigenvalues. By T1’ ‘3‘2, we’:v;i’enote ‘the greatest and tih,e' second
greatest in modullus ('z)'jl= the sloi;e A of F). Our main theofem

is stated as foliows:
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Theorem 1-1.  Suppose that "l/;g_{ 1. Then there exists an
invariant measure }J which is absolutely continuous with the
Lebesgue measure and the dynamical system. ( (0,10 , M,F) is mixing.
Moreover, fof any peir of a function f with bounded variation and

an integrable function g, we get for any & >0

lin (7 +&)/2)"% ff(x) g(Fx) ap - f£ ap §g ap - o, (1.1)
naw

where
=317 it 3'(1/2 )= 0, (1.2)

max { }'U‘zl, 1} | otherwise,
and F  is the n-fold iterate of F:
Flix= x n=0, | | (1.3)
PF7'x) npt.

(on the Fredholm determinant, cf. [13] , [16). Some related topics

on the decay rate of correlation can be found in (21, C61.)

£s an application of Theorem 1-1, we show two critical phenomena
in dynamical systems. One is the case of ﬁ—transformations when
A4 1. This is the phase transition from disordered motion to
ordered motion, The other is the unimodal linear transformations
vhen A J_. This is the phase transition from mixing st:te to ergodic »

but not mixing state. Our second theorem is stated szs follows:



Theorem 1-2. i) ( ’S-transfométions) Let N be the first

refurn time of point 1 to the interval (1/2 ,1] :

Fi(” & (1/2 ,1]) for 1<£1i<0N-1,

(1.4)
N
FJ\(1) € 1/ ,1].
Then the Fredholm eigenvalues around 1 have the f ollowing asymptotic
form:
o +1if
€ )
where
v = —j.—-{log I+ smell orderg s (1.5)
1
‘3 =»+in7t+ small order} n= 0,%1%2,... (1.6)
as Ad1. The second greatest Fredhoim eigenvalue is the case n=1%1,
and so ve mey say that the decry rste of the correlation
/2 = exp {— 4 ( ——T—"——-)Z-L smﬁli order} | 1.7)
A== 2% Tog &' & 70 ’ , | |
as A1,
311)  (unimodel linear trznsformstions) The argument of the
second greztest Fredholm eigenvalue eoguals 7 and the decay rate of
the correlrtion
-2 ,
"(/L =2 A ~+ smell order, (1.8)

cs AdJ2.

This theorem shows:



i) for [B-transformation whose slope is sufficiently close

to 1, the series of the correlation

(26 e™x) ap- frap fgap

for a pair of a function f with bounded variation and an integrable
function g decreases approximately in the ordef exp { - -2—%—(%{;—*1\!—,)2}
. with the frequency of modulation epproximately 1/W,

ii) for unimodal linear transformation whose slope is sufficientlﬂr
close to 42 (7L>I2_), the series of the correlation decreases in the
order 2 7\.—2 with the frequency of the modulation %.

Those results are the generalization of [9) and [15] .

Let us state the conditions imposed on the mapping F. Let 7L
be a constant (A >1), which we call the slope of the mapping F,
and we denote subintervals (i)= [1/7{’ s (i+1)/720) (04%i€k-1) end
(k)= [k/l ,1] s where k is the maximum integer which does not exceed

A . On each subinterval (i) (04ifk-1)

F'(x)= A  (we denote sgn i= +1), _ - (1.9)
or '

F'(x)= -2 (we denote sgnii= -1), . 7 (‘1.10)
and ‘ »

F((1))= 0,1} , | | O (1.11)

and on the subinterval (k)

Fi(x)= .  (that is, sgn k= +1), O (1.12)

and
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min  F(x)=.0.

xe(k)
2. ALPH?BETS AND WORDS

Put A= {O,1v,...,k} , and we call each element of the set A
an alphabet. We call a finite sequence of alphabets w= ayeeed

a word and we define
W)= {xeb,1] : ﬁ’1uje(%),1§i§n},

\wi= n,
and

sgn w= ‘ﬁ' sgn a, .
i=1

We consider a formal symbol 55 which we call an empty word and we

define
($)=(0,1) ,
1$1 = o,

and

sgngﬁ = +1.

For any word w, we define
Wfié = %W: We

For x€[0,1) , let (a]) be the subinterval which contains 1y

x)
and we call the infinite sequence of alphabets afi{ 3}2{... the
expansion of x. The expansion of 1 plays an essential role

~ throughout this paper. We call a word w admissible if (w)é;észﬁ

and an infinite sequence of alphabets By 85 ( a,& A) admissible

(1.13)

(2.4)

(2.5)

(2.6)

(2.7)
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(a,‘...an)é;?lé | for any n.

3.  FREDHOIM DETERMINANT

Definition 3-1. Let

1 ] 1 y ’ )
.y if  sgn ale 41 ang sen IS S B (5.1)
n n g 1--. n—1_ ’ (3.
1+a1 if sen a1= -1 and sgn 3,1 a1v o
n - n 1..1 n—1 ’
\ —1-3111 if  sgn a;,ll: sgn a}...a;q: -1.

Then we define

3 (z)= 1- ﬁ b
n=1

2", (3.2)

and we call P(z) the Fredholm determinant associated with the mapping
F. Ve call 2z which satisfy  @(1/z)= 0 & Fredholm eigenvalue

of the mepping F.

Definition 3-2.  For a point =xe€(0,1] , we define:

i) w(n,x) is the number of words w such that |(wl=n and
w.«-;af a5ees is admissible, and we denote its generating function
. - . )
w(zyx)= > w(n,x) z . _ ‘ (3.3)
n=0 B ’ - o



1
i) C((n,x): ( 1 if sgn a1...al= +1  and
1 1 x x . s s
aye-.8) a3 85...  1s admissible, (3.4)
1
-1 if sgn ayee2 = -1 and
a1...a1 ax x... is not admissible,
1 172 ~
A% 0 otherwise,

and we denote its generating function

b
X(z3x)= Zil CK(n’X) Zns (3.5)
n=0 :
where .
X(0,%)= 1. (3.6)

Theorem 3-1.

w(z3x)= X (z3x)/B(z). ; (3.7)

Proof. Let s(z3x) be the generating function of
s(n,x)= the number of admissible words CIPRPLN such that (3.8)
a=k¢

1

Then by a renewal equation for s(z3;x) and by
Lo n -1
w(zyx)= S_ (kz)" s(z3x)= (1-kz) ' s(z3;x), (3.9)
n=0

we get the proof.



Theorem 3-2. T,= A .

Proof. Since

F(x)= l(x-a?'( 1—1) - if  sen a?f: +1,
- '/"L(x—azc 27N if  sgn a.?: -1,
we get

X= (a),'(+ ) 2,—1+ sgn aj,‘{ F(x) 1-1,

where

Repeating this and tzking x= 1, we get $(1/7.)= 0. On the other

hand, the topdlogical,entropy of the mapping F equals log l'b‘1\ |

and it is not greater than log A . This proves the theorem.

4. THE DECAY OF CORRELATION
Theorem 4-1. Assume that "/3<1. Let

$x)= - A(B (/2N X/ 3x)-

i) Then f is the density of the invariant probability.
measure for the mapping F. »- | |

ji) The singular part of w(z;x) at z= 1/7‘;" equals
Px)/(1-az2).

(3.10)

(3.11)

(3.12)

(3.13)

@



~Proof. The proof of 1) is almost the same as in (4]} . Thus
we omit this. Ey Theorem 3-1, 3-2 sand by the z2ssumption thst ql/h_<.1,
Z= 1/§L is the singularity of first order of w(z;x) and ’
. . PRSI ” |
lim  (1-2z) wlzsx)= 1im  (1- Az) $(z)  A(z;x)= P(x). (4.2)
z41 A1

This proves the ﬁheorem.

By M we denote the probability measure with its density ? .

Now we will prove Theorem 1-1..

Lemma 4-2. Assume that /3 < 1. Then the dynamical system

( Co,1] , });F) is mixing.

Proof. By (w), we denote the indicator function of the
subinterval w. Then

=2 (0060 e =5 (0o (e P ax (4)

nziwt v

=@/ fg(x) S (2/2 )7 X (1/5 swvx) dx
v

Il

RN Jfg(x) " (2) s(z/, 3x) dx,

where

(20 3= A sen aleea! z a7, o ww

m=0

1 ' ‘
and Z_  is the sum over =211 words v= Bgeeed such that

i) wv 1is admissible,

ii) if a;=k, then

P e e, )R (ay), S (4.5)
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m+ [wv| ) Y2,

PRI - - . ) d ;! (31 a
iii) fér any x€(wv) an yela  4-.-

iv) Flwvl (wv) D (k).
on the other hand, substituting g=1 in (4.3), ve get

S(w) dp= lim (1-2) Z2__ 2" g(w)(x) ap

z41 nziw!

- ‘1(§'(1/1))-1 Gw(1) (1-k/n)-
Hence, we get

1n (1-2) 3 2 [0 gl) ap
z41 nzlwi. - '

Since the set of words is a generator, this proves the lemma.

Theorem 4~3.  Suppose thet ql’% < 1. Then for any pair of
a function with bounded variation f and an integrable function g,

we get for any &3>0

n—e

Proof. Suppose that z="] 1is the zero point of first order

of 2(1/z). Then

Lin (1 2/3,) 3 zn_f(w)@)\g(y-“x) ap

zZ-> /'l t o onglwl
- -z@tﬁ/ﬂ)f‘ 6¥(1/m ) f;«;(x)(i—k/7L ) (/AN

/)((1/'7L ;x) dx.

10

lim ((1+8)/2)7 {ff(x) g(F'x) ay -ff d)ﬁ ap 3 = 0. -

(4.6)
(4.7)

(4.8)

(4.9)

(4.10)

(4.11)



Hence there exists a2 constant K1 such thafo

Lin [(1-72/p ) == 2" S’(w)(x) g(Fx) dj{? °L"wl f|g| dx.  (4.12)

Z \))/71 nzlw!

On the other hend,

B (60 et gp |
n=0 )

< (2/ )\W] bwio Y (w)(x) 1 7 i (;n")\ apy. | (4.13)
< 7 W th{w E_:a!grx}))
Hence by Lemma 4-2, there exists a constant K such theat
é‘_“b l(7L/'rL) g(w)(x) g(r x) dj)l< K >N h'} ( |- dx. - (4.14)
=

For a function f with bounded variation, there exists a decomposition
£(x)= TV, () (x) (4.15)
such that for any 0 <¥<1
T N <o, | (4.16)

Combining (4.12), (4.14) and (4.16) with T = (1+€)/,

vie get the proof.
5. CRITICAL PHEKROMENA

Among the mappings which we considered in this?paper, there.are ‘
two critical states. One is the case when 241 ,for
f-transformations and the other is the case when A J2 for unimodal

"linear transformations.

11




Theorem 5-1. i) TFor a ‘é—transformation F, thet is,
F(x)= xx (mod. 1), (5.1)

the greatest Fredholm eigenvalues are of the asymptotic form as 2d1:

15
X T s (5.2)
where
N
o = —11\1— (log N-log log N+ -1—0%52-9%5 + small order) (5.3)
1 n-1 nf '
p = - (nm+(-1) 1051\1 + small order) n= 0,%1,%2,... (5.4)

The greatest Fredholm eigenvalue(= the slope A ) is the case when
n= 0 and the second Fredholm eigenvalue are the case n=31. The

decay rate of correlation M/3 1is asymptotically of the form:

f’l/l = exp{- —%—ﬁ ( 1-:0%—17)2+ small order} . (5.5)
Here,
N= min {ng1: F(1) e(1/1,1]} . (5.6)

and it is of the asympﬁotic form:

N= - 10lo:é0 & [1"' 2 log1log1 1O%<§;1§.§gl'ig 2 )3 i +

small order] . (5.7)
ii) For a unimodal linear transformation F, that is,
F(x)= {- A x+1 it xe€[0,1/2),

Ax=1 if xeli/m ,1, (5.8)

12
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there exists a constant g and the greatest Fredholm eigenvalue is

asymptotically of the form:

2N/2

A= 2 exp (g+ small order), (5.9)

and the second Fredholm eigenvalue is asymptotically of the form:
- = -2 exp ZN/Z (-g+ small order). . (5.10)

Hence

nl/K'= 2 7L—2+ small order. _‘ , (5.11)

The proof follows by the inverse function theorem.

13
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