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SURGERY OF COMPLEX ANALYTIC DYNAMICAL SYSTEMS
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ABSTRACT A method of quasi—conformal surgery of rational
functions is proposed. By the surgery, rational functions

with Herman rings are constructed. Such a function is
found by a numerical experiment. = The method is also
applied to solving the problem of the number of stable
regions.

§1. INTRODUCTION

Let us consider a complex analytic dynamical system £:C + C,
where f is a rational function with degree 2 2, aﬁd C is the Riemann
sphere. The stable set of f is the maximal open set .wherve' the
iterations f" (n20) are equicontiﬁuoﬁé. Eachkconnécted'componént of
the stable set is called the stablelfegion. D;Sulliﬁan has proved that
each stable region is eventually cyclic by f, and that the cyclic
stable regions are classified into the follwing types: attractive
basin, parabolic basin, Siegel disk and Herman ring. (See [3], [8] and
also §3.)

In this paper, we deal with a method of surgery to construct some
new rational functions from given functions, using quési—conformal
mappings(see §2). We call this quasi-conformal surgery (or gc-surgery).

Such technique was first introduced by A.Douady and J.H.Hubbard [4].
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Although their surgery concerned only with attractive basins, the idea
is applicable in various other situations. We shall formulate the qc-
surgery more generally, and apply it to some existence problems of

rational functions, especially to the construction of Herman rings:

THEOREM 1. For all integer  p 2z 1, there exists a rational

function of degree 3, which has Herman rings of order p.

To prove this theorem, we  cut some rational functions with Siegel
disks along their invariant curves, and glue them up (see 84).
M.R.Herman(5] proved the same result without stating its degree, by a

different method (see §3). Our method shows immediately:

THEOREM 2. For all irrational number 8, there exists a rational
function with a Siegel disk of rotation number 6, if and only if there

exists a rational function with a Herman ring of rotation number 6.

We seek a concrete example of the function in theorem 1 (p=2) by a
numerical experiment(85).

As another application of the gqc-surgery, we have :

THEOREM 3. A rational function of degree d has at most 2(d-1) -
cycles of stable regions, with each Herman ring counted twice.
Moreover, there exist at most (d-2) Herman rings.

Conversely, given the number of cycles for each type of stable
regions; satisfying the above conditions, one canlfind a rational

function of degree d, which has those numbers of cycles.

This theorem answers to a problem in [8] (or problem 7.8 in [3]).
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And it follows that a rational function of degree 2 has no Herman ring.
A sketch of prbof of the theorem is given in §6. For complete proof,

see [7].

§2. FUNDAMENTAL LEMMA FOR QC-SURGERY

Defihitions.‘ Let @, Q' be domains of C. A homeomorphism d:Q » Q!
is a quasi-conformal mépping (qc;mépping) if ¢ is absolutely
continuous on almost all lines parallel to real-axis and on almost all
lines parallel to imaginary-axis, and |¢§/¢Z‘ £k a.e.(almost
everywhere w.r.t. Lebesgue measure), for some 'k < 1. (ef. Ahlfors{1].)

A mapping £:9Q + E;is quasi-regular, if it is a composition of a
gqc-mapping and an analytic mapping.

;Quasi—conformal mappings (of quasi-regular mapping) on Riemann

surfaces are defined similarly byvmeans of local charts.

Here is the formulation of the qc-surgery :

LEMMA. (Fundamental lemma for gc-surgery)

Let g:C + C be a qﬁasi-regular mapping. Suppose that there are
disjoint open sets Ei of G, qé—mappings @i:Ei > Ei'c:E (i=1y¢..,m)
and integer N z 0, satisfying following conditions :

(1) g(E) € E, Qhere E= E1L)...L)Em H
(ii) ¢°g°®;1 is analytic on Ei, where we define ®:E > C by

olg =9 s
N
(

(1ii) g; = 0 a.e. on C-g (E).

Then there exists a qc-mapping ¢ of C .such that d)ogodJ_1 is a rational

function.
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Proof.(see [4], [8]) Define a measurable conformal structure o

on C as follows. Let %% be the conformal structure defined by

. . o
. Weset 0=9% 0. on E, where ¢ % means the pull-back of ©

!dz o 0
by @, defined except on a null set. The invariance (a.e.) of O by g
@ .
follows from (ii). On \U g ™™(E), define 0 by pulling back OIE by
’ n=0 ’ - '
g. Finally, set O = 0. on the remaining part of C.

0
Thus we have defined the G a.e. on 6, which is a.e. invariant
by g from the definition and (iii). Moreover, it follows from (iii)
that the distortion of O with respect to OO is uniformly bounded.
Hence, by the measurable mapping theorem (cf. [1]), there exists a
quasi-conformal ﬁapping. ¢ of C such that ¢*6o = 0 a.e. Then

f = ¢ogo¢_1 preserves the standard conformal structure Ops a-e- So f

is analytic on C, therefore, a rational function.

§3. SIEGEL DISKS AND HERMAN RINGS

Definition. A stable region D of a rational function f is a
Siegel disk (resp. a Herman ring), if fP(D) = D for some pz1 (the
minimun of such p is cailed the order of D), and if there exist a
conformal mapping h:D + A={zeC: |z|<1} (resp. h:D + Ar={CEC: r<|z|<1},
0<r<1) and an irrationa; number 6 such that :

hetP(z) = 6™ Oun(z)  for zep.

We call this 6 the rotation number of D, which is deﬁérmined
modulo Z (and ﬁp to sign, in case»of Herman riqg). For avSiegel disk D,
n™(0) is called the center of D. One easily checks that for the
center Y | | |

fp(zo) =z, and (fp)'(zo)‘= e2Wie.r (1)



Let us consider the converse. Suppose that a periodic point Zq

of a rational function f satisfies (1). If © is Diophantine, i.e.

if there exist constants C, € > 0 such that

2+€

|6 - p/a] 2 C/q (pyq € Z, @21),

then z, becomes the center of a Siegel disk of f. This was proved by

C.L.Siegel(6], by solving a functional equation related to the

linearigzation of f at =z On the other hand, H.Cremer proved that if

OI
8 1is "sufficiently Liouville", Z

disk. (see [3])

cannot be the cenfer of a Siegel

Concerning Herman ring, its existence was proved by M.R.Herman,

for example, for a rational function of the form

eia s\ 2 ) '
z> Z (1—rz) , , : (2)

where QER and r>0 small. He proved, furthermore, the existence of

Herman rings of order p > 1, by his usual method against small
denominators (see appendix of [5]). Compare it with our method carried

out in 54.

§4. CONSTRUCTION OF HERMAN RINGS

Let f,, f1,...,fp (p21) be rational functions satisfying (see
figure 1):
(a) f, has Siegel disks S1,...,Sp of order p with rotation number 8,

where fO(Si) = Si+1 (i=1,...,p-1) and fO(Sp) = ST;
has a Siegel disk s; of order 1 with

(b) the composite fp°...°f1

rotation number —9.

“invariant by

Choose a (real analytic) Jordan curve Y1 in S1

7
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&

. s .k . . . .
fO’ and Y] in S} invariant by fpo...of1. Define Si+1 = fi(Si),

Y = fO(Yi) cand Y! . = (Y{), inductively.

' £
1+1 i
There exist quasi-conformal mappings w1,...,wp : C> C such that:
(i) v.(Y,) = Y!, for i=1,...,p;
it'i i on Y .
(11) ¥, of, = fioxvi,\ffor i=1,.f.4‘,p, where wpﬂ =3
(iii) Each $i is conformal in a neighborhood of E;(Sir\¢;1(Si)).
These wi are constructed as follows: First, by the definition of
Siegel disks, there exist real analytic diffeomorphisms lbi:Yi > Y{
satisfying (ii). Let Bi (resp. Bi) be the component of EFYi (resp.
E;Yi), entirely contained in S, (resp. Si). Take conformal mappings
/ » one 1.0 C_y! . ' - C_R!'
(on each component) wi.c Y, > C Y4 ’such that wi(Bi) c Bi and

wi(EFEZ) = B!. Modifying each wi"near Y; so as to coincide with

the previous wilY , we obtain the desired wi.
i

Now, define a mapping g : E-} 4 by

: - fo on C_LfBi
-1
wi+1°fi°wi | OII Bi.

It is easily seen that g is continuous, and moreover, quasi-regular.

p _
Let By =U (5;-B)), &= idp,
i=1 ’ 0
Ei = Bin wi (S]!_)’ <1>j_ - wilEi (1=1!""p)1 :
and N = 1. Obviously, g(E) = E, where E =y E;. As each wi is

i
conformal in a neighborhood of 5—(EL)Yi), g; =0 a.e. in c-g(E).

Hence all the cohditions in the fundamental lemma are satisfied. So

]

there exists a quasi—¢onformal mapping ¢ such that F = ¢qga¢-1 is

rational function. Write Ai = ¢(Sir\w;1(8£)). It is clear that

A ,...,A_ form a cycle of Herman rings of ¥, of brder'p with rotation
1 P ,

number 6, (See figﬁfe 2.)
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Remark 1. A slightly different application of the lemma gives
another rational function with Herman rings A1, A2 of order 2, as
indicated in figure 3. Pay attention to the orientations of the

invariant curves in Ai’ and note that their disposition is different

from the previous one for p = 2.

Remark 2. It is also possible to construct a rational function
with a Siegel disk, from a given rational function with a Herman ring of

2"18'2 in the

order 1. In fact, we have only to put p =1, f1(z) = e
above.
In the case of order 2 2, such kind of surgery needs certain

considerations on the disposition of Herman rings and their inverse

images([7]).

Example. Let fo(z) = eznie(z—1)2/z and f1 = Tof1oT, " where
t{(z) = 1/3. If © is Diophantine, fo'(resp, f1) has a Siegel disk of
order 1 centered at = (resp. 0). (see §3.) If the surgery is carried

out "symmetically" w.r.t. ]zl = 1, we can get a rational function of

the form (2).

Proof of theorem 1. For this purpose, we take fi so that deg fo
=deg f, =2, f, = ... = fp = idg, and of course, they satisfy (a) and
(b) above. (Such fi exist. see 83.) One can see that the obtained

rational function F is of degree 3, by considering its topological

degree.

Proof of theorem 2. If f has a Siegel disk of order p with

rotation number 8, £q = £P (resp. f1(z) = fO(E) ) has a Siegel disk of
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order 1 with rotdtion number 6 (resp. -8). Applying the above surgery

to fO and f1, we obtain F,'whidh has a Herman ring of rotation

number 6. The converse is proved similarly. See remark 2.

§5. A NUMERICAL EXPERIMENT ON HERMAN RINGS OF ORDER TWO

Herman rings.of order 1 can be"fouﬁd for (2) rather easily, S0 we
shall try to fiﬁd a’rationél function with Herman rings of order 2, by a
numerical'experiment.

The construction in §4 not only assures us the existence of Herman
rings of order p, but a}so suggests that if the Y, is chosen

sufficiently close to the center of S,, then the resulting rational

1’

function F will be close to fo outside a neighborhood of the centers

(by suitable choice of ¢). Hence, if fo(z) = z2+c0 has a Siegel disk

of order 2 with center =z (such ¢ can be found by.an elementary

0 0

calculation), it is expected that a rational function of the form

(z) = z2.z--a + e

Flz) = F, b

ybycC

has a Herman rings of order 2, for suitable a,b % zZ, and ¢ & cqe

Notice that F is close to f, outside a neiborhood of 0, if

a,b %vzo and ¢ % e

Here is an example of such parameters:

= -0.8639244 +0.2103677%i, 1z, = -0.0789079 -0.2497882x1,

o 0
a = -0.0768679 -0.2503722%i, b = -0.0809479 -0.2492042%1,
c =

—0.8648749 +0.2103377%1 .

Fig.4 and fig.5 are the plots of orbits of critical points of f

0



175

—/‘MI \
4 N
H %
: {,/ L\\:.
{ ¢
\ !
1 T

- figure 4. Orbit of critical point O of £o

‘I..‘J \\\
N
.
=S
(©
L ~

figure 5. Orbits of critical points of F.
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and F, respectively. As it is known that the boundary of a Siegel disk
or a Herman ring is contained in the closure of the orbits of critical
points, the dots in the figures, except the middle "curves" in fig.5,
are regarded as the boundaries of the Siegel disks or the Herman rings.
The middle "curves" are to be considered as the orbit of a critical
point, which happen to fall into the Herman rings.

These values of a,b,c were found by trial—and-errdr, so that the

orbits of critical points look like the boundary of annular regions.

§6. SKETCH OF PROOF FOR THEOREM 3

Proof of the first half. First, assume that a rational function £

of degree d has no Herman ring. One can perturb f - so that all the
indifferent (i.e. neither attractive nor repulsive) periodic points of
f  become attractive. (See the example below. There, we use the qc-
surgery again.) It is known that each cycles of attractive basins
contains at least one critical point. Its proof, combined with the
above perturbation, shows that cycles of stable regions of f exist at
most as many as critical points of f, hence at most 2(d-1). (Recall
that f has at most 2(d-1) critical points.)

Secondly, we consider the case where f ﬁas Herman rings. Cutting
f along invariant curves in the rings, one get some rational functions
£, with Siegel disks and with no Herman ring (see remark 2 in §4).
Applying the ébove estimate to each of them, and summing up the thus
obtained estimates, one can deduce that f has at most 2(d-1) cycles
‘of stable regions. Notice that each Herman ring of f 1is counted twice

as Siegel disks of the fi'

//
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Moreover if f has neither attractive basin, parabolic basin nor
Siegel disk, the equality does not hold in the estimate. Therefore f

has at most d-2 Herman rings.

Example of the perturbation. Suppose that £ has 0 as an

irrationally indifferent fixed point, i.e. £(0) = 0 and £'(0) = ezme,
where 0 is irrational. Changing the coordinate, we may assume that
f(®) = 0. Let h(z) be a polynomial of degree k, satisfying

h(0) = 0, h'(0) = -1. It follows from the theory of normal forms [2],

that there exists an analytic local diffeomorphism ¥  such that

eznie. k+3) ]

Vlerel(z) = z + 0(z

For small € > 0, one can construct a quasi-conformal mapping HE of
E, such that

H(z) =2 + enlz), for |a| < (1/e)"/%.
Set g = foi_, B = b(la: |z| < (17e)1/ E*yy g = id, and N=1. It
is easy to verify the conditions of the fundamental lemma for small €>0,
and the lemma yields a rational function f_ = ¢Eeg€o¢€—1, where ¢_ is
a quasi-conformal mapping. If ¢€(O) =0, 0 is an attractive fixed
point of f_. We can choose h so that gE has the indifferent

periodic points of f as attractive periodic points. Then'“fe ‘are the

desired perturbations of f.

Proof of the second half. Let

A_l+zd—AI
f(z) = e (3)
1+X2z -

and p be an integer mutually prime with d-1. For certain X1 =1

and ’X2 5 e2ﬂ1/p, f has 2(d-1) cycles of Siegel disks. The

/2



178

pértﬁrbation technique used in the proof of the first half, together
witch thé surgery‘in remark 2 in § 4, énables us to construct, from

rational functions of the form (3), the desired rational function.
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