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1. INTRODUCTION

It is one of the  peculiarities of 3-dimensional vectorfields
that the knot invariants of periodic orbits can be non trivial. One
can use knot invariants, for - instance, to say given -dynamical
systems are topologically different. 1In this note, we wuse them to
study certain homoclinic phenomena.

Let fﬁbe a C -vectorfield on R ,r > 1. ‘A hyperbolic stationary
point p is of Silnikov type if
(1) DX(P) has eigenvalues 2 ,-u* (w Wwith positive
1and A and nonzero w ,
() A> M,
(3) the stable and unstable manifolds of P intersects at a
curve [” .
Without loss of generality, we can suppose p is the origine.
The homoclinic orbit [” is itself an interesting object of

study. A homoclinic orbit with trivial knot type bifurcates to one



217

with very complicated knot type. Suppose that [’ (more precisely
T is unknotted.‘lf one perturb the system so that the upper part
ofkthe unstable manifold comes back siitely aboye _the- local kstable
maniiold. Then it twists many times arround the local unstablé
manifold, goes away from the origiﬁe and comes back again ﬁear the
local stable manifold. if one adjusts‘ the perturbation, then the
unstable manifold hitts the stable’manifold and makes new homoclinic
orbit ff;hoée knot type is of 2-n torus knot where n is the number
of twists. If one perturb the original homoclinié orbit /" so that
the unstable manifold hitts'the local stablé manifold at the tpird
turn, then one has a homoclinic orbit of 3-n tbrus‘ knot type.
Moreover if one makes another homoclinic orbit from the homoclinic
orbit of 3-n torus knot type, then one has a cablg knpt about 3-n
torus knot, froﬁ which’one cén genefates more complicated Kknots. In
any case, if ] ’is generated fron1[‘ Sy a small perturbation, then
the knot type of ["is companidn about vthev knot [~ . S0 we .can
introduce hierarchy relationship.among the homoclinic /orbit; in a
Silnikoﬁ bifurcation(if a l-parameter family of vectorfields has Ma
stasionary point of Silnikovatype for a parameter ,value, then it
also has Silnikov stationary points fbr infinitely many parameter
values. Parameter values with Silnikov stationary point are non
isolated) | | | | |

Another possible application is to definé a modulus of
attractors in a bifurcation from Silnikbv homoclinic orbit. If lthe

eigenvalues 1 and—-M tiwsatisfy the inequality # < A < 2M then



218

arbitralily small beftﬁrbation can generates attracting periodic
orbit of the séme knot t?pekas the original homoélinic orbit. Since
thefe are infinitely many homoclinic orbits of 'difféfent knot t&pes
in a Silﬁikbv bifurcation, there appear also infinitely | many
attracting periodic orbits with different kndt-types. |
In this note, we show how knot invariant are used ’to defihe a

modulus of homoclinic orbit ‘of Silnikov stationary point.

| THEOREM. LetkC1-vectorfie1d X; (i=1,2) have é é -linearizable
stationary points’pi of Silnikov type‘with eigenvalués li, ~ M3 LW,

Suppose that N/ui#2:/uz, Then there is no homeomorphism h:RB———> R3
such that

| h(p,)=p,, and

h, maps each orbit of X4 onto an orbit of X, .

To prove the theorem, we consider 'period 2(as the  Poincare map)
orbits;. As a consequence of Silnikov theorem; there are infinitely
many such orbits arbitréfily close to the homoclinic orbit; We use
knot invariants of periodic orbits to count the number  of twists
around the homoclinic ofbit. The ratio of the numbers of twists in
the first and the second turns determine the ratio of eiginvalues?
and &« . Therefore m/Xis ‘determined by tépological &afa of phase |
portrait,that is, #/xis a modulus.

For diffeomorphisms’ on n-manifolds it is known thatv if the
stable manifold of a stationary’ point and unstable manifolds' of

another stationary point intersects -non +transversely, then there
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exists a modulus . However this result can not Beb extended to
vectorfields, and a modulus of‘ vectorfields exists only in more
restricted configurations( see [4] for unified exposition on modulﬁs
of vectorfields from the foliation technics). Main reason of this
difference is that topological equivalence does not preserve ‘'time
lenth', which corresponds to 'number of points on a orbit' in the
diffeomorphism case. In our 3-dimensional éase, we cén use knot
invariants to measure the time lenth.

In the following sections we give the sketch of the proof.

2. TOPOLOGICAL INVARIANT

In this section we define a topological invariant

Take a section at a point on the hdmoclinic orbit, and consider
periodic orbits near [~ whose perio& are 2 under the Poincaré map on
the section. Let ¥ detone the set of such periodic orbits. Let

A(t) denote the Alexander polynomial of the knot ¥ , ¥y €/ We set

. Ay (Ay)
U =R, )

where infimum is over all Ye P with link(¥,]") > n ( linkC ¥ , 7 )

denotes the linking number of ¥ and /~ ). Let

N = Lem m

oo

It may seem that depends on the choice of the section. But it

is independent from the choice(notice that the 1linking number is
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large iff the periodic orbit is close to the homoclinic orbit).
Therefore is a topological invariant ,and if is computed from

eigenvalues, then we have a modulus.

3. SILNIKOV'S THEOREM

Without loss of generality we»suppoée that X is linear in the
unit cylinder

S= {((r,6,2) | ® < r <1,6 & R, |z|] £ 1}

The orbit which starts at the point (1,6,,2, ),2, > @, leaves the

1]
[a—y
.

cylinder at the point (e*",6, +wT,1), where T is given by z e
So we can define a map
L: {(1,6,2)] ©€R,8< 2z 41}
— (e | 8<r<1,04R
by | |
| L: '(1, 0,2)= (z*%0 -ulog z,1).
Notice that the orbit which starts from a point (1, 8 ,z)‘rtwists
around the z-axis aboﬁt —i%fflog z times.
If d is sufficiently small positive number, then we can define a
diffeomorphism
£:3°5((1,0,2) | 0 €R, ]zl < 1}
defined by the flow.
Now we have a local deffeomorphism foL. By thev Silnikov's

theorem there exist infinitely many horseshoes. As a consequnce,

there exist infinitely many ‘'period-2' periodic orbits near the
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homoclinic orbits. If ¥ is a 'period-2' periodic orbit, then it
comes in the cylinder at two poins with the z-coordinate m( ¥ ) and

MCY), m(Y) £ M( Y ). It is not hard, but messey, to prove;

PROPOSITION. 1im inf—222 M (¥) > %

E0 /&%y m(Y) -

where minimum is taken over all y's with MCYy ) < &

4. CALCURATION

In this section we show that the left side of the equality in
the proposition is determined by knot and link invariants.

Let N(z) =— E%:%glog z. Roughly speaking, N{(z) measures how
many times the orbit which start at (1, 6 ,z) twists around the
z-axis. The linking number is determined not only by the number of
linking in the cylinder but also by the behavior outside the
cylinder. But the behavior of the flow outside of the cylinder is
very moderate(at least near the homoclinic orbit), therfore we haye
a conxtant C such that

[NMCY #Nm¢ Y))-1ink¢y, 7] £ C

for all Y in &.

It is a little bit complicated to .investigate the knot invariant
of Y .

First suppose that /7 is unknotted. Notice ~that the twists in
the turn with m( ¥ ) can be unknutted and the knot type of 7 Y s

determined only by the turn with M(Y). Thus there exists a constant

C, which is determined by the twists outside ,the cylinder, such
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that ¥ has knot type of tofus knot Ty m with
INMCY »-nl L C.
In the general case in which is knotted, we Have a constant C
such that is the 2-n cable about , With |
[NMCY »)-n| £ C.
Thus we have
by ()= Apt?) Ap, (b, |
see [1,p.144]. The degree of the polynomial Aﬁt’) is fixed, and the
degree of Anmd)is n-1.
Therefore

PROPOSITION. For any'&>ﬂ, there exists a number N such that

\_"‘ﬂ_(_AX_)_1| < €&

N(M(Y))

for all Y € 4 with‘ NMC Y ) DN

Now the theorem 1is a consequence of these inequalities.
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