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FOLIATION CYCLES
FROM THE SINGULAR HOMOLOGICAL POINT OF VIEW

Yoshihiko MITSUMATSU = X< JE 3
(University of Tokyo) (X - 37)

§0. INTRODUCTION.

In this exposition, we try to consider foliation cycles as

cycles of some kind of singular homology theory to define the

. , *
simplicial volume (or Gromouv’s invarianf) of foliation ¢ycles. The
main purpose of this is to prove the inequality of Milnor—-Sullivan
—Gromov type (see [4]), which is mentioned in §4. Throughout this
paper, let (M,%#) denote :a codimension q and dimensioh p smooth
foliation F on a closed n—manifold M whose tangent bundle T¥ and
normal bundle vF are both oriented, where n=p+q.

The homo]égy theory we use is that of Radon measures of compact
supports. ' In [8J], Thurston made use of this homology to prove that
vo](X)=v3HXH‘uhere X is a hyperbo]ic Sfmanifo]d, Xl is its_Gromov's
invariant, and Vg is the volume of the ideal hyperbolic 3-simplex.
In §1, we review the definition of this homology theory and give a
proof of Theorem 1.1 which asserts tHat the usual singular homology
and the compact support Radon measure homology for smooth manifolds
are isomorphic and isometric.

In §2, we consider the foliated version of Radon measure
homology. We claim that foliation cycles are in this homology. The

key to this claim is the existence of fundamental cycles of
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foliations (Proposition 2.2). Of course, we give the definition oF‘
fundamental cycles of foliations, but the proof of the existence is
postponed to the forthcoming paper [S5].

Then we can define the siﬁplicfal volume of foliation cycles.
Roughly speaking, the simplicial volume ICll of a foliation cycle C
(whichrcorresponds to a transverse invariant measure 4) should be
something like JLé?"L“dIMl.

In §3, we give two kinds of examples, i.e., bundle Fo]iations
and foliated bundlies. Fundamental cycles are constructed explicitly
instead of showing the existence of fundamental cycles for them, and
expected formulas of the simplicial volume of foliation cycles of

these two cases are shown, which give some reality to the spirit

o = | eqllllidlzl.



§1. RADON MEASURE HOMOLOGY AND GROMOV’S INVARIANT.

Let us first review the Radon measure homology theory of smooth

manifold X (see Thurston [8]). We set

Zk(X) {C"-singular k-simplex of X} with uniform

C"-topology (0¢rg=)
and

C, (XD the free R-module on Zk(X)

{(finite linear combination

of Dirac measures (=point measures) on X},

so that the inclusion as a subcomplex

a 2 (Cu(X), 8) — (S4(X), 8) = (Cu(X),u) for r=0
the usual singular

chain complex of X
is obtained and induces the isomorphism between the homologies
aw ¢ Ha(CW(X), 3) ——— Ha (X R)
because of the usual smoothing argument. Here, we remark that the
simp]ieial semi-norms on both homologies coincide and identify them.?

Next, we set

RCk(X) = {Radon measure on Zk(X) with compact support).
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Rck(X) is a normed space by the usual dual norm -1 to bounded
continuous functions. A Radon measure 4 is decomposed as H=p —f
uniquely where i,  and u_ are positive Radon measures and the measure

|zl, i.e., the absolute value of x4 is defined as

Then the norm Izl may also be defined as
_ k
el = 1l (EZ"(X))

For.ﬂERCk(X).

Because the face operators

k

3, s SROK) ——— SR i=0,...,k,

are continuous and Radon measures are covariant against continuous

maps, we obtain a continuous boundary operator

ok, \k . '
J = Zi=0( D7ey s RC (X)) — RCk_£X)
}
as usual. For a homology class c, the simplicial volume lcl is
defined to be inf {lzll; z is a cycle which represents c). Hence we

obtain the isometric inclusion of chain complex

¢t (Cu(X), 8) — (RCx(X), ) .
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THEOREM 1.1. The .inclusion ¢ induces the isometric.

isomorphism
tw 1 He(X) ——— RHW(X) ,

where RH4(X) denotes the homology of (RC.(X),d) which is ca]]ed&the

Radon homology of X.

Thurston’s main purpose to introduce Radon homology is the

following.

DEFINITION 1.2 (Thurston’'s new definition of Gromouv’s

invariant, [83). For a closed manifold M, .Gromov’s invariant
IMl is defined as the simplicial semi—norm of the fundamental

homology class [M] in the Radon homology RHi(M).

COROLLARY 1.3. Gromov’s invariants old and new coincide.

PROOF of Theorem 1.1, Let us take a Riemannian metric on X
and fix 1it.

Step I. Let I(x) be the injectivity radius aé x€X, and
U(I(x)/2,x) be the open metfic ball 6? radii I(x)/2 centered at x.
Then we choose Eountab]]y many xi's (1=1,2,3,...) so that {Ui
=U(I(xi)/2,xi)} is a locally finite covering of X. Also we choose a
partition of unity {¢i;i=1,2,3,...} which is subordinate to the

covering {Ui}.
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A Radon measure 4 on X=ZO(X) with compact support is a
g-cycle. First of all, let us try to deform £ to an ordinary
0-cycle which is homologuous to # in (RC4(X),d). Let H=-{hi t} be a

’

family of deformation retracts of Ui to x, along geodesics, i.e.,

hye = e, (X0 expxi—i t U, —— U, t e [0,1]
so that

hi,O(Ui) = {xi} . hi;l = IdUi s
and

hl,t(xi) = % for any t € [0,10 .

Let us re—index Ui's so that for some N, UirBupp(M)#¢ iff igN. Then

we devide # into Radon measures ¢iﬂ on Ui (i=1,...,N) énd set

ry = by ou# T Iuid“i ,

Identifying any singular O-simplex with the poihf of its image,

we define an ordinary O-cycle H#(M) as

N

Hy(w) = .2

r.oX.
1171 "

Then we show that Hu(4) is homologuous to 4. Let A, be a

continuous map

AU, — s1ex)

defined as

[A.<x>](t> = h. (x), t e 0,11 =al .
1 1,t ;

’
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We set li=Ai#ﬂ and define -a Radon measure 2 as

Y
=Tk
Then we see
a2 = =N (howst, = ) = Ho(p) - 2
i=1Posty ) = Hy (s

and hence H#(ﬂ) and # are homologuous in (RC4(X),23). Therefore the
homomorphism

w1 Hg OO ——— RH (XD

0

is sur jective.
Step II. ' If it should be possible to dgeneralize the above

argument to higher dimensional chains, we would be fortunately able

to construct a chain homotopy between (Ci(X),8) and (RC4(X),3), but

it seems difficult to take a “locally finite" nice covering on

sX(X) (k>0). Therefore we have to do cycle by cycle. Let 4 be a
Radon measure on Zk(X) with compact support (k>0). We define the

support of the faces of 4 as follows.

= Supp(x) C =R(X),

Sk
- yk k=1
Siog = Yjz0d(8) < 27 100,
and inductively
S, 4 = Ujioaj<si> csi=lxy , i=1,... k.

We need another one. Let S be the total support of & defined as

o L 7



S = the image of the evaluation map Ak X Sk—~———* X .

0f course Si's and S are compact. Now we take a finite covering
{U(O,i)=U(8,xi) H i=1,...,NO}

of S and a partition of unity {¢i} whicH is subordinate to {V{(0,i)}
where 8=2—1min{l(x);x68}. Then; inductively we construct-a finite
covering of S]'(1=0,...,k) and a partition of unity as follows. Let

us assume that S]__1 is covered by

1-1

v(i-1,1) = U(a,ai Y i=1,.f.,N]—i}

and {#(1-1)} is a partition of unity where Ul(e,c™ is an
e-neighbourhood (w.r.t. the uniform Co—topology) of a singular
r-simplex o™ in S™(X) so that we have the deformation retract of
Ute,o™) to ¢ along geodesics. Now, for each j=0,...,1,
S]rﬁj_ig?T:ITTT is compact and hence fhere exists a finite covering
(U(S’Uilj)} of it. Take a partition of unity {wi’j}uhich is
subordinate to {U(e,ailj)}. Then we define ¢, as

) s J

$i,i T i, % (9 AP
and re—index {U(s,o! )Y and {¢. .} as {U(S,U!)} and {¢.}
- iy i, i i

(i=1,...,N1) and set
‘v‘(],i)=U(e,o}) and  9(1,i) = ¢, .

Then {V(],i);i=1,...,N1} and {¥(1,i))} are the desired objects.

Now we have the family of deformation retracts
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H = (hi,t ; i=1".o"Nk}

where hi is the deformation retracts of V(k,i) defined by the sameg

t
’ >
method as before and define an ordinary k-chain Hy(u). If we devide

Ak

x[0,1] into (k+l)-pieces of (k+l)-simplexes
.<y0x{0},...,Y]X(O},Y]X(l},...,ykx{1}> ’ ] = O,ooo,k
where Ak=<y0,...,yk>, we can construct a Radon measure 1 € RCk+1(X)

and we see
HA = H#(M) - 0.

Also we see easily that if 4 is closed, so is H#(u). Therefore uwe
see that (4 iHx(X)——RH,(X) is sur jective.

Step III. To show the injectivity of (x, we only have to
remark that in Step Il if # lies in Ck(X) from the first, also 1
lies in Ck+1(X). If two ordinary cycles ul and u2 € Ck(X) are
homologuous in RC4{(X), i.e., there exists a Radon measure lGRCk+1(X)'
such that

01 = 4y = 4y s
we apply the above procedure at (k+l)-stage to 1 and that at k—-stage

to 4 and Hoy s then we obtain
GH#(l) = H#(Ml) - H#(uz) , H#(l) € Ck+1(X)
and there exist 11 and 12 GCk+1(X) such that

ali = H#(,ui) T M for 1 =1, 2 .
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Therefore, ul and ﬂz is homologuous in (Ci(X),d8) and the injectivity
of (% is accomplished.

Step IV. It remains to show that ¢x is isometric, however,
this is fairly easy. The Facf»thag ¢ is an isometric inclusion
implies that ¢4 is norm—decreasing. On the other hand, in above

constructions, clearly we see

IH Cadll €l

This fact implies that ¢4 1s norm—increasing and we finish the proof

OF Ther‘em 1-10 K QOEOD‘ A
REMARK ., 1). We can detect the cycles of RH4(X) by the
pairing with smooth forms if we work in C -category (r21). For

example, such a method works well in the proof of Proposition 3.3.
2). If the obstruction mentioned in the beginning of Step 11

might be resolved, we would be able to prove the following problem

in the same way. Let us loosen the cﬁndition that the support of u«

is compact into that # is totally Ll, i1.e.,

11 (S%(x)) < o
in the definition of the Radon hpmo]ogy theory, and let 1RH,;(X)

denote the homology of the chain complex of such Radon measures.

1 1

PROBLEM. RH& (X) = THu(X) 7?

Where 1H*(X) denotes the El—homology of X (see [81).
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§2. FOLIATION CYCLES AS SINGULAR SIMPLICIAL CYCLES.

In this section, we consider the foliated version of §2.

k

Let S(M,7) be the subspace | U= (L) of I°(M) with the induced

topology, i.e., the set of singular k-simplices each of which has
its image in a single leaf. Restricting everything to this

subspace, we obtain subchain complexes

(Cu(M3F), ) C (Cu(M), )
N N
(RCx(M;F), u) C (RCW(M), )

and the induced maps on homologies

o

RH( (M;F) — RH, (M) .

{x

Our interest is concentrated on RH,(M;#F). It is trivial that
H*(M;?) = Lg;H*(L)

In this foliated version, the induced homomorphism
tw ¢ He(M3F) — RHL (M3

1s not isomorphic any longer. Foliation cycles which 1s not
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supported on finitely many compact leaves are lives outside the
image O’F L w s
Now, let us start to construct foliation cycles .in Cx(M;F and

define the simplicial volume.

DEFINITIGON 2.1 (a fundamental cycle of a foliation).

Let'Ci=(N?,Pi,Fi) be a triple of a smooth compact manifold N? which
may have piecewise smooth boundaries, a continuous map Pi:APXN?———ﬁM
where AP is the standard simplex, and a continuous R-valued function

£, on N?. A finite family Z={{, ; ie€l),(#I<=) of such triples is

ca]ied a fundamental cycle of a foliation #F if it satisfies the
following three conditions.
1) For any i€l, the map
p. : AP —— M
l,Y
has its image in a single leaf for any yeNi, and for any xeAP
the map
pX ¢t NG — M
1 1

is smooth and transverse to F where . y(x)=P>i((y)=Pi(x,y).

2) The support supp(Fi) is a codimension zero cofnered
submanifold of Int(N?).
3) The restriction’ZIL of Z to any leaf L of F is a

Fundamen%a] cycle of L in the homology of locally finite chains

where the restriction Z,L is given as follows.
2l = 2F ey

where the summation is taken over the set {y yEN?, Pi

{(x),
Y

’
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iel} and Pi v is considered as a singular p—-simplex.
’

PROPOSITION 2.2. For any (M,#), there always exists a

fundamental cycle.

The proof is abbreviated here (see [5]). .
Once we obtain a fundamental cycle Z of (M,#), it is easy to

construct a cycle in RHa(M;#F . Each pi determines a continuous ma;

P, t N, — SP(M; )

and # is restricted to a Radon measure Mi on Ni' Now, we have a
Radon measure Fiui on Ni for each 1 and obtain a chain MZ=¥Pi*(fiﬂiE
in RCp(M;?). It is easy to check that #Z is a cycle and mapped to

the foliation cycle C by the canonical homomorphism
B8 : RCWuiMiF) — Q. (M)
which is defined by the integration on simplices.-

DEFINITION 2.3 (the simplicial volume of a foliation cycle C

w.r.t. a fundamental cycle Z). The simplicial volume lu-ZIl of a
C=Cﬂ w.r.t. a fundamental cycle Z=(Ci=(N?,pi,Fi) ; i€l) of F is

defined as follows, if 4 is positive.

Nup-ZI = ZieIJN? Ifi(y)idui(y>
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In general, i is decomposed into positive measures N and #_ so that
#=ﬂ+—“—' Then, the simplicial volume lu-ZIl of the simplicial cycle

uZ is defined as follows.

Nee- Z0W = Wlpl-Z0 = N -Z0 + Ha_-ZI .

DEFINITION 2.4 (the simplicia] volume or Gromov’s invariant of
foliation cycles). The simplicial volume ICI of a foliation

cycle C is defined as follows.
ICHh = inf{lle-ZW 3 Z is a fundamental cycle QF F) .
We have seen that for the natural chain homomorphism 8 :
B”i(cu> N {cycles in RCx(M;#)) # & .

Let R(Cu) denote this subset of RCL(M;%F). Then, it seems quite

reasonable to define Gromouv’s invariant IC | as
H new
HCan?w = inf {20 ; 2 € R(Cu)} .

QF course we see ucu"neu < HCﬂH.

- 14 -
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ew

PROBLEM. HCﬂIIn = HC#H,

for any foliation cycle Cu.

§3 shows that this is true for bundle foliations and foliated
bundles. QOur definition is convinient to prove the inequality

Theorem 4.1.

— 15
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§3. EXAMPLES AND FORMULAS.
Instead of proving Proposition 2.2, we give examples of
fundamental cycles for typical two cases (Example 3.1) below and

show that the expected formulas for the simplicial volumes hold.

EXAMPLE 3.1. For the following two cases, fundamental

cycles are easy to construct.

3.1.1). Bundle foliations.

Let 7:M"—B% be a smooth fibre bundle with its canonical fibre
LP and # be a foliation by the fibres of 7, i.e., F={(zx -(b);beB}.
Théh take a finite open covering U={Uj;j€J} of the baée space B such
that each restriction n_lﬂj——JjJ is trivial, and fix a product
structure KclUJZUJXL on each of them. Next, take a partition of
unity {¢J} which is subordinate to U and a fundamental cycle geKrkUk
(rkeR, ak's are singlar p—-simplexes) of L. Then define pi:AéxUj——*M
to be pizgkaj for i=(k,1)eKxJ=I. Then Z={Ci=(Ui,9i,¢i)}-is a

fundamental cycle of #%.

3.1.2), Foliated bundles.

Let K:M;FﬁBp a smooth Fibrg bundle, F9 be the canonical fibre
of 7, and # is a foliation on M which is transverse to the fibres of
. Thea take a fundamental cycle zielrigi of thé base manifold B
and a product structure APxF onvai*(z:M——*B). Define pi:APXF——ﬁM
through the above product structure. Then Z=(Ci=(Fq,pi,FiEl)} 1s a

fundamental cycle of # This easy construction has much importance
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as we will see below.

PROPOSITION 3.2. For a foliation cycle C of a bundle

foliation as in Example 3.1,1), as is expected, the formula
ICH = [zl (B)-ILI (3.2.1)

holds, where U= is the corresponding invariant measure, which is

naturally defined on B.

PROOF . The inequality "ICHLTul(BYILI" is the consequence oFi
"the construction in Example 3.1,1). Let us prove the converse. Forg
any/Fundamenta1'cyc]e Z={Ci=(Ni,Pi,Fi)} of #, %:Ni——*B is locally
diffeomorphic, and Fi is supported on the interior of Ni so that we
can consider fi as a continuous function f on B. Therefore, using

¥'s, we obtain
hu-ZI = ZiINilfildﬂi = Zif8t¥ildg = szii¥i1du :

By the definition, for any y€B,

T lF ol = uz,Lyu
2 e = Gromov’s invariant of the fibre L.
Therefore the converse is proven. Q.E.D.
PROPOSITION 3.3. In the case of a Fo]iated bundle as in"
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Example 3.1,2), the following formula is satisfied.

icH = Jul(Fy-1Bl. (3.3.1)

PROOF. For simplicity, we assume |#|(F)=1. It is easy to

see HCHgluI(F)'HBH as before. For any fundamental cycle Z of %, we
have the cycle ﬂZGRCp(M;?) and i*(u'Z)ERCb(B) which represents the

fundamental class of B. From §1 and §2,

> Wlal-Zh > WpzZl > lru (2 > IBI

ci

turns out. QOEOD;
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S4. AN APPLICATION.

In the case p=g=even, we can estimate the transverse Euler
number [<e(u#), L[CI>] of a foliation cycle C by its simplicial

volume ICI.

THEOREM 4.1. Let (M,#, v#, and C be as usual and p=g=even.

Then we have the following inequality.

I<e(u#, CCI>| ¢ 2 P(p+1IICH.

For the proof, see [5]1. This 1s motivated by the following

well-known twoc theorems.

PROPOSITION 4.2 (Bott’s vanishing theorem, see [1] and [21).

V¥ admits a GL+(q:R)—connection which is flat along the leaves of #.

REMARK . Such a connection is called a "Bott connection’ or

a 'basic connection'.

1

PROPOSIfION A.3 (Milnor-Sullivan-Gromouv-Smillie’s ‘inequality,

see [31, [43, [7D. Let X be an oriented closed p-manifold and §
be a flat oriented RP-vector bundle over X. Then we can estimate

the euler number of § by Gromov’'s invariant |X| as follows.

I<e(£), CX2>1 < 2 Puxu,
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