goooboooogn
0 5800 1986 O 16-32

16-

On the 2-local structure of groﬁps

of characteristic 2 type

& % W1
Kensaku Gonmi

Department of Mathematics, College of Arts and Sciences

University of Tokyo, Komaba, Meguro-ku, Tokyo 153

1. A trichotomy theorem.

By dgfinition, a group is of characteristic 2 type if it
has even order'and every 2-local subgroup L satisfies the
condition ﬁCL(OZ(L)) < OZ(L). ‘For finitesgroupé G of‘charéc-
teristic 2 type and S ¢ Sle(G),vwe shall denote by M(S) or
M(S, G) the set of all maximal 2—local'subgroupé of G contain-
ing S. A familiaryexémﬁle of groups of characteristic 2 type
is a Simple group of Lie type G* defined over a finite field
of characteristic 2. Suppose G* has rank - £ and take S* €
8y1,(G). It can be shown that M(S*) ~is equal to the set of
all maximai parabolic subgroups (that is, parabolic subgrpups
of«raﬁk' g -1 confaining the Borel subgroup B* = N *(S*),
which is one of the reasons whj the set M(S) 'playedGan impor-
tant role in the recently finished program to classify the |
finite simple groups.of charactéristic ZNtypéo"

More recent investigation to revise the classification
focuses attention ontrénk.qng parabolic subgroups of G# rather
than maximal pﬁrébolic subgroups. To be more specific;’we define

the (2-genefated)’¢ore of each rank one narabolic subgrouo ‘P of

¢* to be the subgroun Ozf(P) generated by all 2 elements of P,
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and define the corresronding objects in an arbitrary finite group

G as follows.

Definition. If a subgroup Y of a groun X is contained
in a unique maximal subgroﬁp’of X, we say ihat X is Y-irreduc-
ible. For finite groups G and S e Sylz(G), we denote by
- C'(S) or C'(S, G) the set of all S-irreducible subgroups of G,
and we denote by C(S) or C(S, G) the set of all elements X
of C'(S) such that 0,(X) # 1,

L * * ' *
It can be shown that if X ¢ C(S , G ) then either X<B
or X is the core of some rank one parabolic subgroup contain-
* _ : : %
ing ‘B . Thus, we observe that one of the following holds in G .
* % '
(1) M(s)| = 1.

e - . ,
(2°) There exist elements X (i =1, 2) of C(S*)
such that 0,({X;, X, %) =1. | B

L e :

(3 ) There exist elements X; {(i=1, 2) of C(S*)
such that 0,( (Xl, Xz)) # 1 and, whenever <X1" X2> <M e

% | » .

M(S ), M/OZ(M) has a quasisimple component L whose central
factor group L/Z(L) is isomorvhic to a simple Lie type group

of characteristic 2 and ranmk at least 2.

Indeed, (1) holds if and only if 2 =1 and (2°) holds if
and only if 2 = 2., When ¢ > 3, take two adjacent nodes of the
Dynkin diagram for ¢* and let X; (1=1,2) be the cores of
the associated rank one parabolic subgroups containing B*. _
Then the X, satisfy the conditions of (3*); Here and elsewhere,
however, wé consider the groups Sp,(2)' = Ag, G,(2)' = PSU3(3),'
and 2F4(2)' to be Lie type groups ofﬁcharac;eristic 2-and
rank 2, although they do not possess BN-pairs at characteristic 2.

We note that simple Lie type groups of characteristic 2 and rank
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1 are the grouns SLZ(Zm), PSUB(Zm)ﬁ‘and- Sz(22m-l

) @z 2),
and that they are sometimes called Bender groups.

The purnose of this paper is to show that an analogous tri-
chotomy holds tfue fér an arbitréy'group of characteristic 2 type,
which is presumably the first nontrivial remark made on the re-

lationship between M(S) and C(S). In order to state our result,

ﬁe need the following:

Definition. For finite groups G and ‘S ¢ Sylz(G), we
denote by L(S) or L(S, G) the set of all subgrouns Y of G
that contain S and satisfy 0,(Y) # 1.

We say that a finite group G 1is almost simple if the
generalizéd Fitting sﬁbgroup F*(G) is a nonabelian simple groun.
For almost simple grounps G and S e« Sylz(G), we deno;e by
C'"(S) of C"(S, G) the set.of ali elements X of C'(S) such
that NX(S n F*(G)) # X. Ve note that C"(S) is nonempty (See
2.1) and define | | o |

D"(S) = D"(S, 6 = NO,(X) (X € C"(5)).

We say that the almost simple group G 1is large if D" (S, G)

# 1 for S e Syl,(G).
Our main result may now be stated.

Theorem. Let G be a group of characteristic 2 type and

take S € Sylz(G). Then one of the following holds.

(1) [M(S)| = 1.

(2) There exist elements Xi (i =1, 2) of C(S) such
that 0,({X;, X, ) = 1.
, - (3) There exist elements X, (i =1, 2) of C(S) such
that 0,({X;, X, ?) #1 and, whenever (Xl, X2_>' < Y e L(S),
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'Y/0,(Y) has a-quasisimple component :K/0,(Y) such that the

almost simpe group
As(K) = Ng(R)K/Cy_(gyk(K/0z, 2+ (K))

is large.

For the sake of brevity, we shall abuse the terminology

and call K/OQ(Y) as in Case (3) above allarge guasisimple comvo-

ment of  Y/0,(Y) (with respect ot  S).

"‘-The‘Theofem leaves some open problems. First, in Case (3)
the group A = AS(K) is a large almost simple group and A =
TF*(A)’ for T ¢ Sylz(A)j’ Therefore, we would pose the follow-

ing:

‘Problem 1. Find all large almost simple groups A such

that A = TF (A) for T e Syl,(a).

Of course, since we aim to apply‘the Theorem to revisions
of the classification,“we may assume that A is a "known" gfdup
(or a K-group). It is reported that Kantor and Liebeck-Saxl
obtained a complete list of maximal éubgroups of odd index of
almost simplé grouns, which could presumably be used to enumer-
ate the groups in Problem 1. | |

If an almost siméle grbup A satisfies the'cOndifibn A e
C'(T, A) for T ¢ Sylz(A); then A ¢ C"(T,jA) and it follows
that A is not large. Therefore, the groups in Problem 1 must
be contained in the list of almost‘simplé?groups.‘A such that
A ¢ C'(T, A) and A =TF (A) for T ¢ Syly(a). Aschbacher has
worked for such a list [1, Th. 2] (in fact, Aschbacher considers
‘almost'simple groups A such that " A e C'(T, A)). We see that
if F*(A)' is a Bender group and A= TF*(A)"for T eLSylz(A)
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then A € C'(T, &) and so A 1is not large. This shows that the
1arge quasisimple component of Y/OZ(Y) in Case (3) is not a
central extension of ény Bender groups, and thus Case (3) fits

in well with Case (3*) occuring in the Lie type grours G*.

There are certzin easy subcases of Problem 1. For instance,
if F (A) 1is of Lie type and characteristic 2, then A is large

d only if) A ¢ C'(T, A). To see this, take an arbitrary
X €C'(T, A). If AfC'(T,A), then X#4A, so Xn F (&) #
F*(A), and X n F*(A) is contained in a maximal parzbolic sub-
group of F*(A) by a result of Tits (see (1.6) of [2]). EHence,
it follows that 'CX<02(X)) < Oz(X) and, consequently, Z(T) <
0,(X). Thus, Z(T) < D'"(T, &) and A 1is large. This argument
applies also to the czse F*(A) = 894(2)’, G2(2)', or 2F4(2)'
provided we suitably define maximal parzbolic subgroups of
;hese simple groups. |

Also, if An < A £ Zn, then A 1is large only if n is even.
If n 1is odd, then T (¢ Sylz(A)) fixes precisely one letter
in Q= {l. 2, ..., n}. Assume that T fixes 1 and take an
arbitrary T-orbit 4 G {1hH on Q. Then T is contained in
the direct product Y = z{l}lJA x U of the symmeﬁric_group
z{l}u A on {l}‘u A and a Sylow 2-subgroup U of the
symﬁetric‘group on Q —f{l} u A. The intersection X =Y n A
is contained in C"(T, A) and 02(X)v: U. Thus, D"(T, &) = 1
and A is not large.

Conditicn (3)_says that an element of M(S) isrlarge in
some sense. Therefore, the Theorem probably could be used to
analyze characteristic 2 type grouns with small 2-local subgroups.
As an egtremem‘caqéjw cogside:vthe case that every 2-local sub-

group of G 1is solvable. Then Case (3) is ruled out and Case
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(1) can easily be handled, so only Case (2) remains to be inves-
tigated. 1In particular, the Theorem contains Theorem A of [3]
as a special case, because if the Xi in Casev(2)»are solvable
then each X, is a {2, pi}-group for some odd prime ;- The
Theorem presumably could be used to analyze other small charac-
teristic 2 tyne groups such as quasithin groups, although Case
(3) is not automatically ruled out in such groups.

In addition to finding apnplications of the Theorem to small
characteristic 2 type groups, we would pose to investigate each
of the three cases (1), (2), (3) for general groups of character-
istic 2 type. Foote and others have already investigated Case
(1) in the broader context of the theory of blocks [4, vp. 37 -
42] (see also an article of Stellmacher [4, po. 123 - 1251), but
a muéh‘simpler direct épproaéh is desirable.

AGoldséhmidt [5] determined the étrﬁcturé‘bf groups FXi
(1 =1, 2) having a common 2-subgroup S of index 3 such that
" no nonidentity subgroup of S is normal both in X; and in X,,
and we have ever since been asking in what direction Goldschmidt's
theorem should be éxtended. Case (2) of the Theorem suggests one

possible extension: that is, we would pose the following:

Problem 2. Determine the structure of groups X, id=1,2)

that satisfy the following conditions:

(a) Xi, (i = 1, 2). have a common 2-subgroup S;
(b) lXi,: S| . is odd and X is S-irreducible (i =1, 2);
(c) no nonidentity subgroup of S is normal both in X,
and in XZ H

(@ Gy (%)) < 0p(X) (4 =1, 2).

Without being aware of the Theorem, several npeople includ-
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ing the author have already considered various special cases of
Problem 2 (e.g. Stellmacher [6] and Gomi-Tanaka [7]1). Their
results are far from giving a satisfactory answer to Problem 2
because verystrbngadditiohal assumptions are made, but some of
them have already had applications to simple groups of character-
istic 2 type (for instance, see [31).

Case (3) reminds us of Mason's problems concerning para-
bolic type subgroups [4, pp. 155 - 157]. No essential progress
has been made on them to the knowledge of the author, and they
will deserve more attention.

The Theorem is nroved by consideration of certain graphs

which are impnlicit. in the following definition.

Definition. Let G be aufinite group and S e Sylé(G).

If ' C(S) 1is nonempty, we define
D(S). = D(S, G) = NO,(X) - (X ¢ C(S))..

‘We denote by E(S) or E(S, G) the set of all unordered pairs

‘(Xl, Xz) -of elements of C(S) such that either

(1) 0,({%X;, X,)) =1 or ,
(2) 02((X1, X2>) # 1 and, whenever <Xl, X2> <Y e L(9),
we have D(S, Y) # 0, (¥). |

In tﬁe Lie type groups G*;:a.pair '(?1;,X2) of elements
of C(S*) is contained in“vE(s*)' if and only 1if each Xi _is
the core of some rank one parabolic subgroup P, cont#ining B*
and P; 1is joined to P, in the Dynkin diagram for ¢ (we
identify the P, with the associated nodes). Thus, if we*form
a graph with vertex set C(S*) andAedge»set 'E(S*), then this
graph is, essentia}ly, equal to the '"Dynkin gfaph“ obtained from

the Dynkin diagram by reducing doﬁble or t}iple bonds to single
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bonds. Our result below shows that the set E(S) 1is in general

nonempty.

1.1. Let X, é C(S) and assume Xy ﬁ NG(D(S)). Then
(Xl’ Xz) ¢ E(S) for some Xy € c(s). '

Proof. Suppose false, and take an arbitrary element X of
C(S).. Then (Xl* X) £ E(S) and so therg-exists én element Y
of L(S) such that {X;, X ) < Y and D(S, Y) = 0,(Y¥). There-
fore, there exists a subset, CX; of C(S) Asuch,that X € CX and

Xy normalizes the intersection

Dy = 002(2) (Z € Cy).

Clearly, D(S) <D for éach X e‘C(S) andihence D(S) is con-

X
tained in the intersection

D= Ndy- (X € C(9)),
while since OZ(X) > DX for each X ¢ C(S), we have D(S) > D.
Therefore, D(S) = D and it follows that X1 < NG(D(S)). This
is a contradiction.

Our next result gives information on E(S).

1.2. Let (Xy, X,)  E(S) and assume (X;, ¥X,) < Y ¢ L(S).
Then Y/OZ(Y) has a large quasisimple component. .

A proof of thié result will be given in Section 2. We con-
clude this section by deriving our theorem from 1.1 and 1.2. Let
G be a group of characteristic 2 type, S € Sylz(G), and assume
that [M(S)| > 1. Note that if S # M e M(S) then M =
{c(s, M) ) (see 2.1). Since M(S) # (S}, C(S) is not the
empty set and the groun D(S) 1is defined. Moreover, since G

is of characteristic 2 type, we have ’CX(OZ(X)) < OZ(X) for
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all X € C(S). and so Z(S) < D(S). Hence D(S) is not the
identity and Ng(D(S)) is a 2-local subgroup. Since M(S) #
{NG(D(S))}, there exists an element Xy of C(S) such that

X; £ Ng(D(S)). By 1.1, (X;, X,) < E(S) for some X, ¢ C(S).

If 0,({X;, X,)) =1, we are done. If 0,({Xy, X,0) #1

and (Xl',' X?_’) <Y ¢ L(S), then Y/OZ(Y) has a large quasisimple
component by 1.2. This completes the proof of the Theorem.

As we havelseen, the restriction that G be 6f character-
istic 2 type can be relaxed to réquire only that CX('OZ(X)) <
02(X) for all X e C(S), which is satisfied, for instance, if
every M ¢ M(S) satisfies the condition CM(OZ(M)) < OZ(M)'
This is in line with Gorénstein's aéproach to revising the

classification.



2. 2-Irreducible subgroups and quasisimple components.

We shall devote this section to technical details for the
proof of 1.2. 1In addition to the notation defined in Section 1,
we shall use the following notation. By D'(S, G), we denotg the
intersection

N0,(X) (X e c'(s, &)

provided C'(S, G) 1is not empty. For groups X and its proper
subgroups Y, we denote by N(¥, ﬁ)- the set of‘all maximal sub-
groups of X hthat contain‘ Y. ’Thus, Cf(S, G) consists of all
subgroups X of G with S <X and |N(S, X)| - l.v‘Wefuse
Bender's notation F*(G) and E(G) for the generalized Fitting
subgroup and the maximal semisimple normal subgroup of a finite
group G (F*(G)' has already appeared in Section 1;- F*(g) =
F(G)E(G) and F(G) is the Fitting subgroup). The well known

property
* *
Co(F (6) < F (G)
is of fundamental importance in this section. Further important

properties of F*(G) and E(G) may be found in [8] and [9].

Now, we begin the proof of 1.2,

2.1. Let G be a finite group, S s‘Sylz(G), and assume
S#G. Then G = <C'(S, G)). )

Proof. If G P c'(s, G), theré is nothing to prove, so we
‘assume that there eiist two distinct elements M, of vN(S,VG)
(1=1,2). Then S < ﬁi < G and, argu'ing i)y indﬁction:on‘ lG: s,
we have: M, - <c' (s, M)>, so G = <'Ml, M,> = <C'(S, B>

2.2. Let G be a finite group, S ¢ Sylz(G), and' N. a normal
subgroup of G. If Y/N ¢ C'(SN/N, G/N), then there exists an
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element X of C'(S, G) such that Y = XN.

‘Proof. Let N(SN/N, ¥Y/N) = {M/N}. By 2.1, there exists an
element X of C'(S, Y) such that X £ M.- As SN < XN £ M, we

‘must-have XN = Y.

2.3. Let G be a finite group and S ¢ Syli(G). Then the
following hold. |

@D If S<H < G, then D'(S, G) < D' (S H) .

(2)‘ If N is a normal subgroup with SN # G and 4% denotes
the natural homomorphlsm of G onto G/N, thenA D’(S, G)*vg
D (S ; . ) S : ~

Proof éince Cc'(s, G 3‘C'(S, H), (1) follows. To prove
(2), let YeC' (S5, G). Then Y =X for some X ¢ C'(S, G)
by 2.2, and clearly 0,(X)" < 0,(¥). So D'(S, G < 0,(¥) for
ali Y € C'(S*, G*) and (2) follows.

2.4, Let G be a finite group .with OZ(G) = 1 and assume
that D'(S, G) # 1 for S« Sylz(G). Then the following hold.

(). E@G) # 1.
(2) If % denotes the natural homomorphiSm of G.'ontd
G/0(G), then [E®)", D'(s", S'E(®)™)1 4 1.
’Proof. Firéﬁ; 7 our assumption and é.3 show that _
D' (S, H) #1 whenever S <H <G. To prove (l) ‘we assume that
06 #1 because 0, (G) = 1. Then for each x e C' (S, so<c))
we have 02(x) < 0(G), so o, (x), 02 (k)] 1, and hence X =
SO (X) < N (D' (S, SO(G))) Thus D' (S, SO(G)) < OZ(SO(G)) i
’C (O(G)) by 2.1 and our assumptlon ylelds that Ce (0(G)) £ 0(G).
Since - OZ(G) = 1, we conclude that E(G) # 1.
- Define H = SE(G)O(G). Then $SO(G) # H and D'(S, H)* <
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ﬁ‘(S*, H*) by 2.3, so it suffices to prove CE(G)*, D' (S, H)*] # 1.
Suppose this is false. Then (E(G), D'(S, H)] = 1 by the three-
subgroup lemma. Also, if 0(G) # 1, then D'(S, H) < D'(S, SO(G))
by 2.3 and D'(S, S0(G)) i;CG(OkG))% ;svshown before. Therefore,
[E(G)0(G), D'(S, H)q = l and, since OZ(G) =’l, it follows that

D'(S, H) = 1, contrary to our assumption.

2.5. Let G be a finite group such that .G ='SE(G) for
S ¢ Syl,(G). If [E(G), D'(S, G)1.# 1, then there exists a
quasisimple component L of E(G) such that C(LS>, D' (s, s<¢LS) 1
# 1. |

Proof. For each quasisimple component L of E(G), we have
D'(S, G) < D'(S, S<LS)>) by 2.3. Hence the assertion follows.

Thé/next:three'lemmas deal with the foliowing situation.

2.6 Hypothesis. G . is‘a finite group, L is asubgroup of .

even order with G = S ;<LS\> for. 8 € Syl,(G), (LS > = Ly x Ly x
+x L, and LS = {Li, L,, Ceis, L 1.
Under this hypdthesis, set”
N=<8>, H- Ng (L)L,
and for each suﬁgroﬁp iﬁ of H’ théé éo;tain; ‘NS(L), define
R = s <@ 1.
Also, assume A |
L=14

and, for .each subgroup ‘M of» G tha; cogsa;gs_ S, define

d

e MY o= NS(L) (L n (M an)Lz‘e-w'Ln).

Finally, take elements s; of §. (1 =1,2,..-,n) so that
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i
L = Li‘
2.7. Under Hypothesis 2.6, the following hold.
v(l) Md and K9 are subgroups with NS(L) < Md <H, §¢g Ku;
and K'_<_ kY, 7 ‘ :

| u $1 Sn S

(2) K"a N=(Kn L) x «s. x (Kn L) with (K n L)Y =
S ’ ‘ '
{(KaL)y1]1 < i <n} and NS(K n L) NS(L).
3 &=k and aH®>u

(4) If Ng(L) < K < H, then K" #G.

Proof. As NS(L)‘ normalizes M n N and permutes the Li
(2<¢1ig<nm), M s a subgroup with Ng(L) < Ve < H. By the
definition; K is a subgroup containing S and, as K= NS(L)(Kn L)
we have K < K ‘and Ng(L) < Ng(K n L). On the other hand, 1 #
SnL=Ng(L)nL<KnL and LanlL; =1 for 122, so
NS(K n L)’i Ns(t). ‘Thus, ﬁS(K n L) =.N5(L) and, consé@uently,
®aLS={@®a1 | 1<ic<n}. Now, -

SaN = (S'n Ll)-v-(S n Ln)
= (Sn L)sl--e(S n L)sn
< <(&a LS,
soas K'aN=(SnaN)<®aLS),
’ s s
KA N=(al) lx ... x (Ral) P
Hence o
La (K*n ML,--+L =Kal
and so
(K% = Ng(L) (K a L) = K.
Also, if K#H, then Ko L#L, K*a N#N, and so K* # G. Let

X = Xp..eX € MaN with X; e Ly (1£1iZ2n). Then

X; € Li n.(Mn N)Ll"}Li-lLi+l"'Ln
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S.

1
(Lo Mo N)Ly---L))

ed o 1yt

| A

Therefore, M n N < <(Md n L)s > and M=SMa N) < (M@)u.

2.8. Under Hypothesis 2.6, if L = (S n L)1‘>, then the
mappings d and u induce bijections between the Se:s N(S, G)

and N(NS(L), H), each being the inverse mapping of the other.

d

Proof. Let M e N(S, G). If M° =H, then L<(MaN)L,---L_,

so L= <(Sna L)L > < (8na L)M n B ) <M, and hence G = § (LS)

= M, a contradiction. Thus, Md # H 'and we can take K ¢ N(Md, H).

du du

Since M < M7 < K2 # G by 2.7, we have M =M and Mdu = K°,

d

By (3) of 2.7, the latter equality yields that M% = K and thus

ul ¢ N(NG(L), H). Conversely, let K e N(Ng(L), H). Recall that

ud . vd ¢ H, so K =

KY # G and take M € N(KY, G):/ Then K =

d du

= M. Thus, K%

M® and K% =M € N(s, G). We havé shown that
d gnd u induce mappings between N(S, G) and N(NS(L); H) and
that they each are the inverse mapping of the other. This

completes the prdof.

2.9. Under Hypothesis 2.6, if [N, D'(S, G)] # 1 then the

intersection
N0,(K)" (K e C'"(Ng(L), H) and Np(Sa L) #K)
does not centralize L.

Proof. Let K e C'(Ng(L), H) and assume Ng(S n L) # K.
Define M = KY, Then M =SMaN), Ma N = (K nL"Lx...x
® LR, and KaLS=(®aL™|1s1ign} by2.7. Thus,
Hypothesis 2.6 is satisfied by M and K n L in places of :G and
L, respectively. Moreover, since K is NS(i)Jirreducible and

Ng(S n L) # K, it follows that K = NS(L) ((S’n.L)K ), and hence
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KnanL= {(Sn L)K> = {(S n Kn L)K n L) Thus, we can apply
2.8to M and Knan L. As NS(K n L)Y(Kn L)y =K by 2.7, 2.8 shows
that there is a bijection be:ween N(S, M) and N(NS(L), K).

Therefore, M ¢ C'(S, G). Now,
(K n L, OZ(M)] < (Mn N, OZ(M)] < 02(M n N).

Hence

0,1
{(al)* > < (Kn L)0, (M n N)

and so
0, (M) _ ,
<0?®aL) 2 "> <KalLc<L.
Now , N (Sal)#K and so 0%(KaL)#1. Thus, 0,() < Ng(L)
< K and, since K <M by 2.7, we conclude that 0,(M) < 0,(K).
Therefore, D'(S, G) < OZ(K)' Siﬁce K 1is arbitrary and N =

£ 1§‘> , the assertion follows.

2.10. Let G be a finite group with OZ(G) = 1 and assume
that D'(S, G) # 1 for S « Sylz(G). Then G has a quasisimple
component L such that, for A = NS(L)L/'CN tL)L(L/z(L)) ‘and T e

7/ ENg

_Sylz(A), the intersection
| N0,(X) (X e C'(T, A) and Ng(T n F (&) # X)
is not the identity: that is, A is a large almost simple group.
‘Proof. Let =* denote the natural homomorphisﬁ of: G onto
1 G/0(G). Then | | |
- B O W TOWE R B
by 2.4, and so by 2.5 applied to S*Efc)*, there exists a quasisimple

-.component ' L' "of “G such that
, %* * )
Lk * Kk, % SR
waHs >, ot sTah® 4L

Now, define H = NS(L)L and. observe that‘th*(L*)L* = H*
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because NG(LO(G)) = NG(L). Then, by 2.9 avplied to S*< (L*)S >,

we have that the intersection

n'bz(x) X e C'(NSI*(L*), %) and Nxv(s‘_* a LT # X)
does mot centralize L . Since C *(L*) = OZ(H*), we conclude that
for B = H*/CH*(L*) and T ¢ SylZ%B), the intersection

N0,(X) (X € C'(T, B) and Ny(T n F (B)) # X)

is not the identity. Now, A = B and thus we have proved 2.10.

Now, let G be a finite group and S ¢ Sylz(G); 1f£ (Xl’ X2>
¢ E(S, G) and <Xy, X,> <Y ¢ L(S, G), then we can apply 2.10

to Y/OZ(Y) and easily find out a large quasisimple component of

Y/OZ(Y). Thus, we have proved 1.2.
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