Witt group and nilpotent group of odd order by

Masahiko Miyamoto

爱媛大理 宫本雅彦

Abstract. The equivariant Witt group $W_0(D,G)$ of a finite nilpotent group G over a Dedekind domain D is studied. We introduce a Morita correspondence on the set of orthogonal representations. We determined the structure of $W_0(D,G)$ of a finite nipotent group G of odd order.

§0. Introduction. Let D be a Dedekind domain with the quotient field K and Λ be a D-order in the f.d. semisimple K-algebra A. Throughout this paper, we always assume that Λ has an anti-involution (-) with $\overline{a+b}=\overline{a}+\overline{b}$, $\overline{ab}=\overline{ba}$, $\overline{\alpha}=\alpha$ for all $a,b\in\Lambda$, $\alpha\in D$. We extend this involution into A, naturally. An orthogonal representation of Λ is a pair (V,b) of the Λ -lattice V and the Λ -invariant, D-valued, nonsingular symmetric bilinear form b on V, where " Λ -invariant" means $b(\alpha v,w)=b(v,\overline{\alpha}w)$ for $\alpha\in\Lambda$, $v,w\in V$. An orthogonal representation (V,b) is metabolic when there is a Λ -invariant sublattice N in V such that $N^+=\{v\in V:b(v,n)=0 \text{ for all } n\in N\}$ is equal to N. The equivariant Witt group $W_0(D,\Lambda)$ is the Grothendieck group on the isometry classes of orthogonal representations of Λ modulo

the subgroup generated by metabolic forms. Most interesting case is that where Λ is the integral group ring DG and the involution is given by the inverse of G. In this case, this group is the same as GW(G,D) in [3] and $GW_{\Omega}(D,G)$ in [2].

At first, we will investigate the structure of $W_0(D,G)$ of a finite nilpotent group G. We consider the Lenstra's formula [5] on Witt groups as we have done on the Grothendieck group $G_0(DG)$ in [6]. Let Y be the set of all isomorphism classes of irreducible K-characters θ of G. For the irreducible KG-mdoule V corresponding to θ , let $\overline{\theta}$ be the irreducible K-character of G corresponding to $V^*=\operatorname{Hom}_K(V,K)$. Let e_{θ} be the central primitive idempotent of KG (or KG/ G_p if $p=\operatorname{ch}(K)$ is not prime to the order |G| of G, where G_p denotes a Sylow p-subgroup of G) corresponding to θ . Set $D_{\theta}=D(\frac{1}{\deg \theta})$. We have an analogue of Theorem 1 in [6].

Theorem A. Let G be a finite nilpotent group. Then we have the following isomorphism: $W_0(D,DG)\cong \oplus_{\theta=\overline{\theta}\in Y}W_0(D_\theta,D_\theta^{Ge}_\theta)$.

We will next introduce a Morita correspondence and we get the following:

Corollary. Let G be a finite nilpotent group of odd order and assume that K is an algebraic number field. We then have the isomorphism: $W_0(D,DG)\cong \bigoplus_{\chi\sim_K \overline{\chi}\in T} \mathcal{K}_0(D\langle\chi\rangle)$, where T is the set of representatives for the K-conjugacy classes of irreducible complex-characters of G and $D\langle\chi\rangle=D(\frac{1}{\deg\chi},\chi(g):g\in G)$.

§1. Notations and Lenstra's formula. We will adopt the notations form [1] and [6]. All modules in this paper are finitely generated left modules, unless otherwise specified. Let G be a finite nilpotent group and write $G=\prod_{p}^{\infty}G_{p}$ as the direct product of its Sylow p-subgroups G_p . For a set S of primes, set $G_S = \prod_{p \in S} G_p$ and θ_S denotes an irreducible constituent of $\theta_{\rm IG_S}$. Since $\theta_{\rm IG_S}$ is homogeneous, $\theta_{\rm S}$ is defined uniquely. Then, the canonical homomorphisms $G \to G_S \to G$ induce, by restriction, an exact functor N_S . Namely, for an DG-module N_S^M is the D-module M on which G_p acts as given for peS and trivially for pes. Let (M,b) be an orthogonal representation of DG, then (N_SM,b) is an orthogonal representation of DG. We set $N_S(M,b) = (N_SM,b)$. We have to note that this functor is compatible with the Witt class, that is, for sub DG-module N of M, the orthogonal complement of N in (M,b) is equal to that of N in $N_S(M,b)$.

At first, we construct the following diagram:

$$W_0(D,DG) \cong Ker \partial \cong Ker \oplus \partial_{\theta} \cong \oplus_{\theta \in \widehat{Y}} W_0(D_{\theta},D_{\theta}Ge_{\theta}) .$$

(1.2). Definition of ϕ_* . Let (M,b) be an orthogonal representation of KG. Since every orthogonal representation of

KG decomposes into the orthogonal sum of homogeneous components and metabolic forms, we assume that M is a $KG(e_{\theta} + e_{\theta})$ -module and we put $\phi_{K}(M,b) = \sum_{S \subset \pi(\theta)} (N_{S}(M,b)) \in \Phi_{\chi \in Y} \quad W_{0}(K,KG(e_{\chi} + e_{\overline{\chi}}))$ $\bar{\theta} \neq \theta$, then M and $\phi_{K}(M,b)$ are metabolic. Therefore, extending it linearly, we have the homomorphism: $\phi_{K}:W_{0}(K,KG) \rightarrow \Phi_{\theta \in \widehat{Y}} W_{0}(K,KGe_{\theta})$. On the other hand, let θ be a prime deal of D and set F=D/g and p=ch(F). Then since every orthogonal representation of FG is equivalent to some orthogonal representation of FG on which G_D acts trivially. We know that this isomorphism: $W_0(F,FG)\cong W_0(F,FG/G_p)$ is given by $N_{\pi(G)-\{p\}}$. Then every orthogonal representation of FG/G_D decomposes into the orthogonal sume of β -torsion orthogonal representations of DGe with $\theta \in \hat{Y}$, $p \notin \pi(\theta)$ and hyperbolic forms of DG(e $\theta \in \Phi$) with $\theta \notin \widehat{Y}$. Let (M,b) be an orthogonal representation of FG and assume that M is a DGe $_{\theta}$ -module with $p \notin \pi(\theta)$. Now we put $\phi_{g}((M,b)) = \Sigma_{S \subset \pi(\theta)} N_{S}(M,b) \in \bigoplus_{\chi \in \widehat{Y}} W_{0}(F,FGe_{\chi})$ and extending linealy it, we have the homomorphism: $\phi_{\alpha} \colon W_{0}(F,FG) \xrightarrow{N_{\pi}(G)-\{p\}} W_{0}(F,FG/G_{p}) \longrightarrow \Phi_{\chi \in Y, p \notin \pi(\chi)} W_{0}(F,FGe_{\chi}).$ Lemma 1.3. ϕ_* are the isomorphisms.

Proof. We will give the inverse maps. Let (H,h) be an orhtogonal representation of KGe_{θ} (or FGe_{θ} with $p\notin \pi(\theta)$) and we put $\phi_K(H,h)_{\theta}$ (or $\phi_{\beta}(H,h)_{\theta}$) = $\sum_{S\subset\pi(\theta)}(-1)^{|\pi(\theta)-S|}N_S(H,h)$, where $|\pi(\theta)-S|$ denotes the number of elements in $\pi(\theta)-S$. We can easily check $\phi \neq 1$ and $\phi \neq 1$.

We next show that the diagram (1.1) is commutative. Let

 $(V,b) \ \ be \ an \ orthogonal \ representation \ of \ KG \ and \ assume \ that \ V$ is a KGe_{θ} -module. Let I be a full DG-lattice in V with $b(I,I) \in D$ and set $J = \{v \in V : b(v,I) \in D\}$. Then $\partial(V,b)$ is given by $(J/I,\widetilde{b})$, where \widetilde{b} is b + D/D. Decomposing into the β -torsion parts, we have $\partial(V,b) = \bigoplus_{\beta} (J_{\beta}/I_{\beta},\widetilde{b}_{\beta})$, where $()_{\beta}$ denotes the β -localization, that is, $J_{\beta} = D_{\beta} \otimes J$. Therefore, let $D_{\beta} = D_{\beta} \otimes J$ and we have $(\bigoplus_{\gamma} J) \partial(V,b) = \sum_{\beta} (J_{\beta}/I_{\beta},\widetilde{b}_{\beta}) = \sum_{\beta} \sum_{S \subset \pi(\theta)} (J_{\beta}/I_{\beta},\widetilde{b}_{\beta})$. On the other hand, $D_{\beta} = D_{\beta} \otimes J \otimes D_{\beta} \otimes D$

\$2. Morita correspondence. Let Δ be a maximal D-order in the semisimple K-algebra A. Let M_{Δ} be a progenerator of Δ and set $\Lambda = \operatorname{End}_{\Delta}(M)$. Then M can be considered as a (Λ, Δ) -bimodule and $M^* = \operatorname{Hom}(M, \Delta)$ is a (Δ, Λ) -bimodule. As well known, the Morita correspondence states that the tensoring $M \otimes_{\Delta} M$ gives an equivalence functor of the category of Δ -left modules to the category of Λ -left modules and the tensoring $M^* \otimes_{\Lambda} M$ gives the inverse functor. The purpose in this section is to construct a Morita correspondence from the set of orthogonal representations of Λ onto the set of orthogonal representations of Λ onto the set of orthogonal representations of Λ since $M^* M_{\Delta} M$ is a progenerator, there are isomorphisms:

 $\mu\colon \operatorname{M\otimes}_{\operatorname{\Delta}}^{\operatorname{M}}^* \longrightarrow \operatorname{\Lambda} \quad \text{given by} \quad \mu(\operatorname{m\otimes} f)\operatorname{m}_1 = \operatorname{m}(f\operatorname{m}_1), \quad \text{and}$ $\tau\colon \operatorname{M}^*\otimes_{\operatorname{\Lambda}}^{\operatorname{M}} \longrightarrow \operatorname{\Delta} \quad \text{given by} \quad \tau(f\otimes\operatorname{m}) = f\operatorname{m}, \quad \text{for} \quad \operatorname{m}, \operatorname{m}_1 \in \operatorname{M}, \quad f \in \operatorname{M}^*.$ We assume that $\operatorname{\Delta} \quad \text{and} \quad \operatorname{\Lambda} \quad \text{have anti-involutions, respectively.}$ We will use the same symbol (-) to denote them.

Now we assume that there is an isomorphsm $b:M \to M^*$ satisfying the following four conditions.

- 1) $b(rm) = b(m)\bar{r}$ for $r \in A$, $m \in M$,
- 2) $b(rs) = \bar{s}b(m)$ for $s \in \Delta$,
- 3) $\tau(b(n)\otimes_A m) = \overline{\tau(b(m)\oplus_A n)}$ for $n, m \in M$, and
- 4) $\mu(m \otimes_A b(n)) = \overline{\mu(n \oplus_A b(m))}$.

We will show that under the conditions (C), the tensoring $M \otimes_{\Delta} M$ gives an equivalence functor of category of orthogonal representations of Δ to that of Λ . It will be easily proved that this functor sends the set of metabolic forms of Δ onto the set of metabolic forms of Λ . Therefore, we have the following:

Theorem B. Under the above conditions, we have;

 $W_0(D, \Delta) \cong W_0(D, \Lambda)$ and $WH_0(D, \Delta) \cong WH_0(D, \Lambda)$, where $WH_0(D, \Delta)$ is the Grothendieck group on the isometry classes of orthogonal representations of Δ modulo the subgroup generated by hyperbolic forms.

We start the proof of Theorem B. Let (H,h) be an orthogonal representation of Δ . Let $\phi(h)$ be the bilinear form on $M \oplus_{\Delta} N$ defined by $\phi(h) (m_1 \otimes_{\Delta} n_1, m_2 \otimes_{\Delta} n_2) = h(n_1, \tau(b(m_1) \otimes_{\Delta} m_2) n_2)$.

Lemma 2.1. The above definition is well defined and $\phi(h)$ is a Λ -invariant, symmetric bilinear form.

Proof. For $\alpha, \beta \in \Delta$ and $m, u \in M$, $n, v \in H$, we have $\phi(h)(m_{\alpha} \otimes n, u_{\beta} \otimes v) = h(n, \tau(b(m_{\alpha}) \otimes u_{\beta})v) = h(n, \alpha\tau(b(m) \otimes u) \beta v)$

 $=h(\alpha n, \tau(b(m)\otimes u)\beta v)=\phi(h)(m\otimes\alpha n, u\otimes\beta v). \quad \text{And for } r\in A, \text{ we get}$ $\phi(h)(r(m\otimes n), u\otimes v)=h(n, \tau(b(rm)\otimes u)v)=h(n, \tau(b(m)\otimes\overline{r}u)v)$ $=\phi(h)(m\otimes n, \overline{r}(u\otimes v)). \quad \text{Moreover, we obtain}$ $\phi(h)(m\otimes n, u\otimes v)=h(n, \tau(b(m)\otimes u)v)=h(\tau(b(m)\otimes u)v, n)=h(v, \overline{\tau(b(m)\otimes u)}n)$ $=h(v, \tau(b(u)\otimes m)n)=\phi(h)(u\otimes v, m\otimes n).$

Therefore, the mapping $\Phi[(H,h)] = (M \otimes_{A} N, \phi(h))$ sends the set of isometry classes of orthogonal representations of Δ (containing singular forms) into the set of isometry classes of orthogonal representations of Δ (containing singular forms). Similarly, we can define the mapping $\Phi[(S,s)] = (M^* \otimes_{A} S, \phi(s))$, where $\phi(s)(f_1 \otimes f_1, f_2 \otimes f_2) = s(f_1, \mu(b^{-1}(f_1) \otimes f_2) f_2)$ for $f_1, f_2 \in M^*$, $f_1, f_2 \in S$ and (S,s) is an orthogonal representation of Δ .

Lemma 2.2. $\Phi \Psi = 1$ and $\Psi \Phi = 1$.

Proof. Let (H,h) be an orthogonal representation of Δ . Then we have $(\phi\phi)(h)(f\otimes m\otimes n, g\otimes u\otimes v) = \phi(h)(m\otimes n, \mu(b^{-1}(f)\otimes g)(u\otimes v))$ $= h(n,\tau(b(m)\otimes_{\Lambda}(\mu(b^{-1}(f)\otimes_{\Lambda}g)u))v) = h(n,\tau(b(m)\otimes_{\Lambda}b^{-1}(f)(gu))v)$ $= h(n,\tau(b(m)\otimes b^{-1}(f))(gu)v) = h(\tau(b(m)\otimes b^{-1}(f))n,(gu)v)$ $= h(\tau(b(b^{-1}(f))\otimes m)n,guv) = h(fmn,guv), \quad \text{for } f,g\in M^*, \quad m,u\in M, \quad \text{and}$ $n,v\in H. \quad \text{Identifying } H \quad \text{and} \quad M^*_{\Lambda}\otimes M\otimes_{\Lambda}H, \text{ we have } (\phi\phi)(h) = h \quad \text{and so}$ $(\Phi\Phi) = 1. \quad \text{Similarly, we get } (\Phi\Phi) = 1.$

By Lemma 2.2, we see that if (H,h) is nonsingular, then $\Phi(H,h)$ is also nonsingular, which proves Theorem B. This completes the proof of Theorem B.

We now start the proof of Corollary. Let θ be a faithful irreducible KG-character with $\bar{\theta}=\theta$ and T be the simple component

of KG corresponding to θ . Then it follows from Feit [Theorem14.4 and 14.5] that T is the full matrix algebra $M_n(K(\chi))$ over the Zield $k(\chi)=K(\chi(g):g\in G)$ and there is a representation $\zeta:G\to T$ satisfying $\zeta(g^{-1})={}^t\overline{\zeta(g)}$ and $\zeta(D_{\theta}G)=M_n(D(\chi))$, where χ is an irreducible complex character of G whose K-conjugacy class is θ and t denotes the transpose and (-) denotes the complex conjugate. Taking M as a row vector $nD(\chi)=D(\chi)$... $\oplus D(\chi)$ and M^* as a column vector, we can apply the Morita correspondence on $M_n(D(\chi))$ and $D(\chi)$ and we get the isomorphism:

$$\begin{split} & W_0\left(D_\theta^-,Ge_\theta^-\right) \cong W_0\left(D_\chi^-,D\langle\chi\rangle\right). \quad \text{Since the relative different of} \\ & D\langle\chi\rangle/D_\theta^- \quad \text{is a unit, we have that the trace} \quad & tr_{D\langle\chi\rangle/D_\theta^-} \\ & \text{gives the isomorphism:} \quad & \mathfrak{K}_0\left(D\langle\chi\rangle\right) \cong W_0\left(D_\chi^-,D\langle\chi\rangle\right). \end{split}$$
 This completes the proof of Corollary.

Reference.

- [1]. J.P.Alexander, P.E.Conner, G.C.Hamrick, "Odd order group actions and Witt classification of innerproducts", Lecture Notes in Mathematics 625, Springer-Verlag, Heidelber, (1977).
- [2]. A.Bak, "K-theory of forms", Annals of Math. Studies, No. 98, Princeton (1981).
- [3]. A.Dress, Induction and structure theorems for orthogonal representation of finite groups, Annals of Math., (2), 102 (1975), 291-325.
- [4]. W.Feit, "Characters of finite groups", Math. Lecture Notes Series, Benjamin, New York, 1967.
- [5]. H.Lenstra, Grothendieck groups of Abelian group rings, J.Pure Aplly. Algebra 20 (1981), 173-193.
- [6]. M.Miyamoto, Grothendick groups of integral nilpotent group rings, J.Algebra 91 (1984), 32-35.