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Witt group and nilpotent group of ‘odd order

by

+ Masahiko Miyamoto

RELXE BEAMRE

Abstract. The equivariant Witt group W,(D,G) of a finite
nilpotent group G over a Dedekind domain D 1is studied. We
introduce a Morita correspendence on the set of orthogonal
representations. We détermined the structure of WO(D,G) of a

finite nipotent group G of odd order.

§0. Infroduetion. Let D be a Dedekind domain &ith the
quotient field K and A be a D-order in the f.d. semisimple
K-algebra A. Throughout this. paper, we always assume that A
has an anti-involution (-) with ETﬁﬁafS, ab=ba, a=a for all
a,bed ,aeD. We extend this involution into A, naturally.

An orthogonal representation of A is a paifi (V,b) of the
A-latticer V and the A-invariant, D-valued, nonsingular symmetriec
bilinear form b on V, where "A-invariant" means
b(av,w)=b(v,5w) "for ga€A, v,weV. An orthogonal representation
(V,b) is metabolic when there is a A-invariant sublattice N in
V such that N+={veV:b(v,n)=0 for all neN} ié equalbtb N.
The,équivariant. Witt group WO(D,A) is the Grothendieck groupkon

the isometry classes of orthogonal representations of A modulo
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the subgroup generated by metabolic forms. Most interesting case
is" that where YA is the integral group ring DG and the
involution is giveﬁ by.the inverse of G. 1In this case, this
group 'is the sgme as GW(G,D) in:[3] and GWO(D,G) in [2],

At first, we will investigate the structure of WO(D,G) of a
finite nilpotent group G. We consider the Lenstra's formula [5]
on Witt groﬁps as we‘have done on thevGrofhendieek group‘ GO(DG)
in [B]f Let Y‘ be the éet of all isomorphism classes of | |
irredueiblé K;eharacters ‘e of G; For the irreducible KG-mdoule
V corresponding to s, let P be'the irredueible K-chafaeter of
G corresponding to V*=HomK(V,K). Let éa Lbe theAceﬁtrél
primitive idempotent of »KG (or KG/Gp if p=ch(K) 1is not prime
to thg order |G| qf G, where Gp deﬁotes a Syiow p—subgroup
ofA G) corrgsponding to o. Seﬁ Dé%D(aEég).‘ We have an

analogue of Theorem 1 in [8].

Theorem A. Let G be a finite nilpotent group. Then we have

the following isomorphism: WO(D,DG) =4 ®a=56Y WO(DG’DeGee Y.

We will next introduce a Morita correspondence and we get the

following:

Corollary. -Let ‘G " be a finite nilpotent group of odd order
and assume that K 1is an algebraic number field. We then- have

the isomorphism: WO(D,DG) = QXwKiéT KO(D<1>), where T fs the
set of representatives for the K-conjugacy classes of irreducible

complex-characters of_ G and D<X>=D(a€%i-,x(g):geG ).
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g1. Notations and Lenstra's fbrmula; ' We will adopt the
notations form [1] and [6].‘ A1l modules in this pépef are
finitely gehéf&ted left modules, unless othérWise specified. Let
G be a finite nilpotent group and write G=ﬁg'Gp as the direct
product of its Syldw\pJSubngUPS' Gé.' For a sét' S of primes,

set GS = Hpes Gp and 6g denotes an irreducible constituent of
6,. . Since 9. is homogeneous, & is defined uhiquely.

lGS IGS ‘ S
Then, the canonical homomorphisms G — Gg — G "induce, by

restriction, an exaet functor N Namely, for an DG-module M,

g*
NgM is the D-module M on which :Gp‘ acts'as‘giVen”for peS ‘and
trivially for peS. Let (M,b) be an orthogonal representation of
DG, then (NSM,b)7lis an 6rthogdna1 representation of DG. We set
NS(M,b)=(NSM,b). We have tovhofe that this fﬁncto; is compatible
with the Witt class, that is, for sub DG-module N of .M;
the orthogonal e(.)mplémen'vc'cf'~ N in (M,b) is equal to that of N
in Ng(M,b). | | |
At first, we construct the following diagramt

Wy(D,DG) — WOKK;KG) 3, wO(K/D,Dd)

(1.1) R 5 | e,

3
' : 4
oey Wo(DgrDole,) = @y Wo(KiKGe,) —= o, g Wy(K/D ,D,Ge,)

where Y={o0eY : 8=0 }.- Then we will show that this deagram is

commutative and that - ¢ and_.;s'8 are all isomorphisms.

K

If so, we have'the desired isomorphism by the well known result [1],

WO(D,DG) z Kerg = Ker eee = ebE?.WO(Db,DeGeé).'

(1.2). Definition of b " Let - (M,b). be an orthogonal:"

representation of KG. Since every orthogonal representation of
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KG decomposes into the orthogonal sum of homogeneous components
and metabolic forms, we assume that M is a KG(e9+e5)—modu1e

and we put by (M, b) =3 (Ng(M,b)) e Wy (K,KG(e, +e5))

| ®xey
If sa#6, then M and ¢K(M,b) are metabolie. Therefore,

cre(6)

extending it linearly, we have the homomorphism:

’K
prime deal of D and set F=D/g and p=ch(F). Then since every

:WO(K,KG) — $ee? WO(K,KGee). On the other hand, let g be a

orthogonal representation of FG is equivalent to some orthogonél
representation of FG on whiéh Gp acts trivislly. We‘know that
this isomorphism:»WO(F,FG)EWO(F,FG/Gb) is given by‘ Nn(G)_{p}.
Then every orthogonal representation of FG/Gp decomposes into
the orthogonal sume of g-torsion orthogonal representations of
DGe6 with oe¥Y, pegr(s) and hyperbolic forms of DG(eeeeE)

with e2¥. Let (M,b) be an orthogonal represenation éf FG and
assume that M is a DGe -module with pgr(e). Now we put
¢ﬂ((M’b)) = ZSCn(a)
linealy it,we have the homomorphism:

N
8,5 Wy(F,FO) —iigliigi Wo (F,FG/G,) —

Lemma 1.3. ¢, are the isomorphisms.

NS(M,b) € eXeY WO(F,FGeX) and extending

®yey,per(x) VolFsFGe.

Proof. We will give the inverse maps. Let (H,h) be an

orhtogonal representation of KGea (or FGeG‘ with pegr(e) ) and

ir(8)-SI

we put ey (H,h)  (or o (H,h) ) = 2 (-1) Ng(H,h),

Scr(o)
where Iz(8e)-Sl -denotes the number of elements in =z(s8)-S. We

can easily check ¢¢=1 and ¢¢=1.

We next show that the diagram (1.1) is commutative. Let"
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{(V,b) be an orthogonal representation of KG and assume that V

is a KGee—module. Let 1 be a full DG-lattice in V with b(I,I)cD
and set J={veV:b(v,I)cD}. Then g(V,b) 1is given by (J/I,B),

where B is b+D/D. Decomposing into the g-torsion parts, we have
8(V,b)= o (Jﬁ/lg,%ﬁ), where () denotes the g-localization,

that is, Jﬁ =D5®J. Therefore, let p6=ch(D/3) and we have

(04 )8(V,b)=Z ¢ (I /1B ) =2 zSc”(e)_{pB} Ng(3, /1,8 ).

On the other hand, ¢K(V,b)=2 NS(V,b) and

Scrz(8)

w(e) Bo Ns(VPI)=25c, () ({Dg 2)/(D, ©1),bg )

Sca(eo) Zpﬁﬁn(es) (3,/1,58,0=(28 DaCv,b).

This completes the proof of Theorem A.

(83,85 (V,D)=Zg_

=z

§2. Morita correspondence. Let 4 be a maximal D-order

in the semisimple K-algebra A. Let MA be a progenerator of 4

and set A=Endd(M). Then M can be considered as a
'(A,A)-bimodule and M*=Hom (M,4) is a (4,4)-bimodule. As well
known, the Morita correspondence states that the tensoring M®A
gives an equivalence functor of the category of 4-left modules to

the category of A-left modules and the tensoring M*s gives the

A
dinverse funetor. The purpose in this section is to construct a

Morita correspondence from the set of orthogonal representations
of 4 onto the set of orthogonal representations of 4. Since

AMA is a progenerator, there are isomorphisms:

u: Me M*'—e A given by u(m@f)m1=m(fm1), and

4

7 M*GAM — 4 given by <z(fem)=fm, for m,mleM, feM*.

We assﬁme that 4 and A have anti~involutions, respectively.

We will use the same symbel (-) to denote them.
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Now we assume that there is an isomorphsm,}b:M — M*

satisfying the following four conditions.

1]

‘1) . b{(rm) = b(m)r for reA, meM,

2)  b(rs) = sb(m) for sed,

3) r(b(n)eAm)'ﬁ z(b(m)e n) for n,meM, and

il

4) u(me b(n)) u(ne b(m)).

We will show that under the conditions (C), the tensoring M@A
gives an equivalence functor of category of orthogonal
representations of A  to that of A If-will be easily proved

that this functor sends the set of metabolic forms of 4 onto.the

set of metabolic forms of A. Therefore, we havé the following:

Theorem B. ,/ Under the above conditions, we have;

WO(D,A) E‘WO(D,A) - and WHO(D,A) = WHO(D,A), where WHO(D,A)
is the Grothendieck group on the isometry classes of orthogonal
representations of 4 modulo the subgroup generated by hyperbolie

forms.

We start the probf‘of Theorem B; ' Let (H,h) be an
orthogonal representation of 4. "Let #(h) be the bilinear form
on MQAN defined by ¢(h)(m1®An1, m2§An2) = h(nl,r(b(ml)sAmg)n2).
Lemma 2.1. =  The above definition is well defined and ¢(h) is

a A-invariant, symmetric bilinear form..

Proof. For a,ped and m{ueM,un,VéHg we have

¢(h)(ma®n1Ug®v55hlh,r(b(ma)®ug)v)#h(n,ar(b(m)®u)gv)



=h{agn,z(b{m)eu)gv)=¢(h) {(megn,ud®gv). And for;reA, we get
¢(h)(r(men),usv)=h(n,z(b(rm)eu)v)=h(n,z(b(m)eruv)
=¢(h)(men,r(usv)). Moreover, we obtain

¢(h) (men,uev)=h(n,z(b(m)eu)v)=h(z(b(m)su)v,n)=h(v,z(b(m)eu)n)

=h(v,z(b(u)em)n)=¢(h)(uev,men). .

‘Theiefore, the mapping @[(H h)] (M@ N, ¢(h)) sends
the set of 1sometry classes of orthogonal represenfatlons of‘ 4
(contalning singular forms) 1nto the set of 1sometry classes of
orthogonal representations of A>(conta1n1ng singular forms);
Similarly, we can define the mapping ?[(S,s)]=(M*®AS ¢xs));
o 1a8ty)= s(tl,u(b L et, 'ty)  for fl,f2 em”,

€S and (S,s) 1is an orthogonal representatlon of A.

where ¢(s)(f et
tioty
Lemma 2.2. ®¢=1 and $¥=1.

Proof. Let (H,h) be an orthogonal representation of 4. Then

we have (¢¢D(h)(f®m®n,g®u®v)=¢(h)(m@n,u(b-l(f)®g)(uev))

=h(n,z(b(m)®ﬂ(u(b_1(f)@Ag)u))v):h(n,r(b(m)eAb—l(f)(gu))v)

=h(n,z(b(m)e b 1(f))(gu)v)=h(z(b(m)eb 1 (f))n, (gu)v)

=h(z(b(b_1(f))@m)n,guv)=h(fmn,guv), for f,geM*, m,ueM, and

A 4
(d¥)=1. Similerly, we get (¥d)=1.

n,veH. Identifying H and M* ®Ms H, we have (¢¢)(h)=h and so

By Lemma 2.2, we see that if (H,h) 1is nonsingular, then
$(H,h) 1is also nonsingular, which proves Theorem B.
This completes the proof of Theorem B.

We now start the proof of Corollary. Let & be a faithful

irreducible KG-character with 6=¢ and T be the simple component
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of KG corresponding to o. Then it follows from Feit
[Theoreml4.4 and 14.5) that T is the full matrix algebra Mn(K(x))
over the Jield Kk(X)=K(%(g):8eG) and there is a representation

€:G — T satisfying t,(g‘-71

=tET§T and c(DeG)=Mn(D<X>), where
is an irreducible complex character of G whose K-conjugacy class
is ar and t denotes the transpose and (-) denotes the complex
conjugate. Taking M as a row véctor 'nD<X>=D<X>e...eD<X> and
M* as a célﬁmﬁ vector, we can apply the Morita correspondence oh
Mn(D<X>) and D<X>  and we géf the isqmorphism§ |

WO(Da’Gee) = WO(DZ,D<X>). Since the relative different of
D<X>/D6 is a ﬁnit, we have that the-trace ,trD<X>/D6
gives the isomorphism: KO(D<X>} =~ WO(DX’D<X>)'

This completes the proof of Corollary.
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