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Abstract
This paper develops a theory of Gr8bner basis of ideal of convergent power series.
The basis is consiructed by calculating "S-power series” successively, where the
S—-power series is an analogue of S-polynomial and constructed so as to cancel the
head terms of initial polynomials of two power series, By using the finite genera-
tion property of monoideal, it is proved that a finite number of successive
constructions of S-power series provide us a Grdbner basis of power series ideal.
Furthermore, a construction procedure of the GrSbner basis is discussed from the

viewpoint of constructive algebra,



8§1. Introduction

In discussing poiypomial ideals and related problems, the GrGbner bases are very‘
useful ideal bases [1]. The GrGbner bases allow us to solve the following problems
within reasonable corﬁputation steps [2]: determine ;Nﬁether ox; not a given polyno-
mial is an element of .a given ideal, calculate the interséction of two polynomial
ideals, simplify a':polynpmial 'w:ith‘ .polynomial side'—relaiions. solve a system of
algebraic eqautions with/without parameters, calculate the polyriomial solutions of
a linear equation with pblyﬁo;'rxial coeffic;ients, and sq'on.l |

A construction’m'ethod, of Gr»6bﬁ§r» b(asiév‘for‘ “poly.nvomiéls in K{kl,,...xn], with K
a number field, was discovered by Buchberger in 1965 [1]. Lauer [3] extended the
:Buchberger’s method to include the polynomials with coefficients in the ring of
integers. However, as far as the authors know, no attempt was made to construct a
Grobner basis of .an ideal in a ring of power series, In this paper, we construct a
Gr6bner basis on a ring of convergent power series-;K{xl,.._.,-xn} _anci discuss some
properties of it.

As we will see b(?}ow, our construction is an almost straightforward extgnsion of
the method for polynomials, but we used some results of the theory of monoideal to
prove the ,finite g‘_‘enev‘rati:on property of the Grdbner basis for power series, . We
follow to Hironaka [4] to use‘monoidealls .in discussing ideals of infinite power
series, Because the theory of monoideal Ais essential . in our. extension, 82 .is
devoted to survey this theory briefly, With the notions of monoideal, the theory
of Griébner basis can be formulated ﬂsimpl)'r. Hence, in 83, we reformulate the
conventional Grdbner basis theory from the viewpoint of monoideal. The development
of a theory of GrObner basis of power series ideal is doﬁe in §4 and §5, and the
constructivity of a GrObner basis for infinite power series ideal is .discussed in

§6.

§2. Monoideal

Let Zo be the set of non—negative integers, and Z’(;, the Cartesian product of Z0
with n a positive integer. An element A of Zz is written as (a...a ) and we
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define |A| @, + o0+ a,

1

Definition I-1 [monoideal]. A subset I of Z"; is. a monoideal if
+Zp =1, 0 | B
Figure 1 illustrates a‘ monoideal in Zg ’where all the lattice ‘ppinfs rins,ideb the
shaded area constitute ‘the monoideal and the lattice points (1,3) and (2,2) are

generators of the monoideal.

Il Fig.1 |l

Proposition I-1. ‘A monoideal I, is finitely generated. = That is, there exist a

finite number of elements Al’ o A in

s M satisfying

I = U@ +2%. 0O
S 5 Ul S | M.

M

Proof. We use an induction on n. When n = ], it is obvious that IM is generated

by a single element A = (a‘l), a, = min{lvAI_l Ace IM},

Next, assuming that every monoideal in 23, n<k is finitely generated, we

consider the case of n =,k__ ,Let

Iy = {(ap.a ) | (a... %) € XM,}"
then er is obviously a monoideal in Z“; -1 Hence, by induction assumtion, there
-l . N ok : 2 .

Az such that TM = U (A + Zk 1) For

a

exist a2 finite number of generators A

1’
i=1,....4, let Aiv = (o, ) and ey = m,{“{a{kl,(“u'-"f“;_x—l’“k) e L)
] g X . .
. _ k '
Denoting (afi . i x-1%ix ) by A, we decompose I as IM = iE=)1 (Ai + Zo) + I,
2 *
w1th I' NI U A + zx )] ¢. Then, each element (ql,,',,,ak) of 1;4 satisfies a, <
@, = max{alk..._,aak}. For each -a in {0,,..,&,{—1}, let ‘fM.“ = {(al....,a'k__l)

2 . . . k-1 iy . .
| (a’l,...,ak_l,a) e I’ } + Z , then IM,a is a monc.nd,eallvm Z0 a_ncil it is finitely

generated by induction assumptxon Therefore I, is flmtely generated O

M.

Corollary to. Prop. I-1. Let I C I C <. gls,_C:‘- + is an mcreasmg sequence»

of monoideals, ‘thvenv__there ekists an ‘integer T such that

Probf, Let I, = kjl Ii,‘ then we can see that I  is a monoideal. Prop: -1
- i . 1= o B . AR [ S o :

assures that there are a finite number of elements A,, ..., A, of I, such that [ =
N :
iLéJ1(Ai + Zg). For each i, 1 Sist, there is a number J(i) such that A, el,.,.

-3 -
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‘ t
Let T = max{J(1),...J())}, then A el for i=l...t. So I, = U + D&
;. Hence, we see [ S LS &---SI,. 0O
Let K[xl,,,_,xn] be a ring of polynomials in n variables Xyv weer Xg with

coefficients in a number field K. - We abbreviate K[xl,...,xn] to K[x]. Let fl'

fr. be elements of K[x], and I the ideal (fi""'fr) in K[x] generated by fl'

. _ A _ . :
f:- We express f in K[x] as f = g_“. a,x’, where A = (“1""'“11)' a, e K, and
XA is an abbreviation of XTIX;Z,,,X:!'_. We call a, + oo + a the degree of the
term x*, ie., deg(x® = |Al.

Definition I-2 [lexicdgraphic,order > in Zg],‘

For any elements A ='(a1,...,dn) and B = (‘8'1""'Bn) of Zz, we define A' > B iff
there is an integer i, 1<i<n, such that a; = BJ for all j,‘ 1=j<1i, and @, >
8. O
Note. The following theory is valid if we use another definition of order so far

as Z”o becomes a well-ordered Abelian semigroup by~ the order,

Definition I-3 [exponent set, leading exponent, head term].
Exponent set of f, leading exponent of f, ‘and-\ head term of f, which are
abbreviated to exs(f), lex(f), and ht(f), respectively, are defined as follows:
exs(f) = {Aezjla, #0 in f =3 anA},
lex(f) e exs(f), lex(f) > any other element of exs(f),

ht(f) = a term anf\ of f, where A =lex(f). OO

Definition . I-4. ~ The lex(I), ‘with T av_pbly«nomial ideal, ‘is a subset of Z'(; defined
by

lex() = <lex(f)| £#0, fel}y O

Proposition I-2.. The set E,=le,x(1)r is a monoideal; [J

Proof. The relation E S E + Z: is trivial because (0.....0) e _Zg. so'we have only
to show E + Zj SE. Let A+ B be any element of E + Z| such that A ¢ E and B & zy.
By definition, there exists a polynomial f in [ such that lex(f) = A. Since

lex(x®Bf) = A+ B and I is an ideal, we have x°f e I. That is, A+B ¢ E. [
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§3. GrObner basis of polynomial ideal — formulation ‘based on monoideal —

The essential operations in the Grdbner basis‘tﬁeory are‘monomial revduction and
monomial cancellation. A mopdmial xA is fully characterized by its "exponent A, and
we have seen that an exponent set is well formulated‘by a monoideal, Therefore, We
naturally expect that the theory of Grdbner basis can be formulated simply from the
veiwpoint of monoideal.

Definition I-5 [reéducibility].

Let F = {fl._,.,fr} be a subset of K[x]., and put E = i\“/l[l»ex(fi) + Zg]. A
polynomial h in K[x] is called reducible with respect to F .if ex‘s(h)ﬂ E #+ ¢ and h
is called irreducible w.r.t. F if exs(h) M E- = ¢. O “

Definition I-6 [reduction].

With the notations in Def. 1-5, let h' ¢ K[x]. The h' is called a feductic;n of
h w.r.t. F and written as h T» h* if one of the7 followings vholds:

(8} W =h when h is irreducible w.r.t. F,

(b) h" =h - c-x"‘fk when exs(h) N [lex(fk)+23] # @,

where ¢ and A are determined as follows: let ht(fk) = a XA*. hence:-h contains a
. N k ’

A
AtA, then ¢ = b /aAk. O

' . A, '
term proportional to x and let the term be bA+Ax A+A,

k

Definition I-7 [normal form],

Suppose h in K[x] is reduced successively as h — h' - h, and if

f is irreducible w.r.t. F then h is called a normal form of h w.r.t. F. We denote

the above reduction sequence by h —F—H R, O

Proposition I-3. Let F = {fl.....'fr} be a subset of K‘[x]. Givén a polynomiai h in
K[x], "'we can reduce h to a normal fofm f{ w;r.t; F by a finiie sequeﬁce‘of
reductions, O |
Proof. -See [1], or refer to a proof for the power se’ribés case in §4. O

Definition 1-8 [Gr8bner basis].:

Let I = (f,,...f) be an ideal in K[x]. A subset G = {g,....8,} of K[x] is
called ‘a Grébner basis of 1 if the following conditions are satisfied:

1) (g...8)) =1,

(2) for any element f of I, f = 0. O

_5'_
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Definition I-9 [S—polynomial}
A and ht{(g) = Db XB. Let

Let f and g be polynomlals m K[x] and put ht(f) a,x B

u and v be monomlals satlsfymg LCM(x X ) -xA = v-x , where LCM is the least
common multlple ’I‘hen, S-polynomial of f and g, to be abbreviated to Spi{f.,g), is
defined by

Sp(f.g) = wf - (a,/bglv-g. [

Proposition 1-4. Let I be an ideal in K[x]. Let the moﬁoideal VE = lex(I) be
generated by A As., ife.. E = i‘;l(f}i +v23). If _G =‘ {gl,;...gs} is a subset
of 1 satxsfymg 1eX(g) A 4f0r every 1 in {1 s}; then |

(a) (31' ,g) |

(b) for any f in K([x], f is an element of I iff f < 0. O
Proof. Prop. I- 3 assures that there exist polynomxals h,. | ’hs_ such that

| | =Zhg ‘+? exs(f)f\E '
Proof of (a). Let K[x]® . {h e K[x] | exs(h) ﬂ E = ¢}, then we havé a commutative

diagram:

&.‘ E
l‘tao-txn]

K[x — Kix...x 17g,.....8)

AN
Kix,....x 11
We can see that the mappmg \Il is surjeﬁtxvé On the other haﬁd, (b) means thaf the
‘I”IS injective, So, proof of (a) reduces. to proof of (b)
Proof of (b). Suppose f‘t-; I a_r;d 'f% 0, then lex(f) ¢ E because Ts‘I.V This
contradio‘:t; to tkhe as‘fs;lmptio_‘n ‘. {hat T is i>r‘reducib1e. Conversel;%, if f =0 theﬁ it“

is obvious that f ¢ 1. 3

Corollary to »Propr. Ij4. With the notations ‘in Prop. 14, 1¢§ G = {gl',__,,_gs) bg a
Grobner b’asis of I, a;ld h a bolynomia] in K[x]. Let Hl and Hz, be normé] forms of h
w.r.t. G, thenrﬁ1 = ﬁz. O

M_ By defilx';iti‘on’vi(&)'f norrfxal form, ';x/e Have exs(h) E = ¢, i_=14.2.t: On the other
hand, Iex(ﬁ1 - sz is E'becauser Hl - Ez e I .Hence, if Hl - Hz # 0. then we have a

contradiction. [
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So far, we did not mention how to construct a Gr6bner basis, The construction
of the basis is most important in the theory of Gr8bner basis, and it was given by
Buchberger [11].

Procedure BUCHBERGER

input: an ideal I = (fl,...,fr) in K[x]. -
output: a Grdbner basis G = {gl,...,gs) of 1.

G = {g;=f ... g:=};

P = {(g.8)] 8.8, G, i#i}

while P # ¢ do begin

p;; = a pair (g,8) in P;
P =P - {p;}

(x) ' g := a normal form of Sp(gi,gj) w.r.t. G;

if § # 0 ‘then begin

P :=P|){(g8]| geG});
G =G |J (&)
end;

end,
In the above procedure, the size of G is increasihg one by one, so we denote the
G explicitly by Go, Gl. G2, ..., Where Go = F and Gi = Gi'_1 v {gi}. i=1, with g,

the i—th 'generated polynomial. Writing §i = g, SO G = {gl.....grﬁ}. we put

r+i

_ n
E, = Ullex(g) + Z4].

Proposition I-5. The above construction procedure terminates. That is, there

exists a ‘positive integer T such that for any pair (fi.fj)fin GT' we have ~Sp(fi,f,j)

—G—'-I‘-—-r—» 0. O
Proof, Since Eo c El < E2§ -+« is ‘an increasing sequence of monoideals,

,Corol‘lary to Prop. I-1 assures that there is an integer T such that ET = E,P+1 =
-+« Suppose there is a ﬁair (gi.gj) in G satisfying Sp(gi,g‘j)vTT-H g. g8 # 0,
that is exs(§) N E, = ¢. Then, by the construction, there is an integer t, t > T,
such that g e Gt, hence lex(g) e E: ' On- the other hand, E-,r = Et by definition of

E.. This is a contradiction. - [J
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Theorem 1 [Buchberger].
- Let. 1. = (-gl,,,.,g.s) be an ideal in K[x]-and G the set {gl,....gs}. If
Splg;.g)) ——— 0 for any pair (g;.g), i#j 1=ij=s,
then G is a Grdbner basis of I. [J

Proof. See [1], or refer to a proof for the power :series case in §4. [J

§4. Griobner basis for truncated power series °

Let C{zl,._.,zn} be a ring of convergent power series.v}vi‘th coefficients in the
r

complex number field C. We abbreviate C{Zl,....'z,n'}_to C{z}.” Let fl’ ..., f_ Dbe

elements of C{z}, and 1 the ideal (fl'“"'fr) in C{z} generated by fl' e T, We

r

. _ A _ . ‘ - A .
express f in C{z} as f = {;, a,z, where A —_r‘(al,,_,,an), a, e C, and z” is an
abbreviation of zX1zo2 ;2%

1 72 n

Before defining a Grobner basis for power series, we consider in this section a

MH. ‘We: call' a Grébner basis for this

power series ideal modulo (zl,__.;,z.n)
truncated power series an M-Gr&bner basis. . In this and the next sections, we omit
several short proofs which are analogous to those given in §3.

Definition II-1 [order [> in Z’;]_

. For any element A and B of Z-.g,-we define A > B iff either |A| < |B] or A »> B
when. |A| =.[B|. .0
l\l_ogai. -+ ‘We can formulatel‘the, following theory by using -another definition of - >,
For example, if we define [> by using a weight function forrvariable‘s-,vwei‘ obtain
the ‘theory in- a4 quite general form, The important point 'in ' such a definition is
that the lower. degree terms are of thigher —order, and this is essential for power
series,

Definition II-2 .[initial polynomiall.

The ‘initial polynomial of f, which is abbreviated to in(f), -is the sum- of :the

lowest degree terms of f:

in(f) = z aA’zA; [

|Al=lowest
Definition II-3 [order, leading ‘exponent, head term]., -

Order of f, leading exponent of f, and head term of f, which are abbreviated to

- 8 .



15
ord(f), lex(f), and ht(f), res'pectivély.'are defined ‘as‘follows.: .
ord(f) = deg (in(f)),
lex(f) = lex(in(f)),
ht(f) = ht(in(f)),
where the lex and ht.in the right hand side are defined by Def. I-3. O

Definition II-4 [M-equality of power series].

Two power series f and g in C{z} are equal within degre"e' M, and deno‘tedlb‘y f'=4M
g, iff ord(f-g) > M. O

Definition II-5 [M-reducibility of power series].

r,

Let F = {f,,....f .} be a subset of ‘C{z}, and put E = 'Ulfléx(f%)”.% Zg].r Let a

i=

power series h in C{z)} be decomposed as h = h, + 'h“ + <+, where h, is the sum

1
of all. terms of degree i of 'h. The h''is called reducible within degree M
(abbreviated to' M—reducible) with respect to F if e.)és(hi')h‘E #'¢ Lforbsome 1§M
and h is called M-irreducible w.r.t. F if exs(h) M\ E = ¢ for all isM. O

Definition 1I-6 [M-reduction of power series].

With the notations in Def. II-5, let h' ¢ C{z}, " The h’ "is called aﬁ M-reduction
of h w.rit. F and written as h W h' if one of the f‘ollo“‘r"i‘ngs%‘ hollAds:\ |

"(a) h'=h when h is M-irreducible w,‘r,t.. F, |

® B =h - cx*, when exsth) N [lex(f,)+Z7] # ¢ for some i< M,

where c¢- and A are determined as. follows: ~ let h;t(fl'{) = a, x™, hencé h contains a
; E k

A+A,

term proportional to. ¢ and let the term be bA;Ax' |A+Akl <M, then ¢ =
k

bA+Ak/aA 4

k

Definition 1I-T [M-normal form of power series:]'.‘\‘

‘h' —-———»E, and

F.M F.M

Suppose h in C{z} is reduced successively as h FM ,
if f is M-irreducible w.r.t. F then h is called an M-normal form of h w.r.t. F. We

denote the reduction of h to its nmormal form K by h ——— h. In particular, we

F.M
write h —— 0 if f =, 0. O |
rite — 0 i v 0 a | |
Proposition 1I-1." Let F = {fli,,,.,fr} be a subset of C{z} and- M a positive

integer. - -Given a .power ‘'series h in C{z}, we- can reduce ‘h to ari‘M—'normal form h
w.r.t. F by a finite ‘sequence of reductions. [J

-9~
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Proof. In this proof, we denote the sum of all the k-th degree terms of h by hk,

so h = hd + hd+ + ++e, If d>M then h is already M-irreducible w.r.t, F, so we

1
T

assume d <M. We put lex(f) = A, i=l,...r, and E = Ul(Ai + Zg).
i=

Step 1. We show, by the transfinite induction w.r.t, 1ex(hd), that there is a
‘finite sequence of M—reductions

by —— e+ —— B + B, + hj, + -,

d F M FM d+1 d+2

where A, is either 0 or M-irreducible w.r.t. F.
Step 1-1. When lex(h,) = (0....0), or d = 0.
If ord(fi) > (0 for all i then h0 is obviously M-;irreducible w.r.t, F, otherwise

there is a reduction such that ho W 0 4+ (terms of degree = 1). Hence, the claim

in Step 1 is right in this case,

| Step 1-2. }Assuminrg that the claim in Step 1 is right for any h;; such that
ng(h;) <i A, we show the claim is right for hcl with lex(hd) =A, If exs(hd)f'\ E =
¢ then t\here‘is nothing to pro;/e, SO we assume exs(hd)ﬂ E # ¢. | Let B be the

highest order element of exs(hd) N E and assume that B = lex(fk) + C, that is

(1) + CBZB +'h(2).

(2)y By definition, we

where [exponent of any term of Hg”] > B and B > lex(h
have either ﬁfll) = (J or exs(ﬁsl)) NE = ¢. The rest part of hd, or chB + h‘z),
can be reduced as ;
B (2) ' B (2) » c
c,z + h T g2t h - (cB/aAk)z -fk

B

h'® - (cyra, 12501, - ht(f)].

: Ay
Writing the right hand side expression as H'(Z), we see lex(h'(”) < B « lex(hd).

By induction assumption, there exist a finite sequence of reductions h'(2> FT

v h(2) where the d-th degree part of 5% is ‘either 0 or M-irreducible

w.r.t. F. Thus, Step ] is proved.

Step 2. By the Step 1, we have h e T hy + hy,, + b}, + -+ where

Ed is either (0 or M-irreducible w.r.t. F. Next, we apply the reduction procedure

ofv Step 1 to h::l'+1" This procedure does not alter the terms of degree less than
h h " s 00 ,~ 1 1 .
d+1, pgnce h FYTIM . W'hd + hd+1 + ,hd+2 +. , Where hd+1 is either 0 or

M-irreducible w.r.t. F. Continuing this procedure, we can reduce h to h. O

- 10 -



pDefinition II-8 [M-Gribner basis of power series ideal].

Let I.= (fl,....fr) be ‘an ideal in C{z} and M a posiﬁve integer. A subset G.=
{gl,,,,,gs} of C{z} is called an M-Gr8bner - basis of I if the following -conditions
are satisfied: |

1 (gy....8) =1

(¢) for any element f of I, f = 0. O

Definition 1I-§ [S—power series].

Let f and g be power series in C{z}, and put ht(f) = anA and ht(g) = beB. Let

u and v be monomials satisfying LeM(x? xB) = ux? = V‘XB. where LCM is the least

common multiple, Then, S-power series of f and g, to be abbreviated to Sp(f,g), is
defined by
Sp(f.g) = wf - (a,/by)veg. O

Proposition II-2. (For the proof, refer to Corollary to Prop. I-4.)

Let G be an M-Grdbner basis of an ideal in C{z}, and h,é power series in C{z}.
Let Hl and .17{2 be M-normal forms of h w.r.t. G, then El = ﬁz. (]
Theorem 2. Let I = (g,....8) be an ideal in C{z}, G the set {gl,...,gs}, and M a
positive-integer. If

Sp(g;.8;) w5~ 0 for any: pair (gi.gj’), i#j, 1=ij=ss,

then G is an M-Grdbner basis of I. O |
Proof. Let E = g{lex(gi) + 23] and f be any element of I with lex(f) = A. We .
have only to show f W 0. If AeE then f can be reduced directly and we can
replace f by {7, lex(f') < A, so we have only to consider the case of A & E.

Since f &I, there exist hl, hs in C{z} satisfying
f= hlg1 + -+ + hg.
ht(g,) = aAizAi, ht(h,) = bBizBi,
hence lex(h,g,) = A, + B,. Let D be the highest order element of {Ai+Bi| i=1,....s,
hi #0}'. Without loss of  generality, we assume D =.A1+B1> = e = A‘.+B‘.~D >
A3+Bj for all j> . . Then, putting hi = bBizBi  + h: i=1,...,s, we decompose f as
f = f(l) + f(Z)'

- 1.1 -
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g

’s s

1 _ By L(2)

f‘ﬂz%f%r f —ZW&+}JWQ
i=1 i=1 i=o+1

We see 1ex(f(2)) < D, If ¢ = 1 then D = A ¢ E, contradicting to the assumption A
& E. Hence, ¢ > 1 and we can rewrite 1) as
(1 _ (,B1 _ B
f = (aAleI) (z gl/aAl z gz/aAz)
.(zB2 _ ,B3
+ (aAszz + aAlel) (z gz/aA2 z g3/aA3)
+ o e e e .7 ’

(,Bo-1 _ ,Be i
+ ( b + + aAibBl) (z g”_l/aAd_1 z ga/aAﬂ)g

a
Ag—-1 Bs

. 4. .Q"'v . . .0 Ba ) a
+ (a, by + + aAlel) (z"7g, a, ).

We first note that the last term of the -above expression is . To see this, we
consider the sum of terms of exponent D in f(“, which is-
g
A{+By _ e . D
iz=:1 a,.bg.2 = (a, by, + + a, by )z .
If this expression is not zero then A =" lex(f). = A1'+B1, contradicting to the
assumption A &£ E. We next consider the j-th term, j< ¢-1, of -the r.h.s.
expression, Remembering the definition of‘S—pow“é'r series, we see [the j-th term] =
u-Sp(gj,gjﬂ) with u a monomial, By the assumption of theorem, Sp(gj..gjﬂ) -G—}-A-—H

0. Hence, we find D, 0.
G.M

(2)

The f 1s of the same form as f, so we can continue the above reduction making

fG—,M_’ v f', lex(f") < lex(g,), i=l,....,s. That is fw»—» 0. 3
Because the M-Grébner basis is for truncated power series, it can be constructed
by a finite number of steps.- In fact, if we modify the line (%) in Proc,
BUCHBERGER as
g := an M-normal form of Sp(gi,gj‘) w.r.t. G ;
and if we calculate M-normal form and S—-power series as truncated power series,

then we obtain the required procedure. The M-Gr8bner basis will be useful when we

use truncated power series for approximate calculations,

§5. GrObner basis of power series ideal

Now, we investigate the Grdbner basis of power series ideal for which we must
consider ‘the terms of- arbitr:arily high degree, This poses us an - interesting
problem when we stand on a viewpoint of constructive algebra, We discuss this
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point in the next section, and we first define a Grdbner basis of a power series
:ideal and investigate the properties generally.

Definition III-1 [tangential ideal].

Tet I = (f

1,,.,,fr) be an ideal in C{z}. The tangential ideal of I, to be

abbreviated to I, is defined as

I=in() = {in(H)] 0#fe¥Clx]. O

vDefinition I1I-2 [Grdbner basis of power seriés ideal];

Let I = (fl,....fr) be an ideal in C{z}). A subset G = {gl,._,,gs} of I’is
called a GrObner basis of I if the followingbconditions are s‘atisfied;

(1) (gl,...,gs) =1,

(2) for any f in I and for any posiiive integer M, f WH 0. O
Note that the GrGbner basis of power ‘series i‘s defined in terms of M—GrviSbr.ler basis
which is constructive, | |

Now, we consider the ‘following procedure,

Procedure PS-GROBNER

input: an ideal I = (fl.,,,,fr) in C{z}.
output: a Grdbner basis G = {gl,..‘.,gs} of I.

G, = {fl.....fr}; M = 0

LOOP: M := M+1: G G

M = Oum-1
P = {(gi,gj)l 8;:8; € Gy 8 #8g;);
while P # ¢ do begin

p;; ‘= a pair (gi,gj) in P;
P:=P - {pij};
g := an M-normal form of Sp(gi,gj) w.r.t, GM;
if g #y 0 then begin
P =P {(g.8)] g ¢ G,);
Gy = G, U (&)
end;
end;

(#%) if Gy = G,_, and [termination condition] is satisfied then return Gy
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goto LOOP.
Note that, in the line (%x), the [termination condition] is not specified yet. In
the following, we use the notation GM defined above,

Proposition III-1. With the above notations, let f be any element of I. Then, for

.any positive integer L, L <M, we have f 0. O

e
Proof. The case L =M is trivial, so we assume L <M. By the construction, GL(_:;

Gy so we write G, = {g‘l.....gg} and G, = {g,.....8,.....g,}. Then, for all 37 in

Mn

{2+1,.,.,m), there exist h;l, h*}z in C{z} satisfying

= M Te e v

g = hjgy *oee g,

Since f € I, there exists hl' he’ hm in C{z} satisfying
f=hg +--- +h¢g£ +---+hmg'7n

= ‘ ' R M
= (131‘ + Hhidg + + (h, + Xhjlg,.

Reducing f w.r.t, GL as in the proof of Th. 2, we find f 0. O

Mo
Theorem 3. With the above notations, there ‘exists a positive integer T such that

G

T is a Grobner basis of I. O

Proof, By virtue of Th. 2, we have only to show, the existence o.f GT such that
Sp(gi.gj) WH 0 for any g, and g; in G‘r and for any positive integer L. We put

T

m .
E, = iL=J1[lex(gi) + ZE]. Since E, & E, € - - - is an increasing sequence of

monoideals, Corollary to Prop. I-1 assures that there exists an integer T such that

ET = E,I.+1 = +«+. Prop. IlI-1 assures that our claim is right for LLT. So, we

consider the case L >T. ‘Suppose Sp(gi,gj) i g, lex(g) & E, . Then, by the

construction, there is an integer £, £ > L, such that § ¢ G,. This means lex{(g) ¢

E but Et = E’r by definition of T, so we are lead to a contradiction, [J

E’
Theorem 4, Let 1 = (fl,...,fr) be an ideal in C{z} and I = in(I) a tangential

ideal of I. Let G = {gl,,..,g;} be a Grobner basriis of I, and put E = v [1ex(gi) +

i=1

Z"71, then lex(I) = E. (The lex in this equation is for polynomials.) [J

Proof. Put E = lex(I), then E € E because lex(g,) ¢ E for all i in {1,...,s}.

Next, we show A ¢ E for any element A of E. Since A ¢ E, there exists a
homogeneous polynomial f in I such that lex(f) = A. Since T = in(I), T can be
expressed as f = in(hlfl + eee + hrfr), with hl',, hr in C{z}. Putting f =

_14_
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Zhifi’ we see f €] and lex{(f) = A. Since G is a Grdbner basis of I, we have f
——— (. for any integer M2 |A]|. This means A = lex(f) ¢ E, because if not so then

»

ht(f) cannot be reduced w.r.t. G. O

§8. On constructivity of a GrSbner basis for infinite power series

Let us consider Proc. PS-GROBNER from the constructive viewpoint. Actual
construction of an ideal basis is possible only when the ‘following -conditiohs are
satisfied:

(1) The number of basis elements is finite. -

{2) We have a procedure of calculating the basis, where each step of the p}ocedure
can be executed constructively.

(3) We can decide constructively at which point we may stop the procedure,

We have proved that the above condition (1) is satisfied,. However, Proc,
PS-GROBNER does not satisfy conditions (2) and (3) in general. Even if condition
(3) is satisfied, the procedure is not constructive because the arithmetic of
general infinite power series is not constructive unless we are given an explicit
construction procedure for any power series.

In the constructive algebra, it is quite common té assume that we are given an
explicit construction procedure for every quantity to be input. Without such an
assumption, it is impossible to discuss the infinite -power series constructively,
Therefore, we set an assumption,

Assumption I, For each power-series input to Proc. PS-GROBNER, we are given

an explicit procedure which constructs the k—th degree term for anygi(ren

integer k = 0.

With this assumption, we can construct Sp(f,g) exactly as follows,.  We first

~construct in(f) and in(g) explicitly, which are homogeneous ‘polynomials consisting

of finite terms. Then, we calculate ht(in(f)) and ht(in(g)), let them be a 2% and

A

szB, ‘respectively. Finally, we put Sp(f,g) = uwf - (aA/bB)v-g, where u and v are

determined- by LCM(zA,zB) = wz® = v-zB. Note that we.do not actually’ construct
every term of uf - (aA/bB)v-g but define a new.power series Sp(f.g) by the' above
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relation,, Then, for any. given k-2 (, we can construct -the k-th degree term_',of
Sp(f,g) explicitly because we can for. f and g. The construction of M-normal forgn
can be done similarly,

With Assump. VI, every step but the termination condition in Proc, PS-GROBNER
‘becomes constructiv‘e. » This is‘_the reason why we defined the. Grdbner basis for
‘power series by using M-Grobner basis of finite M. The problem is the termination
.condition. . According to Def. III-2,-in order .to assert .that GM is a Grobner basis
of I, we must check Sp(gi,gj) —G—M—.L—H 0 for every pair (gi,gj) in GM and for every
positive integer L = M. If we perform this- check by  wusing the definition of
M-normal form given ‘in Def. II-7, then  the: check is not:constructive in general
because we must repeat the reduction infinitely many. times, At present, it s
unclear under whét conditions -there -exists a -constructive termination . .condition,
So, .the -termination .condition is an:open problem now.

-In. some cases, however, we .can constructively. check the termination.:

Proposition - [1I-2:. Let GM = {gl;,.;,gm} be an M-Grobner basis of an ideal I in

0

M is a finite set and M = | A|

m
— ) 20 _ o0
C{z}, and put E\ = U [lex(g)) +Zy]. If B} =27 - E
for any element A of EI'\,l then GM is a .Grobner. basis of I. [

Proof,  Let Sp(gi,gj) —G————-»-» g, with g, and 8; in GM' and suppose g is not zero.
M

Then, .ord{(g) > M. because G'M is an M-=Grdbner  basis. . -Hence exs(g) sEM,
contradicting to that g is co-irreducible wrt G, O

Figure 2 illustrates the case for which the above criteron applies.

Another simple criterion, which also applies only in limited cases, is obtained
by investigating the exponent set of power series to be handled.

Definition [II-3 [another monoideal EM}'* v

For {gl,,_v.,.gm},,‘ which is a subset of C{z}, we define a monoideal &vt in 23 by
n .
EM = UTlexs(g) + 2°1. O
i<1 T |
Notes, . That. EM is a monoideal is obvious by the definition of monoideal, Sin‘ce‘
1ex(,gi)_ ‘€ exs(gi), i=1,....m, we see EM c ‘EM -
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Proposition IlI-3. With the above nofations, let h be in”C{z} and h E——;—H h, then
- M.

exs(i) € [exsmU E,1. O
Proof. If h is reduced by g, as h -—g——; h' = h - czAgk, with :c € C,v then exs(h") &
—_— k of

[exs{h) Uexs(ZAgk)]. Prop. III—3'is derived directly from this relation, [

- proposition III-4, = With the above motations, let ht(gi) = aA_zA’i, i=1,...m, and
1 ,

Ml

Ey = i\:;(Ai + Zg). If gi—ht(gi), 1<i<m, is oo=irreducible w.r.t. G then g,

has the form

— . LA e
By = 8,2 +>;gu

'g”' = ‘0 or gu e C{z} witﬁ lex(girl’)' é‘ EM. O

Proof. Suppose g,-ht(g,) contains a monomial t = ez {1 £k € m, ‘then we can

reduce this term as t T t - (c/aA)zAgk, ' This contradicts to the assumption
N B k

that gi—ht(gi) is oo—irreducible wr.t. G Hence, gi—ht(gi) contains no term

v
. A
proportional to z'k, [

Corollary to Prop. III-4. With the above notations, if i\‘.:‘l[lex(gi) + Z’a] =

“ ) L . : P < : ;

.L,:;[exs(gi) + ’Zr‘;], then we may set g = zA‘ for i=l1,....x. O

=

Proof., The ‘above condition means that every monomial in gi—ht“(gi),” i=1,....u, is a
multiple of z™, 1<k <pu, hence it can be rednéed by ‘gk, Furthermore, Prop.

III-3 assures that the above condition is not altered by‘the reduction. [

(1)
1 ERY

o u . , ,
where E(” U [lex(g(“) + Z ] and 8(1) ,‘Ji[exs(gi(l)) + Z"] We put Gy,
iz

Gy, G“) = {g(lz),_,,,gim}, so 4 + v = m, We also put E(Z) U[lex(gm)) + Z ]

and EMz) = U[exs(gw)) + Z ], so E(Z) # 5(2).

Let G(U = {g (1)} be the l'arges't‘ subset of GM satisfying E(l) = E_g‘l),

2) _

Propo'sition 1I-5. With the above notations,’ if exs(sp(agi,'gj))ﬂg ‘Efwl) for"every' i

@ _ g

and j in {1,...m} then Gy 1s a Grobner basis of 1. In bagi't'iCular; if G
then Gy is ‘a Grobner basis of I. If vrlex'(Sp(gi,gj))' “ [E;:')U E&Z)»] for some i and
i then G, is not a Grdbner basis of I. [J

Proof. Obvious from Prop, III-3' and Corollary to Prop. IlI-4. [J "

Note that Sp(g;.g,) may not be reduced to 0 if exs (Sp(g, 8 )) & E(Z). For example,

let Gy = {gl,gz}. M >> 1, with
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g, =Xy +x+y+ x4y 4 en)
+ Oyh1 o+ xE 4 oyt o+ e,
gz=x3y2~(1—x—y+x2+y2-—~-)
+ %y (-1 + x? - y? +- cee )

‘Then, Ey = [D+221 U [(3.2)+28) and £, = Ey UL@+zi. Hence, ) =g,
EI(VII), = Efwl) = ¢, Gl(vf) = Gy E;AZ) = E -Qnd Efwz) = EM‘ We see

Sp(g,.8,)) = yg, - xg,

= x%h0x + 2y + -+- ) + XOy@ + 2yt 4+ -0 ).

Hence, eXS(SD(gl.gz)) _C_;_EM. However, if we reduce the term 2)(3y3 of ,Sp(gl’gz) by
g, We obtaiﬁ ‘ |

| Sp(g;.8,) —— xfytex + 2y + --0 ) + 2@yt 4+ -l )

+ xyhex + 2y - 2x? - oyt + o)

Prayt 4 eee )

+ xyh(2 - 2x

’Thus, we obtain exponent (2,4) which is not in EM.
In order to use Prop. HI-5 as a termination condition (which is of course
incomplete), we need some assumption on the constructivity' of thel monoideal EM.

For example, we may set the following as_sumption:

Assumption II. For each power series f input to Proc. PS—-GROBNER, we can

construct the generators of the monoideal [exs(f) + Zh1.

This assurhption is not sfrange from the practiqal viewpoint., Suppose we represent
a power series f in a form
2 , ,
| f = iz=:1 2%h, B & /(B + Z0). -

(As explicit example‘s gf this representation, see povyer series g, and g, presented
above.) Then,‘As»sﬁmp, .II says that we can find {Bi}'i=1,,..,2} for evéry input
power series fk,'k=1,,.,,,r. The finite generation broperty of monoideal assures
that {Bil i=1,...,A} is a finite set, and we can usually find the set by scanning a

finite number of leading terms. Thus, Assump.’ II is acceptable from the practical

viewpoint.
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