0000000000
0 5810 1986 0 105-130 105

An Implementation
of
the Formula Maﬁipulation Package
in

Comnmon Lisp

by
Morio Nagata and Masako Abe
AHBE FB HEB BF
Department of Administration Engineering
Faculty of Science and Technology
Keio University
I T TELS
3-14-1 Hiyoshi, Yokohama

JAPAN

ABSTRACT

We propose a simple formula manipulation package called MMP
including a certain kind of modern algebra through the
package system of Common Lisp.

Two main features of +this work are the following.
First, we have provided an ainterface including various
facilities. This interface enablés that the user easily
utilize some parts of formula manipulation functions when
developing new Lisp programs. Secona. we have developed a
method for constructing the formula manipulation system of
modern algebra by using Groebner bases and . algebraic
extension theory. .

We have implemented the package manipulating
multivariate polynomials and rational expressions on a
certain types of rings. The effectiveness of our packasge
have ©been certifiea with the experimental use of our

colleagues.

1. Introduction

Well—-qualified formula manipulation: systems have
already been implemented [1.2.31. However, they are so
called "closed systems"” tTo Lisp programmers, that is, it is
difficult to utilize -some parts of those facilities when
developing new. Lisp programs. Though several - formula
manipulation packages have been implemented for programs of
numeric computation [4,5]1, +there are no packages for
programs of symbolic computation.

In this paper. two terms "formula manipulation system”
and "formula manipulation package” are used in the following
sense. A formula manipulation system is the software ‘which
is directly used‘ by the human uéer, and a package can be
used by the program written in the language of the user's
choice [51. The formula manipulation system tends to be a
large and general system for‘ many users. vHowever, there
exist Lisp programmers using a simple and special package.

Many Lisp programs. i.e. an automatic theorem prover,
an automatic progran ver;fier, an expert 5ystem etc., need
formula manipulafion functions [B]. Though>a lqt of foimula
manipulation systems are writtén invthe Liépylanguage, the
Lisp programmer hés sometimés to write prdgrams mahipulating
foimulasvwhen aeveloping new systems. o |

We probose a formulé manipulation package called MMP
(Modular Mathematical Packgge) to berwidely used in’the Lisp
language. In’thisvpaper,:first we infroéuce an overview of

our package by using simple examples. Next, we show the

108

design principles and implementation methodé of the‘packaée;

This package has two main features. First, MMP
provides a flexible interface with both a human user and
another Lisp program. Second, the user can specify some
algebraic structures. especially cetain rings and fields in
MMP. By using Groebner bases. MMP manipulates polynomials
on .the specified structure. For this implementation. we
have developed an effective method for constructing Groebner
bases.

MMP is implemented through the package system of Common
Lisp [71. If it 4is slightly modified. it will be an

algebraic package for other programming languages.

2. An Overview of Our Package

We introduce: én ‘ovefview of. MMP by uSing simple
exaﬁples. kThere are two aspects in this package. One is a
simpie formula ‘manipulation package fbr symbolic
cbmputation. ihe other is that MMP manipulates formulas on
élgebraic structures. especlally rlngs kand fields. We
explaln the former at f;rst the 1atter next.
| From the polnt of view of the former aspect MMP Seéms
to be a traditional formula manlpulatlon package computlng
ﬁolynomlals and rat;onal express;ons
| When we use fac;lltles of MMP in the Llsp program, we

write

109

(function-name arguments).

The last character of every function name of MMP is an

#) .

~

asterisk

For example, the addition of pOlynomials isiwritten as
(add* "(x+1) 'y "(272+3)).
The value of this expression is
(x + ¥ +z N2+ &),

Since we assume that various types of programs use MMP, four
forms of mathematical eXpresgiohs “can be ‘accepted (cf.
5.1>. Moreover. it accepts a;guments of; a function in
different forms. However., we show all examples of this
chapter in infix forms.

MMP provides functions of subtraction, multiplication,
division, substitution., differentiation. factorization etc.
for polynomials énd rational expressions. Note that these
functions can be used by both human users and other Lisp
programs. A human user can use these functions through the
user interface of this package (cf. Appendix II).

Now., let us show the latter aspect of our package. In
this case, the main algebraic sﬁructure of this system is a
ring, especially a polynomial ring. Thus the fundamental
function is to define a particular ideal of a ring.

For example. if we write

110

(set-ideal#* 'masako '(5)).

then all operations are perfomed under modulo 5 and ‘the
ideal can be used with +the name "masako"” thereafter.

Therefore., the result of
(mult* 'a '(a+c)> '(b2%a”™~3-4%b*a”5))
is
(b*a~5+b~"2%a”~3+2+a+c)

. in this,s;tuat;on;,

When we reset this ideal. we write.
(clear-ideal* 'masako).
Next., if
(set-ideal#* 'masako '((X) (y+1>))

is given, then our package computes Groebner bases of x and
y+1 [8]. In this case., these two polynomials are Groebner
bases. Therefore. X and y+1 are in this ideal. In +this

situation.rthe result of
(mults 'd "(y-1) "{(a+2>73»)
is

(-2 $+ada%a~3-12+ada+a~2-24#%d4d%a--186 % .

111

The function computing Groebner bases of polynomials
can also be used in MMP. The details will be shown in 4.2.
"We describe our method for constructing Groebner bases in
4.3.

The real record of some examples will be shown in
Apprendix I. Furthermore., a user interface is provided in
MMP. When a person uses MMP. he or she can use functions of
the package through this interface. A session example will

be shown in Appendix II. -

3. Functions on Polynomials and Rational Expressions

MMP provides computing‘facilities»én rings of modern
algebra [9]1. Furthermore. it can be used as a traditional
formula manipulation package to perform usual operations on
multivariate npolyﬁoﬁialé and rTational expressions. We
déscribe traditional facilitiesiheie: | |

Let both a and b be’ multivariate polynomials. Then.
addition. subtractiohv and multiplication of a and b are
written as (ada* a b); (subtract* a <} and (muit* a b
vrespectively. (div#¢ a b) returns the ligt of the qﬁotient
an& the remainder of a/b. Greatest common divisor and least
common mﬁltiﬁlier ‘of a and b are wriften as (gcd* a b) and
(lcm* a b)‘respectively. If a'and b are equal to each other
in bmathematical exﬁressions{ then“(equal* a b retuihé T.
Otherwise if returhs NIL. Notice that the numbéi of

arguments of any one of these functions is an arbitrary

112

non-negative integer.

The multiplication of n-times of a is written as
(power* a n. (diff+ a x> 7rTepresents the partial
differentiation of a on the variable x. If we substitute a

- for +the wvariable X in the expression b, then we write
(subst* a x b).

Now., -let both a and b be rational expressions.
Addition. subtraction.-multiplication and equality test are
written in the same forms of polynomials. Adivs - a - b

returns the rational expression of a/b.

4. Facilities on Rings and Fields
4.1 Groebner Bases and Ideals

’It is‘ expected“ that a modern formula ménipulétion
system éhould haveqfacilitie$ on modérn algebra. ‘Above all,
facilities on rings and fields are useful for manipulating
multivariate pdlynomials. | ﬂereover, | there éfe BnaAny
applications ménipulafing multivariate polynomials on a
certain résidﬁe iing {101.

Groebner bases are useful for manipulating bolynbmials
oh a ring in the computer algebra systenm. Espéciall&. if we
use the Groébnér basis, we can manipulate polynomials on a
cértain residue ring by a pérticular ideal in a canonical
.form. Therefore. ﬁMP provides a bfunction groebner* for

computing the Groebner basis. For exanple,

113

(groebner* '(XFy"2+1) "(X¥y+X"2))
returns
2™ 3+ 1) (x+ yirds

When MMP acceﬁts a set of multivariate polynomials for
an ideal., it produces the Groebner basis by using groebner#.
It manipulates formulas on the'residue.ring by this ideal

thereafter.
4.2 Calculations on Rings and Fields

Roughly speaking. MMP manipulates polynomials on a
certain residue ring of polynomials. The user can specify
one of three types bf residue rings by indicating its iaeal.
The following typeé are provided in thié package~ The first
'is caiculation on Zp: The second is‘on Q ahd its 4a1gébraic
extension fielq: The fhird_ is ‘éﬁ Zp>van& its algebraic
exfension‘field. o o | |

Let us consider polynomial rings here. In this cése,
specifying an ideal is to determine the quotient ring. If
nothing is specified as an élement of the ideal, then MMP
assumes that all formulas afe manipulatéa in Q;v This is the
normal case.

When a prime number p is given, then all computations
of polynomials are performed on.Zp. This case is called the
first computation type in this paper. -

Elements of the algebraic extension of @ can be

determined by specifying multivariate polynomials as

114

elements of the ideal. This is called the second
computation type.

If a prime number p and multivariate polynomials are
given, then Z; and its algebraic extension field is fixed.
This is called the thlra computatlon type

In our package.
(set—-ideal#* 'nag '(7)>

specifies the first computation type. All formulas arTe

manipulated by modulo 7. If we write
‘(more~ideals* 'nag "' ({(XD(y+12)).

vthen all polynomlals are manlpulated by the ldeal 7. X and
y+1. In the above three computatlon types, MMP manlpuiates
‘formulas based on the Groebner bas;s Thqs. every formula
.lS represented in a canon;cal form - B

The followlng three functions modlfy the _elemente Wof

ideals.
set-ideal*. clear—-ideal* and more-ideal#.
VWhenbwe.specéfy a pa;ﬁicu1ef’i&ea1, we’&iite
(ideal* name-of-ideal).

The followlng will show the 1nfcrmatlon on the state of the

1dea1 to the user

115

current-ideal$., ideal-element$

base$ and ideal-list®
4.3 A Method for Computing Groebner Bases

Constructing the Groebher basis is a time-consuming
task. When the number of elements of an initial set.of
multivariate polynomials is iarge or the degrees of those
polynomials ' are high, the -computation may be impractical
even on big computers. Thus, we have developed a method for
computing the Dbasis in an effecfive way by modifying
Buchberger’'s algorithnm. This sectidn'déscribés 'aﬁljdﬁtiiﬁe
of our method with simple examples. We use notations and
terms givén in Buchberger's survey .[8]1.

The basic algorithm for constructing , Groebner bases
requires the executions of two -subalgorithms called
"Spolynomial"” and "Normalform™ for all pairs of a set of
multivariate poiynomials. The elements of the initial set
are given by the user. The number of the elements of the
set sometimes increases during the execution of this
algorithm. Moreover. "Normalform"”:is Trequired to compute
the reduced Groebner basis.

Now., let us cohéidér to.médify tﬂé bésic algorithﬁ for
constructing Groebner bases effectively. V

Fifst ofkéli, we pa& atténtion:té the order in the set
of mﬁltivariate polynomialé infl,fz...p,fn). We aSSume‘éll

elements of F satisfy

116

Normalform{(f;, {fi,7.....fp12=f; (1K),

Using this order., we write an n-tuple (f1.£f32.....fyh) instead
of the set F. Moreover. we assume that Normalform generates
the similar Tesults for both the set and the tuple.
Groebner Dbasis of the tuple is also considered as the
_similar form of the set.

‘We define an algorithm "Semireduce” reducing an n-tuple
F=(fy,...,f,) to another tuple F' such that GB(F)=GB(F')> and

HCEI2HCF).
Algarithm 1 (F':=Semireduce(F)):

F' = (£1)

F = (£9,...,fy]
i =2

while in do .

h = Normalform(f;.F')
F = (£341 ...
ir= i+t

if h ¥ ¢ then

F' := cons<(h.F'>

where cons<¢h,F') is the tuple adding the élement h to +the
head of the tuplé Fr. |

Now, by using Semireauce, we can modify the basic
:algorithm as follows. We assume that a set of multivariate
ﬁolyﬁomials in thé'form of the tuple. Thel order in the -
given tuple has no meanings., that is; thé'initial tuple is

considered as the set.

Algorithm 2 (G:=GB(F>):

G F
B := ((£;.f|£;,£;€F,i%j)
while B3¢ do
(£i,£5) ‘= a pair in B
B := B-{(fj.£3))}

h

Spolynomial (f;.f3)
h' := Normalform(h.G)

if h'¥¢ then

G :=,cons(h’,®
-G = Semireduce(@
B = ((g;.85)]8;.8;€G. i¥j}

In constructing G of this new algorithm, one step

reduction must be

g; ————- > g’ (<3,

Therefore., we needynét coﬁéiaei-the steps for Jj2i.

For example, if we use the basic _algdrithm for
constructing the reduced Groebner basis., then an‘initial set
of three multivariate polynomials

€

3xzy+2xy+y49xz+5x-3

2x3y-xy—y+6x3—2xz~SXf3

x5y+x2y+3x3+2x4

requires the executions of "Spolynomial” and "Normalform” 28
times and 35 times respectively.

On the other hand. if we give the same set for

19

118

constructing the Treduced Groebner basis., then the set
requires those executions are 5 times and 14 times by using

this new algorithnm.

5. Implementation
5.1 Organization of Our Package

MMP is written in the VAX LISP language which is an
extended implementation of +the Common Lisp language [11].
MMP consists of four parts. These parts and the flow of

control are shown in Figure 1.

o e e e e +
Calculator |
o e e e e e e +
o — e e + .
| Controllexr K
o oy e g e e e \\\\
. \ _______ —_——
Translator |
o e e +
tm———e e e
I Interface |

LT T

<:User:> <:Program:>
Fig. 1 Components of Our Package

Controller controls other +three parts. Interface
accepts thé requirements of the human user or the Lisp
program, and gives the results of computation. Calculator
performs operations on formulas. Pranslator translates
formulas represented in arbitrary forms prepared in our

package into canonical forms. MMP accepts formulas

10

119

represented in one of four forms., i.e. infix, prefix,
recursive .and —expanded ' forms. We explain these forms by

using the following expression.

xX+1

2 2 2
X ¥y +3xy +5

The infix form of this expression is
(X+1) /7 (X"2%y"2+34X+y~2+5) .

Iits prefix form is
(/ (+ 2 1) (+ (¢ (X 2 (“y 20
(#* 3x (~y 2>

5)).

Above forms are mainly used by the human user or the Lisp

program. The recursive form
(x 110 1> 22113 05

is +the internal representation of MMP. Calculation
excepting the computation.of Groebner bases is performed on
expressions in this form. The expanded form |

(x> 1 (1) 1 W0»

(y x> 1 (2 2> 3 (2 1> 5 (0 0>»

is used in the computation of Groebner bases. These two
forms are internal representations of MMP. But the human

user and the program can use expressions in these forms.

+3

120

5.2 Structure of Calculator

- According to ~the .expressions and joperations. our
calculator automatically performs . a suitable calculation.
Table 1 shows the relation of operational objects and
calculation. For instance. when ordinal mwmultivariate
polynomials and usual computation is required. this
calculator assumes that the element of the ideal is null and

the computation is performed without Groebner bases.

“Table 1 Operational Objects and Calculation

Object | Elements of | Groebner
| Ideals | Bases

_________________________ e e o vl s e i s s e g e e e i i, . S S s S e
Multivariate Polynomials | Jof Iox
and Rational Expressions |]
_________________________ o o o s o s e o e e v € e e S o S v e s s S o o o
Ring of Multivariate i |
Polynomials with Zp | Prime Number | X
Coefficients v FOR I]
_________________________ +_——-————_-_-__———+.-._._——-.—_._z_____._..—
Residue Ring of | o | Polynomials
Multivariate Polynomials | Polynomials | with Q
with Q Coefficients | | Coefficients
o e e o o i o o e e o ———— e e he e o e o e
Residue Ring of | Prime Number | Polynomials
Multivariate Polynomials | + { with Zp
with Zp, Coefficients I Polynomials |

Ooefficients
5.3 Interface with Programs and Users

We intend that MMP is usedrby both a human user and
another Lisp program. -Therefore. it has an interface
including various facilities. These facilities are devided
into thrée typeé; | |

Thé fi;st typé is a human inférface‘for ‘novice users.

This is an interactive and menu-driven intérface [121. If a

121

person uses MMP through this interface, he or she can
perform own work only by following the instructions of this
system. A session example of this type _will vbeﬂvshown in
Appendix II.

The second is ah interface translating any form of a
formula into anotﬁer form. MMP has four forms described in
5.1. Now, 1let £;.f9,....f;, be mathematical expressions

represented in forms shown in 5.1 (nx1). Then
(to-i* £1 £ ... £

returns the list of expressions repreSentéa in infix forms.
Both the recursive form and the expanded form have the

ratinal expression type and polynomial type. For example.
{to-r-rational# '(x+y*2—7*s§3/r))v
retufné
(y1 (r 1 2> 0 (x 1t (1 1 6 (5 3 —7)))(f 1 i)).
Oon the.other hand,
(to-r-poly#* ' (X+y*2-7#s°3))
returns
(y 120 x 110 s 3-7.

Moreover, MMP has two functions., to—-e-rational# and
to-e-poly#, in a similar manner.
Notice that every function of MMP can accept formulas

in all forms of these types. Moreover, it accepts formulas

1e

122

in different forms as arguments of a function. Thus. we can

write the following expression.
| (add# ;(+ a b5 ;(c+d))
The result of this expression will be shown as
(+ d é b a.
If we write

(add* '(at+b> "(+ ¢ A,
then the result'will be shown as
@+ c +bﬁ+ ad.
The third type of facilities of the interface is that
the user can wrifekoﬁnviisp.programs without worrying about

name conflicts in their programs and MMP. This is owing jto

the package system of Common Lisp.

8. Concluding Remarks

Two colleagues wrote Lisp programsS uUsSing our progran
before packaging it. In this experimental use. there
existed some name conflicts of functions and variables.
Thus, wWe have convinced that the package system is useful
for our purpose. -

When we think of the practical' use of MMP. the

enhancement of facilities is needed. Finally, it is

16

123

expected that MMP-like packages are widely implemented and

used.

References

[1] Hearn, A.C.: Reduce User's Manual, Version 3.1, The

Rand Corporation. Santa Monica, Cal.. 1984v

{2} Jenks., R.D.: A Primer: 11 Keys to New Scratchpad,
Proceedings of EUROSAM 84. Lecture Notes in Computer Science

No. 174, Springer-Verag. Berlin. 1884, pp. 123-147

[3] Bogen. R.A., et al.: MAGSYMA Reference Manual. Version

6, MIT, Cambridge. Mass.. 1877

{41 Brown., W.S.. Tague, B.A.. Hyde. J.P.: The ALPAK ' System .
for Numerical Algebra on a Digital Computer, Bell Syst.

Tech. J., Vol. 42, 1963, 2081-2119

[51] Shearer, J.M.. and Wolfe M.A.: Algib, a Simple
Symbolic—-Manipulation Package. CACM, Vol. 28, No. 8, 1985,

PP. 820-825

[6] Calmet, J., and wvan Hulzen., J.A.: Computer Algebra

Applications. Computing. Suppl. 4, 1982, pp. 245-258

[7] Steele, G.L. Jr.: Common LISP: The Language. Digital

Press., Bedford. Mass.. 1984

{8] Buchberger, B.: A Survey on the Method of Groebner

Bases for Solving Problems in Connection with Systems of

17

124

Multivariate Polynomials., Proc. RSYMSAC. Riken., Wako-shi,

Japan. 1984, pp. 7-1 - 7-15

[2] van der Werden: Modern Algebra I, Springer., Berlin.

1971

{10] Gilbert. W.J.: Modern Algebra with Applications, John

Wiley and Sons. New York. 1878

[11] Digital Equipment Corp.: VAX LISP User's Guide, DEC.
Maynard, 1984 o ‘

[12] Nagata, M., and Shibayama. M.: An Interactive
Algebraic System foi Péiéanal Computing., Proc. of IEEE"

International Symposium on New Directions in Comnputing.

Trondheim. Norway., 1985, pp. 130-137

18

125

Appendix I

A Real Record of Using MMP

(in-put Jcurrent-ideal$
SYSTEM-IDEAL$

{ in-put) (get current-ideal$ ’calculation-type)
RATIONAL

[in-put J(add* *(x * 4 - 3) 'v’((we) 2(10) 1 (07)))
(4sX+2s¥+V+E"7-3) ‘ ‘

{ in-put) (subtract* ’x 4 ’y)
-Y+X-14

(in-put J(divs ’(x " 2+ 1) ’x)
x1)

{ in-put J(divs '(x * 2+ 3 / d) ’x)
(D=X"2+3)/7 (D=*X)

{ in-put) (powers* ’(x / y) 4)
(x" 47"

(in-put J(diffs ’(x "4 -7/x " 2) 'x)
(A«X"6+14) /7 (X" 3)

{ in-put J(subst* '(y + 8) 'x "(x ¢ 3 -y = 2))
(Y+3s=38)

(in-put J(geds "(x + 1) *(x “ 2+ 2+ x + 1) 0)
X+ 1)

(in-put JQlca*s "(x + 1) "(x "2+ 2+ x + 1) 0)
0

(in-put)(equals (" a 3) (@ " 3) "((@) 1 (3)) *(a 3 1))
T

13

126

{ in-put) (set-ideal* ’masako ’(5))
MASAKO

{ in-put) (get ’masako ’calculation-type)
MODULO-P

{ in-put)base$
5

{ in-put J(add* 23 456 7 8)

0

(in-put)(add* ’a’(+ ac) ’((ba) 1 (23) -4 (1 5)))
+C (= ("A3)(B2) (+ A5 B) (=« 24))

{ in-put) (subtracts ’a ’b ’'c)
- (4sC+4+B+4)

(in-put J(mults *(x +y) 7°(/ r 3))
4*sR*=Y+4+R=X)

(in-put)(divs ’(a = b * ¢c) ’b ’c)
(A 0)

{ in-put)J(dive ’(a *# b - c) ’c)
(4 (A = B))

(in-put)(diffs "(x " 8 - 3 » x) ’x)
B*»X"7+2)

(in-put J(substs "(y - 1) 'x "(x " 2 + 3))
Y "2+3+Y+4)

(in-put J{ged® *(x + 7) *(x ~ 2 + 14 = x + 48))
X + 2)

[in-put J(lcms *(x + 7) "{(x " 2 + 14 » x + 43))
X" 2+4sX+4)

{ in-put }{equal® 2 3 4)
NIL

{ in-put)(equal®* 0 ’(* x 5))
T

127

(in-put)ff
B3+X"2sY+2+xXsY+Y+0+s)"2+52X-23)

(in-put Jge
(2% X" 3+Y-X*sY-Y+6+X"3-2+X¥"2-3+X+3)

{ in-put Jhh
(X" 3+VY+X"2sY+3+X"3+2+X"2)

[in-put) (set-ideal* ’nag (list ff gg hh))
NAG

[in-put Jcurrent-ideal$
NAG

[in-put)(get current-ideal$ ’calculation-type)
MODULO-MULT

{ in-put)base$
((y110X211-3/20-3)) (xX312-5/21-5/2))

{ in-put J)ideal-element$:
((B3+X"2+*Y+2+XsY+Y+9sX"2+5sX-3) (2+X"3e¥Y
~Y+6eX"3-2+X"2-3sX+3) (X" +

+ X" 2))

{ in-put) (add* ff gg hh)
0

{ in-put) (subtract® *(x " 5) ’(y ~ 2))
(245/8 « X " 2 + 113/8 s X - 9)

(in-put J(subst* '(x "5+ 1) ’a’({a+4) " 7))

{697915194384153367303515625/8589934582 = X " 2 + 534299052914816561074609375/8589934592
s X + 78125)

- 21

128

(in-put) (set-ideal* ’mn (list 19 ff gg hh))
MN

(in-put Jcurrent-ideal$
MN

(in-put)} (get current-ideal$ ’calculation-type)
MODULO-MULT&P

(in-put.)base$
(19 (Y110((X2118018)) X312717D)

{ in-put)ideal-element$

(1 3+X"2sY+2e¢X+sY+Y+0es)X"2+5sX-3)(2=+Xx"
Y-Y+6+¢X"3-2+X"2-3X+3) XX "3+¥+X"2+Y¥Y+
2+X"2)

(in-put J(add* 13’ (x “9-7) ’(a " 5 » 183))
(12+ X" 2+ 15X+ 12+ A"5+6)

(in-put J(subtracts ’(d + x ~ 3 - 7) 3 4 ’y)
(13+X"2+X+D+2)

(in-put J(gcd* "(x sy "2+ 1) °((xsy " 2+1) " 2))
1

(in-put J(add* ’(x =y "~ 2 + 1))

(11 +X" 2+ 17X+ 1)

(in-put J(power* (add* ’(x =+ y " 2 + 1)) 2)
X*2+X+ 1)

22

*
*

129

Appendix II

A Session Example of MMP

(in-put) (top*)

Welcome to our package!

Ye can use following functions.

adds ged# groebner#*
subtracts lcm* set-ideals®
mult* subst»* more-ideals®
dive diffs» clear-ideal#*
powers* equal* ideals

The following are functions changing the form of an expression. :

to-r~poly#* to-e-poly#*
to-r-rationals* to-e-rational®
to-is to-p#*

The parameters show you the state of calculation.

current-ideal$ ideal-element$
base$ ideal-list$

If you want to knov these functions, try “describes”,
¥hen you finish calculation, try “ends”,
“help*” will help you.

Please input function or parameter.
=)get~ideals

Please input the name of ideal.
=)ideall

Please input the element of ideal.
D((xsy+x"2) (x*y " 2+2))
==)IDEAL1

Please input function or parameter.
=)current-ideal$
IDEAL1

43

136

Please input function or parameter.
=)ideal-list$
(SYSTEM-IDEAL$ IDEAL1)

Please input function or parameter.
=)base$
((Xx3102 (Y110 X11))

Please input function or parameter.

=)ideal-element$
(XeY+X"2) (XY™ 2+12)

Please input function or parameter.
=) adds
Please input the object of calculation,

Hx+y) "D (rsy”2-5)4)
=)R*X"2-1)

Please input function or parameter.
=)describe#

Please input function name.
=)add=

ADDs (f1 £2 £3 ...)
The function ”add#” adds all elements of the given list.
ADDs (f1 £2 £3 ...) ==) f1 + £2 + £3 + ...
(example) Please input function or parameter.
=) add#*
Please input the object of calculation.
=(x (2*#x"3-5+x)35)
==)(2+ X" 3-4%X+8)

If you have made ideal and still in the state, formulas are
manipulated on its quotient ring.

Please input function or parameter.
=)ends
END

2d

