goooboooogn
0 586 0 1986 O 65-90

(=]
[}

A simple realization of LR parsers

for reqular right part grammars

Masataka Sassa and Ikuo Nakata

(Ex %% H BB

Institute of Information Sciences
and Electronics

University of Tsukuba

GEAFE &F - HRLTER)

Abstract

A Regular Right Part Grammar (RRPG) is a context free
grammar in which regular expressions of grammar symbols are
allowed in the right sides of productions. In this note, a
simplé method for generating LR parsers for RRPG's is presented.

The idea of the LR parser is to use stacks for counting the
length of grammar symbols generated by the right side of a
production. The stacks behave synchronously with the parsing
stack. |

Although the parsing efficiency of the method is not the
best, the generation of the LR parser is simple and can be done
with a little refinement of the standard LR parser generation
techniques. No grammar transformation nor computation of

lookback states is necessary.



66

1. Introduction

A reqular right part grammar (RRPG) {(or an extended context

free grammar) is a context free grammar in which regular
expressions of grammar symbols are allowed in the right sides of
productions [1-6}. RRPGs are usefui for representing the syntax
of programming languages naturally and briefly, and are widely
used to specify programming languages.

An RRPG is called an ELR{k) grammar if its sentences can be
analyzed from left to right by the LR parsing method with a
lookahead of k symbols. More precisely, an RRPG is an ELR(k)
grammar if (i) S ¥, S is impossible and (ii) if S 2> oAz => aBz,
s %> yBx => aBy, and FIRST,(z) = FIRSTy(y) implies A = B, a = ¥,
and x = i, where all derivations are rightmost [6]. The
corresponding parser is called an ELR parser in this note. 1In
the following, we deal with the case k=1, and ELR(1)/LR(1)
grammars and parsers may simply be called ELR/LR grammars and
parsers.

The main problem with ELR parsing of ELR grammars is in the
"reduce" action when the right side of a production is
recognized. The problem is that in ELR grammars the length of
the sentential form generated by the regular expression of the
right side of a production is generally not fiked and therefore,
extra work is required to identify the left end.of‘a‘handle to be
reduced.

Three approaches have been proposed so far for ELR parsing
of ELR grammars.

(1) Transform the ELR grammar to an equivalent LR grammar and

apply standard techniques for constructing the LR parser [1,2],



67

(2) Build the ELR parser directly from the ELR grammar [another
method of 1,3,4,5]. |

(3) A method similar to (2), but there are cases where this
method does not work. 1In these cases transformation to another
ELR grammar is necessary [6]. (Note. This does not mean that the
grammar class which can be handled by this method is greater than
that of approach (2).)

In approaches (1) and (3), extra nonterminals are added to
the transformed grammar and the structure of the grammar becomes
more complex than the original. In compiler generation, the
correspondence of semantic rules with syntax rules is destroyed.
From these points, approach (2) seems preferable. .

In this paper, we present a simple method based on approach
(2). No grammar transformation is necessary. In previous
methods based on approach (2), the addition of readback machines
[3,4,5] or the investigation of the lookback state [5,8] at
reduction time was necessary. The algorithms for these methods
were rather complicated. In our method, an ELR parser can be

realized with a slight refinement of the usual LR parser

technique, by allocating so-called count stacks for counting the
length of grammar symbols generated by the right side of
productions. The stacks behave synchronously with the parsing
stack. Although the parsing efficiency of the method is not the

best, the generation of the LR parser is simple and practical.

2. Outline of the method
The outline of our method is explained using the following

grammar [3,6].



Example Grammar

Gl: #0: s8'-> S §
#1: S ->{alb
#2: 5 -> a ‘A ¢

#3: A -> {a}

where {a} means that a is repeated 0 or more times.

Suppose that the input "aaab$" (input 1) is given. This is

derived by

In order to perform correct: reductions for such input, it
suffices to count the position of each grammar symbol. in the
right side of the corresponding production. We will allocate

stack(s) called count stack(s) in addition to the usual parsing

stack and save the count values in them as follows.
b remaining input: §

4

paréing stack: aa

|

w

count stack: 1 2
At the above situation, the parser will reduce by production #1.
The number of symbols to be popped from the parsing stack is 4
which can be found at the top of the count stack.
On the other hand, suppose that the input "aaac$" (input 2)
is given. This is derived by
s' #9, ss #2, aacs #3, alalcs

Thus, the input must be first reduced as




in this case, the count values are different from those for input
1_Y.They must proceed as follows.

parsing stack: aa remaining input: ¢ §

v

count stack: 112
gsince there is no distinction between input 1 and 2 during the
parsing of "aaa'", multiple cases many arise for couﬁt values.
Thus, we will allocate the necessary number of count stacks to
handle each case. The present example is processed using two

count stacks as follbws.

parsing stack: aaa remaining input: b $
count stack 1:- 1 2 3 or ¢ $
2

count stack 2: 11

If the next input symbol is "b", the parsing proceeds as
shown before for input 1. If the next input symbol is "c¢", the
parser will decide that reduction by producﬁion #3 should take’
place at this point. Since the count value correspondiﬁg to
production #3 is stored in count stack 2 and the top element of
"this stack is 2, the parser will reduce after popping 2 symbols
from thevparsiﬂg stack. | |

Cases where multiple count stacks are necessary correspond
to'the stacking conflict of [6] and {8]. It will be shownkiater
that we need notiworry oursélves about a Coﬁbinatorial‘exélosion

of the number of count stacks.

3. The proposed ELR parser'
The proposed ELR parser for ELR grammars can be organized

with a slight refinement of the usual LR parser generation



techniques [7] for making LR items and LR states (sets of LR
items). The detailed formalization of LR items and LR states can
be made similarly to [7,6,8]. In the following, this is
explained using the example grammar GI.
3.1 Constructing LR states and LR automaton

First, according to the convention of ELR grammars, the
regular expression in the right side of a production is
represented by the corresponding finite state automaton. The

finite state automaton is called the right part automaton. In

this note, we assume that it is a deterministic finite state

automaton. The right part automata of grammar G1 are shown in
Fig. 1. |

Similarly, an LR item is represented using the states of the
right part automaton. For example, the LR item [S -> = {a} bl

"e" is at state 3 of

is represented as "3" since the LR marker
the right part automaton of Fig. 1. (Here, for the convenience
of explanation, we often show only the core [7] of LR items,
eliminating the iookahead part.)

A set of LR items or aﬁ LR state 6f an ELR grammar is
defined as usual. An LR state is defined as the closure of a set
of LR items (kernel of‘the state). The set of items which are
included ihto the state by the closure operation is called the
nonkernel of the state. For‘example, if‘LR items'"3" ([s -> -
{a} bl) and "6" ([S -> a ° A cl) are in the kernel of an LR
state, LR item "9" ([A -> - {a}]) is included in the nonkernel of
this LR state by the closure operation. The LR'state is also

represented using the states of the right part automaton, e.g.

"{3, 6 | 9 }". We use "|" to separate the kernel and the



71

#1 |S

#0 s'
(3)

K e O e O e O O)
g a

#3 [A] Q

Fig. 1 Representaﬂon of regular right part
grammar &7 by right part automata




nonkernel of an LR state.

Next, we build an LR automaton as usual using the gggg
relation and the closure operation. The LR automaton fdr grammar
Gl 1is shdwn in Fig. 2. (Fig. 2 contains some refinements as
described below.) 1In this figure, the annotation "#p {14, 1o,

...}" added to LR states denotes the reduce action by production
#p when the parsér is in that LR state and the next input symbol

is in the set {14, 1,, ...}.

3.2 Refinement of the usual LR automaton

In the following, we borfow some notations from [5] and [7]
with slight modifications: Concerning right part automata, Qr
represents a finite set of right part states (states of the right
part automata), 6: Q@ x V -> Q is the transition function where V
is the set of grammar symbols (nonterminals and terminals), and
FcQ are the final states. |

The following notational conventions are used: A, B, C,

... and S, S' are nonterminals; a, b, ¢, ... are terminals;
X, ¥, 2, ... are grammar symbols; o, B, Y, ... are strings of
grammar symbols, g3 € Q is a right part state; t; is an LR item
of the form [gi, al where a is a lookahead terminal; I; is a set
of LR items; sj is an LR state. We often identify a set of LR
items with an LR state.

Now, we make some refinements of the goto relation. A goto
relation usually represents a transition from an LR state to
another LR state. Here, in order to deal with multiple possible
cases for count values, we introduce a new relation called gotol

which is a refinement of the goto relation. A gotol relation’



73

$/+ 12
2| | #0
A/+ !5
3}
#3{c}
al/l C/.+

la

" (a)

b '
£106) al+ i #3{c}  #2{$}

Fig. 2 LR automaton for &7



14

represents a transition from a pair (LR state, LR item) to
another pair (LR state, LR item), together with the information
whether the source LR item of the transition is from the kernel

or the nonkernel.

Definition (gotol relation)
Let 1I,, I, be LR states, and X be a grammar symbol satisfying
goto(Iq, X) = I,. From the definition of goto [7], there should
exist LR items t4 € I, and t, € kernel of I, such that

t1 = 1[4y, 29) and ty = [8(gq,X), 2yl (g7 € Q)
for some lookahead terminals a1 and 22;: In this situation, we
say that there is a transition’by X from (I4, tq) to (Iy, tjy)-
- If 21 is in the kernel of 11; it is denoted by

gotol( (Ig, t1), X/+ ) = (I, ty) or

(I, £ 2% (1, t).
- If t4 is in the nonkernel of I,, it is denoted by

gotol( (I, tq), X/1 ) = (I5, ty) or

(I, 9 X1, (15, ty).
Example The arcs in Fig. 2 represent the gotol relation.
If the parser makes a transition by "a" from LR state I3 = { 3, 6
| 9 } to LR state Ig, the LR item (I3, 3) in the kernel of Ij
"gdes to" (Ig, 3), and the LR item (I3, 9) in the nonkernel of I3

goes to (Ig, 9). Thus,

(Is, 3) or (I3, 3) _2/* (15, 3)

gotol((I3, 3), a/+)

and

(I, 9) or (I3, 9) _2/1 ,(15, 9).

10



Another modification of the usual LR parsing method is that
'all LR itgms in the initial LR state are assumed to be in the
nonkernel instead of the kernel. This‘is for satisfying the
property to be described below. An example is the initial state

Ip={ | 0,3, 5} of Fig. 2.

The following is another example of the ELR automaton and
the gotol! relation.
Example Consider an RRPG G2 (the same as in Fig. 1 of [5])
S->2%; A->[xAy | B1; B->b{ab)
where [ ] and | means option and alternation, respectively.
This grammar can be represented with right part automata as in
Fig. 1'b. The ELR automaton and the gotol relation is shown in

Fig. 2b.

With the above refinement, we can consider a sequence of (LR
state, LR item) pairs connected by the gotol relation such that
the first pair in the sequence is really the first one éonnected
by the gotol relation and the last pair corrésponds té a final
state in a right part automaton. Let call it a‘RQEQ [5]. The

following property holds for a path.

Property (of a path) A path corresponds to an occurrence of
the right side of a production. The”first item in a path is a
nonkernel item and it coresponds to an initial state in a right
part automaton. The remaining items in a path areﬂkernel items.

This can be schematically shown as

11



76

#0

#1

Fig.2b LR automaton for &2



7

EAMIRIE STANING PYEPY UP-- YA O o SPEE TIPS B S5 UL IS SR

nonke:nel kernel kernel kernel

To meet the above property, we have assumed LR items in the

initial LR state to be in the nonkernel.

Example The path
nonkernel = kernel kernel kernel kernel
corresponds to an occurrence of the right side of production

|I§ -> {g—} -12'".

3.3 The handling of count stacks in the ELR parser

From the above property, we can see that when the parser
makes a transition by X corresponding to the gotol relation
we must initialize the count value to 1 since the first symbol of
the right side of a production is read, and when it makes a
transition corresponding to |
we must increment the count value by 1 since the parser is
processing the middle part of the right side of a production.

In practical implementation, the organization of the stacks
of the ELR paiser will bo as shown in Fig;'3; The count stacks
CSi's behave synchronously with the parsing stack. In Fig. 3,
LR states §i's and grammar symbols gi's are stored alternately in
the parsing stack PS following the usual convention, and thus

count values Eij's are stored in every other element of the count

13



top
parsingstack PS | & | X | & | X | & S
countstack 1T CS1 o1 crel Cm
count stack 2 (CS2 o cz2 o Com
count stack 7 CS# Cn1 ow| Cm

% is an LR state, X¢ is a grammar symbol, and

cijis a count value, which may be empy.

ris the maximum number of LR items in the kernel of LR states.

Fig. 3 Stack configuration for an ELR parser

14



79

stacks.

The count stacks are used in a way such that the element of
the i-th count stack CSi contains the count value of the i-th LR
item in the kernel of the corresponding LR state. Thus, the

action of the parser concerning the count stacks is as follows.

(1) Action at state transition time
Assumé we are at the moment when the parser makes a transition
from LR state I4 to LR state I, by pushing the symbol X to the
parsing stack. The handling of the count stacks at this moment
is as follows.
- If there exist (one or more) t; and t, such that
gotol( (Ig, £q9), X/+ ) = (I, t3)s
where t; is the i-th LR item in the kernel of I and
t, is the j-th LR item in the kernel of I,,
then perform
CSjltopl := Csiltop-21 + 1.
- If there exist (one or more) ty and t, such that
gotol( (Iq, tq), X/1 ) = (I, t5)
where t, is the j-th LR item in the kernel of I,
(t1 should be in the nonkernel of I,),
then perform

CSjltopl] := 1.

Example If the parser for G1 (Fig. 2) is at LR state I3 and

the next input symbol is a', the parser goes to LR state Ijg and

performs

CS1[top] := CS1[top-2]+1 ; CS2[{top] := 1

‘15



80

As can be seen from the above action, it is natural to
consider that the count values synchronize with the LR states in
the parsing stack rather than the grammar symbols.

It is also clear that the number of count stacks CSi's is

limited by the number of LR items in the largest kernel of the
set of LR states, where largest kernel means the kernel
containing the most items. Thus, some elements of the count
stacks Will not be used for LR states with fewer than the maximum

number of kernel items.

(2) Action at reduction time
When the parser is at LR state I annotated with #pf{l,, 1,,
...}, and if the next input symbol belongs to the lookahead set
{14, lé, ...}, the parser makes a reduction by production f#p.
Elements of the parsing stack and the count stacks must be
popped. The number of elements to be popped is CSi[toplx2 if the
LR item in I corresponding to the final state of the right part
automaton for production #p is the i-th LR item in the kernel.
However, no popping of stacks is pérformed at a reduction by an

e- rule.

Example If the parser of G1 (Fig. 2) is at LR state Ig, and the
next input symbol is "c¢'", the parser reduces by production #3.
The number of elements to be popped from the stacks is

Cs2[toplx2. (This is because the LR item "9" which corresponds

to prdduction #3 is the 2nd item in the kernel.)

16



81

4. Formalization of the ELR parser and its construction
In this section, we summarize the above discussions and
present formally the ELR parser and its construction.

A configuration of the ELR parser is similar to the usual

one [Aho] but is augmented with count values:

(50 Co X1 81 C1 X2 82 Cp **" Xp Sy Cnr 23 2541 777 21 §) (%)
where sjy ié an LR state, X; is a grammar symbol, C; is an
arrayl1..n] of count values (n is the maximum number of LR items
in the kernel of LR states)and a; ... aj;$ is the remaining
input. go’isbempty. Cplil in the configuration corresponds to
Cim OF CSi[top] of Fig. 3.

Move (of the ELR parser)

The move of this parser is also similar to the usual one
[7]. To include the handling of count values, we divide the
usual "shift s" operation into a simple shift and a goto to s
handled with the couﬁt stacks. Assume that the present

configuration is (¥*).

1. If action(s,,a;] = "shift" and
gotolspy,a;] = "state s,

incr((l‘]li‘])l (i2rj_2) e )l
init(h‘] IEZ! cee )"
("incr" or "init" is constructed below. It may be empty),
then the parser enters the configuration
(89 Co X9 59 C1 X3 82 C2 ™" Xy 8q G 23 8 G 2349 77" 219)
where
Cli1] = Cpligd + 1, Clip) = Culinl + 1, -°-

and ‘ i : : : o o . (a)

17



Clkq1 = 1, Clkpl =1, *--.
2. If actionlsg,a;] = "reduce #p",

r=Chli] (i is the index of the LR item in the kernel of

Sy corresponding to the final state for production #p),
and
gotolsp,_,,Al = "state s,

incr((iq,31),(i,32), == ),
init(kq,kps " )",
then the parser enters the configuration
(sg Co X1 81 C1 X382 C5 """ Xpn-r Spm-r Cpm-r 2 8 G,
aj 2341 "7 a2 $)

where

€]
and (b)

gm_r[l‘]] + 1, 9[12] = _C_m_r[i__z} + 1, -

Clkq]

1, g[_]szl =1, °°°.

3. If actionlsp,a;l "accept", parsing is completed.

4. If actionlsp,a;! "error", the parser reports an error.
The construction of the ELR parser is also similar to the

usual one (7] except for the handling of count stacks.

Algorithm (Construction of the ELR parsing table)
Input: A grammar G augmented by production "S' -> S"
Output: ELﬁ parsing table functions action and goto
Method:

1. Construct {I,,I4, °**, I,}, the collection of LR states for G.

2. The parsing actions for state I; are determined as follows:

a) If LR item [g,b] is in I; and

18



there is a transition by "a" from g in the right part
automaton (This means that g roughly corresponds to the form
"A ->a - a B"),
then set actionlI;,al to "shift".
b) If [g,al is in I; and g € F (final states)
(except for case c) ),
then set action[I;,al] to "reduce by production #p"
where‘productioﬁ #p corresponds to (.
c) If [S'->S$-,] is in I;, then set action[I;,] to "accept".
3. The goto transitions for state I; are determined as follows:
If goto(I;,X) = 1y,
and there exist t;q, t;,, °°° € 1, Ej1r Ejz' et € Lj
such that

gotol ((li'Eik)’ X/+) = (lj ’—t—jk)
where iq,i5, *** and jq, Jjo °** are indices of tjq, £, **°
and gj1, Ejz' *** in the kernel of I; and Lj,

respectively
and there exist Ei1l, _t_izl, e € li, tj1!, —t—jz", A = ;[_]

such that

gotol ((Lj, ki), X/1) = (Ij,tykr)

where j4', jp' °°° are indices of tyq', tyo', **° in the
kernel of Ij'(Eik' is in the nonkernel of 1;),
then set
gotolI;,X] = "state I,
iner((iq,39),(in,32), =)

e s e ‘)"

init(j_1 ' ,j_zl ’

' Example The ELR parsing table for G1 is shown in Fig. 4. 1In

19



84

the figure, the action table and the goto table are merged.
Depending on the implementation, this may allow a reduction in
table space. An example parsing for grammar Gl is shown in Fig.

5.

5. Discussions
5.1 Grammar class

Since the proposed ELR parsing method is an extension of the
usual LR parsing method in the handling of the count stacks, the
following holds concerning grammars which can be dealt with by

this method.

Theorem An RRPG G can be parsed by the proposed ELR parser if
(i) parsing conflicts in inadequate LR states can be resolved by
using lookahead symbols, and (ii) for I;, I, and X satisfying
goto(I4, X)= I,, and for each t, € kernel of I,, there is a
unique t4 € I, which satisfies

gotol((Iq,tq), X/+) = (I5, £p) or

gotol((Ly,tq), X/1) = (I, tp).
(Proof) We have to show that the "Move (of the ELR parser)"
(section 4) is correctly and uniquely defined if (i) and (ii)
hold. Since the ELR parser is an extension of the standard LR
parser, no parsing conflict occurs if condition (i) holds. What
is left is to show that the number of elements to be popped at a
reduction is correctly and uniquely determined if (ii) holds. As
can be seen from the '"Move", possible count values are correctiy
stored in doing a transition by a grammar symbol. If (ii) holds,

the incr or init operation in the goto table (3. of the

20



action — golo
state a b c $ S A
In s I3, s Ia, I,
i(1.2) (1) iqn)
1 s Iz
1 +((1,1))
I2 ( a ¢ ¢ e p t )
Is s Is, s 14, 43 Is,
H((L1)).1(2) +((1L.1) +{(2,1))
Ia r#]
Is s Is, s Ia, 43
H{(L1.2.2)) (0.1
s Iy,
. +((1.1))

s Ii : shift and goto Ii, Ii

1(.) s init(.), +(.) :iner(l.).

Fig. 4 The ELR parsing table for &7

: goto li, r#p : reduce by production #p,



86

stacks remaining input action
PS: Iy aaab$ shift
Cst:
CS2:
lga '13 a '25a }35 b$ shift
11 2

lgalgalgalgblyl ¢ reduce by #1.

1T 92 37 4 pop 4x2 elements(note)
1 1 2 andpushS
1S 14 $ shift
1
1gS1481; (accept)
1 2

(note) pop CS1[top] x 2 elements since the parser reduces by (ls, 4)
which is the st item in the kernel.
(a) input = "aaab$"

Fig. 5 An example parsing of
a sentence generated by &7

22



stacks remaining input action
PS: Iy aaac$ shift
CSt:
CS2:
lgalzalsals cs reduce by #3.
1 2 3 pop 2x2 elements(note)
1 1 2 and push A
loalaAle c$ shift
1 2 |
1
'03‘3A|50|7 $ reduce by #2.
1 2 3 pop 3x2 elements
1 and push S
loS 1 $ shift
1
16S 11812 (accept)

1 2

(note) pop CS2[top] x 2 elements since the parser reduces by (Is, 9)

which is the 2nd item in the kernel. |

(b) input = "aaac$"

Fig. 5 An example parsing of
a sentence generated by &7

23



88

"Algorithm (Construction of the ELR parsing table)") isf
determined uniquely for each t, € kernel of I,. Thus, ﬁhel
operations for assigning values to each count stack, ((a) and (b)
of therfMove") are uniquely defined since those operations are
defined from the goto table. At reduction timé, "r" o= MC il
elements of the stacks are popped (2. of the "Move"). Since the
count stack number i is clearly uniquely determined and the coﬁnt

value Cplil is uniquely defined in the above discussion, the

reduce operation is correct.

Condition (ii) of the Theorem is essentially the same‘as
condition {(ii) of the definition of LALR(1,1) grammar in [5]
which says "the readback machines for all reductions are
deterministicf and condition (ii) of the theorem for ELALR(1)
grammar in [{8].: This seems to be an essential condition of the
class of ELR gram’mérs for which LR parsers can be directly built.

So long as this condition is satisfied, the proposed method
can be generally appliéd to regular right part grammars including
productions of any fo;m sucq as

A->a{B}Y {61} n or

Boe(ulv)e

where o, B etc. are strings of grammar symbols.

5.2 Trivial optimization

For a étate of a riéht §é£t automatbh’whoée distance from
the start state of the right part automaton is fixed, the
handling of count stacks can be diéﬁenéed with. Since this

optimization is trivial; its description is omitted here.

24



6. Concluding remarks

We have described a simple realization of ELR parsers for
regular right part grammars. An early idea of this paper
appeared in [9]. |

The proposed method belongs to the second of the three
approaches given in the introduction. The LR parser is directly
built from the giveﬁ ELR grammar, and no grammar transformation
is necessary. The ELR parser can be easily built by a slight
refinement of the usual techniques for building the LR parser.

In exchange for the easier parser generation in our method
there is some overhead needed for handling the count stacks at
parsing time. Our method involves count stack operations during
state transitions to simplify the action at reduction time. This
may be compared to other methods [5,8] which do no additional
operations during state transitions but which must investigate
the readback machine or lookback states at reduction times.

What is the frequency of regular expressioné in the
productions in practical situations? An example is . the
descriptidn of Pascal by the compiler generator GAG-[10]. Among
141 productions, 20 productions (14%) use regular expreséions in
the right sides.  One possible reason for this rather small
number seems -to bg that the techniques for semantic analysis of
regular right part grammars are still not well established.

The proposed ELR parser is not the best in terms of parsing
efficiency, but we think it .can be a favorable method due to its

simplicity in formalization and implementation.

25



9

Acknowledgements
The authors wish to thank David Duncan for polishing up the

English in this paper.

References

{[1] O.L. Madsen, and B.B. Kristensen, LR- parsing of extended
context free grammars, Acta Inf., 7 (1976) 61-73.

[2] S. Heilbrunner, On the definition of ELR(k) and ELL(k)
grammars, Acta Inf., 11 (1979) 169-176.

[3] W.R. LaLonde, Regular right part grammars and their parsers,
Comm. ACM, 20 (10) (1977) 731-741.

[4] W.R. LaLonde, Constructing LR parsers for regular right part
grammars, Acta Inf., 11 (1979) 177-193.

[5] N.P. Chapman, LALR(1,1) parser geﬁeration for regular right
part grammars, Acta Inf., 21 (1984) 29-45,

[6] P.W. Purdom and C.A. Brown, Parsing extended LR(k) grammars,
Acta Inf., 15 (1981) 115-127.

[7] A.V. Aho, R. Sethi and J.D. Ullman, Compilers - Principles,
Techniques, and Tools, (Addison-Wesley, 1986).

[8] I. Nakata and M. Sassa, Generation of efficient LALR parsers
for reqgular right part grammars, to appear in Acta Inf. (1986).
[9] M. Sassa and I. Nakata, A simple realization of LR parserg
for regular right part grammars (short note) (in Japanese),
Trans. IPS Japan, 27 (1) (1986).

[10] U. Kastens, B. Hutt, and E. Zimmermann, GAG: A practical
compiler generator, Lec. Notes in Comp. Sci. 141 (Springef,

1982).

26



