goooboooogn
0 586 0 1986 O 91-111

Practical Attribute Grammar Forms
Allowing Continuations

Hiroyuki MATSUDA #AH#E

NEC Scientific Information System Development, Lid.

ABSTRACT

We propose a new attribute grammar form that
separates atiributes into syntactic attributes and
semantic attributes and may describe continuation
semantics. We call the form ”semantic attribute
grammar form” since it has semantic attributes,
which play the role of denotations.

1. Introduction
2. Semantics-Running Approaches To
Programming Language Designs ;
2.1 Programming Denotational Semantics
2.2 Attribute Grammar Based Language LEAG
2.3 Semantic Grammar: A Combination Of
Denotational Semantics And Attribute Grammars
3. Semantic Attribute Grammar Forms
3.1 Type Checking By
Syntactic Attributes And Semantic Attributes
3.2 Attributes As A Continuation
3.3 Designing A Language SMALL In-
Semantic Attribute Grammar Forms
4. Discussions

References / ﬁ
Appendixl Syntax And Semantics Of SMALL Written In
Semantic Attribute Grammar Forms
"Appendix2 Attribute Domain Declaration And
- :Primitive Semantic Functions of SMALL

1. Introduction

On designing programming languages, a designer often
wishes to run the program written in the current designing
language to check the validity of the syntactic and semantic
specification of the language. However, the implementor and
the designer of the langiage are different in general, so
the designer should compliete the specification, then pass it
to the implementor, and then waits for the compiler to make
up.

As a solution of this dilemma, we have studied the exe-
cutable definitions of programming languages. Executable
definitions are specifications and at the same time are pro-
grams: that is, the definition itself is written in another
language and is translated into the target language’s com-
piler by the meta-compiler, or interpreted by the meta-
interpreter. We have designed and developed an executable
definition language LEAGL5], which is based on extended
attribute grammars[1][2]. LEAG is a Lisp-like language and
its grammatical symbols are functions whose input values are
inherited attributes and whose output values are synthesized
attributes. The specification of the language L written in
LEAG is translated into Lisp functions and then. the func-
tions works for the programs written in L as a compiler or
an interpreter.

While developing and using LEAG, one question arises:
how can we describe the formal semantics of code generation
parts? Historically attribute grammars have dealt with the
syntactic and context-sensitive properties of a language,
then as a result have many advantages in constructing syn-
tactic analyzers formally but few advantages in constructing
code generators from the formal semantics. To overcome this
situation, at first we have reached Paulson’ sewantic gram-
mars[5]. Semantic grammars are attribute grammars whose
attributes are as a denotation from denotational semantics.
The specification of a programming language L described by
the semantic grammar is translated into a compiler and then
the compiler compile the ‘programs written in L. Two defects
of semantic’ grammars are: (1):no dealing with continuation
semantics; (2) no discriminating between static type check-

yA

ing and dynamic type checking.

It is well known that continuation semantics may be
described by non-absolute circular attribute grammars having
only synthesized attributes[2], or by Wand’s special-purpose
combinators[4], or by Sethi’s cutting-points which are
analogous to UNIX’s pipes and do function as a continua-
tion[8]. Unfortunately the above attribute grammars need
the reformulations of themselves, and Wand’s combinators are
not a primitive so that new combinators have to be created
whenever new denotational entities are added. On the other
hand Sethi’s approach is a more realistic one since its
intended specification of semantics are described by YACC-
like notations and are transiated into the inputs of YACC
system[12].

OQur primary concern is to make up an executabie defini-
tion system that supports designing new languages, or proto-
typing the compilers of experimental languages, or describ-
ing the semantics by executing the definitions. We have
already designed and carried out the prototype of an execut-
able definition system LEAG. Next step is to fill up the
semantics system of executable definitions. Then we propose
a new attribute grammar form that separates attributes into
syntactic attributes and semantic attributes and may
describe continuation semantics. We call the form “semantic
attribute grammar form” since it has semantic attributes,
vhich play the role of denotations.

2. Semantics-Running Approaches To Programming Language
Designs

In this chapter we offer a short overview of “semantics-
running” approaches to programming language designs.

2.1 Programming Denotational Semantics

Allison[3] has programmed in Pascal the denotational

semantics of a small language called ’contlang’. Contlang

is not a very useful programming language but it contains
some of the more difficult language features -- ”goto”,
”valof”, ”resultis”.

93

94

Denotations are represented as an uncurried function
and passed to another denotations as a function argument.
Information for continuations is hold by the function-call
stacking mechanisms. Denotational semantics has no concrete
syntax, therefore Allison implemented the lexical analyzer
and syntactical analyzer, and then contlang’s programs are
converted into intermediate tree forms, which are inter-
preted by the programmed semantics(meta-interpreter).

2.2 Attribute Grammar Based Language LEAG

LEAG(a Language based on Extended Attribute Gram-
mars)[5] is a programming language that may specify the syn-
tax and semantics of programming languages. LEAG has been
implemented in Lisp and presented Lisp-like notations.

LEAG’s advantages are:

(i) definitions described by LEAG are executable under Lisp
environment.

(ii) LEAG’s programs almost have one-to-one correspondences
to intended grammars’ rules.

(iii) Attribute grammar rules are expressed as a function.
As a result, to identify inherited or synthesized attributes
is easily done since inherited attributes are functions’
inputs and synthesized ones are functions’ outputs. (note.
LEAG supports multi-values) And the relations of inherited
and synthesized attributes are also understood clearly
because of the same fact.

(iv) LEAG supports pattern-directed syntax analysis and
attribute (constraint) checking or composing mechanism.
With these facilities, designers can easily describe gram-
mars’ specifications without annoying detail aspects.

On the other hand LEAG’s disadvantages are:

(i) LEAG is a programming language not a declarative specif-
ication language. Hence, more powerful facilities, which

Y

95

ordinal attribute-grammar-based translator systems have,
can’t be provided; for example, static attribute type check-
ing, circularity checking between attributes, so on. CGii)
LEAG supports only code generation mechanisms and no rigid
semantics writing system. Hence, designers might write down
incorrect or ambiguous semantics, so they should check the
validity of the semantics by himself.

2.3 Semantic Grammar: A Combination Of Denotational
Semantics And Attribute Grammars

Paulson’s semantic grammars[6] are extended attribute
grammars[1][2] whose attributes are the denotations from
denotational semantics. The strong features of Paulson’s
system are:

(i) attributes are defined on the mathematical domains.
Hence, formal treatment of semantics might be possible.

(ii) with DAG(directed acyclic graph) evaluator[2], the sys-
tem can deal with every non-circular attribute grammar
classes (note. the current version only allows LALR(1) input
grammars) and enforce the several optimization to the DAGs.

Two defects of semantic grammars are:
(i) no dealing with continuation semantics.

(ii) no discriminating between static type checking and
dynamic type checking.

3. Semantic Attribute Grammar Forms

Attribute grammars are powerful and practical specification
languages. Therefore it is natural that attribute grammars
will be extended to covering the formal semantics of pro-
gramming languages. Paulson’s semantic grammars is one
attempt. The system, however, has the two defects as
described in the previous chapter. Then we propose a new
attribute grammar form called ”semantic attribute grammar
form”. This form is similar to Paulson’s grammars, but pro-
vides more clear concepts and lucid notations of

§

96

semantical ly-extended attribute grammars. To explain the

concrete exampies of semantic attribute grammar forms, we

will write down the specifications of a mini language SMALL
- from Gordon[9] by it (see Appendixl).

3.1 Type Checking By Syntactic Attributes And Semantic
Attributes

(1) syntactic/semantic attributes

Attribute grammars ordinally deal with the syntactic
and context-sensitive properties, therefore all attributes
appeared here hold syntactic information. We will call them
»syntactic attributes” from now. On the other hand consid-
ering attributes as a denotation, we call them ”semantic
attributes”. Paulson’s grammars do not distinguish the pro-
perties of the two kinds of attributes clearly. If strong
typed programming languages are considered, no syntactic
attributes are needed to check the types of program entities
in run time. If static bindings are possible, syntactic
attributes may play the role of holding the information. of
‘certain allocations. ‘

In semantic attribute grammar forms, syntactic attri-
butes and semantic attributes are discriminated by the sym-
bols ”< ... >” and ”[... J”. The examples are:

expression<Tenv : Type>[Env,Kont,Store : Cont]
@identifier<: Name>[: Ide]

Figure 3.1 Attribute declarations

In Figure 3.1, attribute types are declared. Inherited
attributes and syntheéized attributes are separated by the
symbo! ”:”. For example, the rule symbol “expression” has
two syntactic attributés_and four semantic attributes, and
the type of the inherited attribute of the expression is
Tenv. The identifier has no inherited syntactic attributes,
which is suggested by ”<5)Name$”.v ‘ |

expression<TENV, TENVENAME]>[env, kont, s, cont] =
@identifier<NAME>[ide]

with cont = (env ide = "unbound’) -> err, kont(env ide);

Figure 3.2 Rule program

In Figure 3.2, the attribute variable TENV of the expres-
sion is an inherited syntactic atiribute and whose type is
Tenv. The identifier has one synthesized attribute NAME,
which is not explicitly expressed by the description but
expressed implicitly by the declaration of the identifier
(see Figure 3.1).

(2) semantics of types

Type checking is inherently a syntactic process. One
idea to describe it denotationally is to introduce the two
types of meanings: ”static meaning” and “dynamic meaning”
[91 [11]. The static meanings of entities are types and the
dynamic meanings are denotations of the types, that is set
of values. For this purpose two denotations might be intro-
duced: type environment ’Tenv’ and type ’T’ [9]:

Tenv = lde -> [Type + ’unbound’]

T = Type -> set of type value.

Figure 3.3 Type values

And domain equations must be extended for the compile-time
type checking to be performed.

Our approach is exactly different. Attribute grammars
may completely decide the types of the entities of programs
in compile time if the compiled language is syntactically
well typed. Also even if the language is not syntactically
wvell typed and has a feature of dynamic bindings, syntactic

74

9

-~y

98

process must be separated from semantic process. Some of
the type checking examples described by semantic attribute
grammar forms are: '

expression<TENV,TYPE>[env, kont, sl, cont] =
i £” expressionl<TENY,bool>
Lenv, tam b.cond(contl,cont2)(Boo!? b), sl, cont]
”then” expression2<TENY,TYPE>[env, kont, sl, contl]
“else” expression3<TENV,TYPE>[env, kont, sl, cont2];

Figure 3.4 Type checking

it is supposed that the type of expressionl is boolean and
the types of expression2 and expression3 are the same. The
constraint to be boolean is illustrated by the type constant
”bool”, and the sameness of the value of expression2 and
that of expression3 is guaranteed by the same attribute
variable name “TYPE”. If the condition’s value type is
known in compile time, run-time checking suggested by
”(Bool? b)” is unnecessary. '

(3) constraints of attributes

As illustrated in the previous examples (Figure 3.4),
semantic attribute grammar forms support the two type of
constraints: to be identical and to be sameness. This idea
and notation are borrowed from extended atiribute gram-
mars[1].

(4) attribute-directed parsing

On parsing syntactically ambiguous expressions, it is
necessary to solve the conflict which expressions should be
processed. Attribute-directed parsing method[10] solves the
conflict by knowing the type of the attributes whose types
are declared by attribute domains. For example, when we
encounter the identifier conflict case which is a. function
name or an array name, it is solved by the synthesized
attributes of expression ”func(....)” and "array(...)”
where func and array are type tags, which is proved by type

theories (see [10]).

expression<TENV,func(...)> =
Qidentifier<NAME>
?(” expression<TENV,TYPE> ”)”

expression<TENV,array(...)> =
Bidentifier<NAME>
?(” expression<TENV,TYPE> ”)”

Figure 3.5 Attribute-directed parsing

3.2 Attribute As a Continuation

Denotational semantics describe denotations as a function.
Especially continuations wmight be represented as a higher
order function. On the other hand attribute grammars embeds
attributes into grammar symbols, therefore if attributes are
expressed as a continuation then passing a continuation +to
another one must be described by a temporary attribute not
by a grammar symbol itself. That is, in denotational seman-
tics grammar symbols themselves have meanings but in attri-
bute grammars the symbols pass meanings by attributes. From
these inspects, we know that we must soive the following
problems.

(1) allowing circular attribute grammars by DAG evaluator
Let’s see the following example:

expression<TENV, TYPE>[env, kont, sl, cont] =
expressionl<TENV,TYPE>[env, lam el.contl, sli, cont]

»_.”»

expression2<TENV,TYPE>
[env, lam e2.kont equal("el,e2), sl, contl];

Figure 3.6 Attributes as a continuation

10¢

The attribute “contl” expressing a command continuation is a
expressionl’s inherited attribute and expression2’s syn-
thesized attribute. Hence, this attribute grammar class is
not a kind of “compile-time-evaluated” one. In general
attribute grammars accept the circularity relations between
attributes. DAG evaluator[2] may deal with non-absolutely
circular attribute grammars. This evaluator constructs
directed acyclic graphs, whose node calied DAG is a function
computing a value from the attributes associated with this
function, and evaluate the graph recursively descent manner.

(2) scope of attributes

in Figure 3.6, the attribute el is not bounded within a
lambda expression ”lam e2.kont equal(“el,e2)....”. To solve
this problem we introduce an annotation ””. This annota-
tion suggests that the variable following Is evaluated
dynamically. Here the variable el is evaluated first after
the continuation attribute contl, which include el as an
argument of “equal”, is passed from expression 2. The

v attribute contl has the foliowing form on evaluation:

” "

lamb el.(... lam e2.kont equai(el,e2))

Figure 3.7 Dynamic evaluation of attributes

Critical conditions related to this dynamic evaluations are
released by delayed evaluations: for example “lam el.” or
”lam e€2.”. Nevertheless we should consider another resolu-
tions in the following example;, that is, the variable r is
not bounded in the function env and r is evaluated before
evaluating env.

command<TENV>[env, cont, sl, contl] =
”begin”
deciaration<TENV1 ©@ TENV2>
[env, lam r.cont2, si, contl] ”;”
command<TENV2>[env, env['r], sl, cont2]

/0

”end”;

Figure 3.8 Troublesome example of dynamic evaluation

3.3 Designing a Language SMALL in Semantic Attribute
Grammar Forms

Ve have described the full syntax and semantics of
SMALL[9] (see Appendixl) by semantic attribute grammar
forms. SMALL itself is described in denotational semantics
and every denctations are defined as a curried function. On
the other hand semantic functions ("expression”,”command”
for example) are expressed as an uncurried one and semantic
domains (”command continuation”,”expression continuation”
for example) as a curried one in semantic attribute grammar
forms. Curried functions are powerful on passing itself to
another denotation as a partially evaluated function, but
need extra mechanisms to curry out them. They are necessary
for designers to design realistic and large languages.
Attributed symbols (functions), however, are inherently
uncurried. How can we solve this problem? This will be our

next theme.
4. Discussions

Semantic attribute grammar forms are only forms not
programming languages, hence the programs written in the
language L whose specification is described by semantic
attribute grammar forms can not be executed. Our first
starting point was to design and impiement an executable
definition system in which the semantics may be treated for-
mally. From these reason, we wish to modify the notation of
semantic atiribute grammar forms so that they might be exe-
cutable.

'/

101

10%

References

[1]

David A. Watt.

An Extended Attribute Grammar for Pascal.
Sigplan Notices 14, 60-74, 1979.

[2]

David A. Watt, Ole Lehrmann Madsen.

Extended Attribute Grammars.

Computer Journal Vol.26, No.2, 142-153, 1983.

(3]

Lloyd Allison.

Programming Denotational Semantics.

Computer Journal Vol.26, No.2, 164-174, 1983.

[4]

Mitchell Wand.

Deriving Target Code as a Representation of Continuation Semantics.
ACM TOPLAS Vol .4, No.3, 496-517, 1982. '

[5]

Hiroyuki Matsuda.

A Language Based On Extended Attribute Grammars (LEAG):
lts Theory, Implementation, and Applications.

Master Thesis (in Japanese), The Department of
Information Science, Tokyo Institute of Technology, 1985.

(61

Lawrence Paulson.

A Semantics-Directed Compiler Generator.
in ACM 8th POPL, pages 224-233, 1982.

[7]

Ole Lehrmann Madsen.

On Defining Semantics by the Means of

Extended Attribute Grammars.

in Semantics-Directed Compiler Generation,

ed. Neil D. Jones, Springer-Veriag, pages 259-299, 1980.

[8]

2

103

Ravi Sethi.
Control Flow Aspects of Semantics-Directed Compiling.
ACM TOPLAS Vol.5, No.4, 554-595, 1983.

[9]

Michael J. C. Gordon.

The Denotational Description of Programming Languages.
Springer-Verlag, 1979.

[10]

David A. Watt.

Rule Splitting and Attribute-Directed Parsing.

in Semantics-Directed Compiler Generation,

ed. Neil D. Jones, Springer-Verlag, pages 363-392, 1980.

[11]

James E. Donahue.

Complementary Definition of Programming Language Semantics.
Lecture Notes in Computer Science 42, Springer-Veriag, 1976.

[12]

S. C. Johnson.

Yacc-yet another compiler compiler.

Computer Science Tech. Rep. 32, Bell Laboratories, July 1975.

Appendixl Syntax And Semantics Of SMALL Written In
Semantic Attribute Grammar Forms

Meta Symbols:

$ syntactic attributes
<inhl .. inhn . synl ... synn>

¥ semantic attributes
[inhl ... inhn . synl ... synn]

Attributes:

program<>[File : Ans]

/3

104

expression<Tenv . Type>[Env,Kont,Store : Cont]
command<Tenv>[Env,Cont,Store : Cont]
declaration<Tenv : Tenv>[Env,Dont,Store : Cont]

@integer<>[: Num]
@true<>[: Bool]

@false<>[: Booll]
@identifier<: Name>[: lde]

note. € is an annctation for primitive tokens.

Rule Program.
$ program

[1]
program<>[in, cont s1] =
”program” command<[]>[(), lam s.’stop’, sl, cont]

with s1=Cin/ input’);
expression

[21]
r-value<TENV,TYPE>[env, kont, sl, cont] =
expression<TENV,TYPE>[env, deref(Rv? kont), si, contl];

[3]
expression<TENV, integer>[env, kont, sl, kont int]
@identifier<>[int];

(4]
expression<TENV,bool>[env, kont, sl, kont ’true’]
8true<>[’true’];

(5]

expression<TENV,bool>[env, kont, s1, kont ’false’] =
@false<>[’false’];
(6]

expression<TENV,any>[env, kont, sl, cont] =

14

”read”

with cont = let inl=s1(’input’)
in nuliCinl) -> "error’,
kont hd(inl) s([t1(in1)/ input’]);

[7]
expression<TENV, TENVINAMEJ>[env, kont, s1, cont] =
Bidentifier<NAME>[ide]

with cont = (env ide = ’unbound’) -> err, kont(env ide);

£8]

expression<TENV, func(TYPE1->TYPE2)>[env, kont, sl, cont] =
expression<TENV,TYPE1]>[env, lam f.contl, si, cont]
?(” expression<TENY,TYPE2>[env, (Fun? “f)kont, sl, contl] ”)”;

[9]
expression<TENV,TYPE>[env, kont, sl, cont] =
”if” expression<TENV,bool>
[env, lam b.cond(contl,cont2)(Bool? b), sl, cont]
”then” expression<TENV,TYPE>[env, kont, sl, contl]
"else” expression<TENV,TYPE>[env, kont, sl, cont2];

[10]
expression<TENV,TYPE>[env, kont, sl, cont] =
expression<TENV,TYPE>[env, lam el.contl, sl, cont]

9,.»
+

expression<TENV,TYPE>[env, lam e2.kont plus(el,e2), sl, contl];

f11] :
expression<TENV, TYPE>[env, kont, s1, cont] =
expression<TENV,TYPE>[env, lam el.contl, sl, cont]

”»._”

expression<TENV,TYPE>[env, lam e2.kont equal(Tel,e2), sl, contl];

commands

f12]
comnand<TENV>[¢nv, cont, s1, conti] =
expression<TENV,TYPE>[env, lam l.cont2, sl, contl]

e
- =

7 5

106

r-value<TENV,TYPE>[env, update(Loc? “1)cont, sl, cont2];

[13]
command<TENV>[env, cont, sl, contl] =
“output” expression<TENV,TYPE>
[env, lam e s.(env, cont), sl, contl];

[14]
command<TENV>[env, cont, s1, contl] =
expression<TENV,proc(TYPE)>[env, lam p.cont2, sl, contl]
”(” expression<TENV,TYPE>[env, (Proc? “p)cont, sl, cont2] ”)”;

[15]
command<TENV>[env, cont, sl, contl] =
?if” expression<TENV,bool>
[env, lam b.cond(cont2,cont3)(Bool? b), si, contl]
”then” expression<TENV,TYPE>[env, kont, sl, cont2]
“else” expression<TENV,TYPE>[env, kont, sl, cont3];

[16]
command<TENV>[env, cont, sl1, contl] =
”while” expression<TENV,bool>
[env, lam b.cond(cont2,cont)(Bool? b), si, contl]
”do” command<TENV>[env, contl, sl, cont2];

[17]
command<TENV1>[env, cont, sl, contl] =
”pbegin”
declaration<TENV1 : TENV2>[env, iam r.cont2, si, conti] ”;”
command<TENV2>[env, env[r], sl, cont2]
“end”,

[18]
command<TENV>[env, cont, sl, contl] =
command<TENV>[env, cont2, sl, contl]

099
’

command<TENV>[env, cont, sl, cont2];

$ declarations

[19]
declarations<TENV : TENVINAME->int]>[env, dont, si, cont] =

ré

107

”int” @identifier<NAME>[ide]

e 9
«=

expression<TENV, int>[env, ref(iam 1.dont(1/ide)), sl, cont];

[20]
declarations<TENV : TENVINAME->bool]l>[env, dont, sl, cont] =
”bool” @identifier<NAME>[ide]

e 9
-

expression<TENV,bool>[env, ref(lam |.dont(1/ide)), sl, contl;

[21] :
declarations<TENV : TENVINAME->const]>[env, dont, sl, cont] =
const” @Bidentifier<NAME>[ide]

e 9
P

expression<TENV,any>[env, ref(iam i.dont(1/ide)), sl, contl;

[22]
declarations<TENV : TENVINAME->proc(any)]>
Lenv, dont, sl, cont] =
”proc” @identifier<NAME>[ide]
?(” @identifier<NAME>[ide] ”)”

e 9
’

command<TENV>[env["e/idei], "¢, sl, contl]
with cont = dont((lam ¢ e.contl)/ide);

[23]
declarations<TENV : TENV[NAME->func(any->TYPE)]>
[env, dont, sl, cont] =
?func” Bidentifier<NAME>[ide]
”(” @identifier<NAME>[ide] ”)”

9009
’

expression<TENV>[env[e/idel], "k, sl, contl]
with cont = dont((lam k e.contl)/ide);

[24]

;no check for doublie definitions

declarations<TENV] : TENV3>[env, dont, sl, cont] =
declarations<TENV1 : TENV2>[env, lam rl.contl, sl, cont]

e
’

declarations<TENV2 : TENV3>[env[r1], lam r2.dont(ri[r21), si, cont];

/7

108

Resotlution:

(% omission %)

Appendix2 Attribute Domain Declaration, and
Primitive Semantic Functions of SMALL[9]

Syntactic Attribute Domains:

$ type
Type = int + bool + any + func(Type->Type) + proc(Type)

$type environment
Tenv = [Name -> Typel%

[1 : null environment.

name
Name = string

Semantic Attribute Domains:

constants

b 9
o o0

primitive values
Loc : locations: ’input’ ’output’
Num @ numbers

Bool : boolean: ’true’ ’false’

lde : identifiers

denotable values
Dv = Loc + Rv + Proc + Fun

$ storable values
Sv = File + Rv

expressible values
Ev = Dv

$ right-values
Rv = Bool + Num

$ files
File = Rvk

function values
Fun = Kont -> Kont

$ procedure values
Proc = Cont -> Kont

3 final answers
Ans = ’error’ + ’stop’ + Rv x Ans

environment
Env = lde -> [Dv + ’unbound’]

() = lam id. ’unbound’ : null environment

$ store
Store = Loc -> {Sv + "unused’]

$# command continuations
Cont =‘Store -> Ans

$ expression continuations
Kont = Ev -> Cont

$ declaration continuations
Dont = Cont -> Kont

Primitive Semantic Functions:

/7

119

substitution : D -> D
fld’/d] == lam dl.di=d -> d’, fd. where d’,d,dl in D

$ condition : [D x D] -> Boo! -> D
b -> d1,d2 == cond(dl,d2)b.

cond(d1,d2)b == dl if b="true’
d2 if b="false’

$ domain check : D -> D
D? == 1am k e.isD e -> k e, err

isD e = *true’ if e in Di
>false’ otherwise. where D=[D1 + ... + Dn]

error
err == lam s. ’error’

sequences
for D¥ = {(d1,d2,...,dn)} O<n, di in [D + O},

hd(d1,d2,...,dn)
t1(d1,d2,...,dn)

di,
d2,...,dn).

"

$ operation : [D x D] -> D
plus(a,b) == lam(a,b).a + b

equal(a,b) == lam(a,b).a = b

update : Loc -> Cont -> Kont
update == lam |1 c e s.isSv e -> c(s[e/1]), error

$ ref : Kont -> Kont
ref == lam k e s.let n=new(s)
in (n="error’ -> ’error’,
update(n (k n)) e s
note. function “new’ generates a new location.

$ deref : Kont -> Kont

deref == jam k e s.isLoc e
-> (s e = "unused’ -> ’error’, k (s(e))s),

20

114

kes

g override : [D x D] -> D
alb]l : a and b are merged into the new domain where there
exists no same items.

§ dynamic evaluation

" . the variable following this annotation
must be evaluated dynamically

2

