goooboooogn
O 586 0 1986 O 224-247

224
SINGLE QUEUE COMPILATION
IN EXTENDED CONCURRENT PROLOG:
Jiro Tanaka®, Makoto Kishishita®, Takashi Yokomori*
He — BB = S Ak 9 FBR L=
ABSTRACT

Extended Concurrent Prolog (ECP) [Fujitsu 84, Tanaka 85] is an variant
of Concurrent Prolog (CP) [Shapiro 83] with OR-parallel, set-abstraction
and meta-inference features. In this paper, we describe the implementation
of Extended Concurrent Prolog (ECP) “compiler” by showing how these
extended features of ECP can be compiled to a Prolog program. Our ECP
compiler has only one scheduling queue to which all the AND-related goals
and all the OR-related clauses are enqueued. This scheduling method is
? This “Single Queue Compilation”
method makes it possible to handle all kinds of AND-relations and OR-

relations in a uniform manner.

designated “Single Queue Compilation.

1 INTRODUCTION

Concurrent Prolog (CP) [Shapiro 83] is a parallel logic language which in-
cludes a commit operator and read-only annotation as language constructs.
Extended Concurrent Prolog (ECP) [Fujitsu 84, Tanaka 85]Q is an variant of
Concurrent Prolog (CP) [Shapiro 83] with OR-parallel, set-abstraction and

meta-inference features.

We have already implemented the “interpreter” and the “compiler” for our
ECP. Since we have already described the implementation details of our
ECP “interpreter” in [Tanaka 85], we focus on the implementation details of
our ECP “compiler” in this paper. This paper assumes familiarity with CP

* This research has been carried out as a part of Fifth Generation Computer Project.‘
2 ICOT Research Center, Mita-kokusai-building 21F, 1-4-28, Mita, Minato-ku, Tokyo 108, Japan

® International Institute for Advanced Study of Social Information Science (IIAS-SIS), Fujitsu
Limited, 1-17-25, Shinkamata, Ohta-ku, Tokyo 144, Japan

4 IIAS-SIS, Fujitsu Limited, 140 Miyamoto, Numasu-shi, Shizsuoka 410-03, Japan

R25

[Shapiro 83] and ECP [Tanaka 85], however we summarize the main features
of ECP below.

2 BRIEF INTRODUCTION TO ECP

As mentioned above, ECP is an extension of CP with OR-parallel, set-

abstraction and meta-inference features. These features are as follows:

2.1 AND-parallelism and OR-parallelism

AND-parallelism and OR-parallelism are the basic parallel inference mecha-
nisms of ECP. The former is the mechanism which evaluates AND-related
goals in parallel. This mechanism has already been implemented in Shapiro’s
Interpreter [Shapiro 83]. On the other hand, the latter is the mechanism
which realizes the parallel evaluation of guards, when there exists more
than one potentially unifiable clause with the given goal. This was not
implemented in Shapiro’s Interpreter. The following program is an example

of exploiting OR-parallelism.

solve(P,Mes) :- call(P) |
solve(P,Mes) :- find_stop(Mes) |

When “solve” is called, the above two clauses are executed in parallel by
OR-parallelism. The first clause executes “P.” However, as soon as “stop” is
found in “Mes” in the second clause, the second clause is committed and the

first clause is aborted. This realizes the “solve” with abort.

2.2 Set-abstraction

Set-abstraction is a mechanism for realizing the all-solution-search feature
in a parallel environment. The following two predicates have been proposed
[Fujitsu 84].

eager_enumerate ({X |Goals}, L)

lazy_enumerate ({X|Goals}, L)

In the above description, “Goals” is the sequence of the goals defined in a

220

Pure Prolog world. We assume that the Pure Prolog world is defined as
follows:

pp ((<head> <- <body>)).

That is, the Pure Prolog world is asserted as the set of “facts” which have a

functor name “pp.”

(4

These two “enumerate” predicates solve the Goals in the Pure Prolog world
and put the set of all solutions in L in stream form. The following is an

example of “eager_enumerate.”

eager_enumerate ({X |grand_child(jiro,X)}, L)

We assume that the Pure Prolog world is defined as folldws:
pp((grand_child(X,Z) <- child(X,Y),child(Y,2))).
pp((child(jiro,keiko) <- true)).
pp ((child (yoko,takashi) <~ true)).
pp((child(jiro,yoko) <- true)).
pp((child (keiko,makoto) <- true)).

In this case, L is instantiated as [takashi,makoto]. The difference between
“eager” and “lazy” is the way it instantiates the second argument. “eager_
enumerate” instantiates it actively. On the other hand, “lazy_enumerate”
instantiates it passively in accordance with the request from the stream con-
sumer. In the following example, a solution list “L” is ‘(created in accordance

with the request from “display.”

:— lazy_enumerate ({X|prime (XD}, L?),
display(L, Mes?), keyboard(Mes) .

2.3 Meta-inference

Meta-inference means to solve a given goal using knowledge defined in a
user-defined world [Furukawa 84]. We set up the predicate “simulate” with
the following form. .

skimula.te(World, Goals, Result, Control)

Here, “Wor1d” is the name of a world, “Goals” is the goal sequence to be
solved, “Result” is the computation result, and “Control” is the stream
through which we can stop and resume the computation. We assume that
knowledge of the world is given as a set of facts whose principal functors are
the name of the world. That is, knowledge of the world has the following
format.

world_name ((<Head> <- <Guard> | <Body>)). |

As an example of meta-inference, we give the “shell” example [Clark 84]
which can run the foréground and background jobs. In this example, “&”
shows the sequential operator. The foreground job always checks its con-
‘trol information while running. The background job runs steadily without
looking up its control information.
shell ({1,).
shell([fg(G) IN],C) :-
simulate (f_world,G,R,C)&
remove (C, NewC)&
shell (N?,NewC) .
shell([bg(G) IN],C) :-
simulate (b_world,G,R,_),
shell(N?,C).

:— shell ([fg(problemA) ,bg(problemB)],C), control(C).

In this example, “problemA” defined in “f_world” runs on foreground and
“problemB” defined in “b_world” runs on background. Execution of the

foreground job is controlled by “c.”

3 SCHEDULING QUEUE

A “scheduling queue” is often used in implementing a parallel logic lan-

guage on a sequential machine. As mentioned before, AND-parallelism is the

mechanism which evaluates “goals” in parallel. This is easily implemented by |

using a scheduling queue. The basic algorithm for the usage of the scheduling

-}

queue is as follows:

(1) “goals’5 which should be solved are enqueued to the tail of the scheduling

 queue.
(2) A “'goal” is dequeued from the head of the scheduling queue;

(3) A dequeued “goal” is solved. If the principal functor of the goal is a
system predicate, the goal is solved immediately. If the principal functor

of the goal is a user-defined predicate, the goal is reduced to new “goals.”

(4) Newly created goals are appended to the tail of the scheduling queue.

In general, the computation model of CP can be expressed by AND-OR tree.
AND-OR tree consists of two kinds of nodes, i.e., AND-goal-nodes and OR-
clause-node. Shapiro’s interpreter [Shapiro 83] processes AND-goal-nodes
by creating a scheduling queue for each AND-relation. Therefore, AND-
parallelism has been implemented in his interpreter. However, OR-relation is

processed by backtracking. OR-parallelism is not realized in his interpreter.

Our ECP compiler has only one scheduling queue and all the AND-related
goals and all the OR-related clauses are enqueued to this global queue. It is
possible to handle all kinds of AND-relations and OR-relations in a uniform

>

manner. In this paper, focusing on the role of the “scheduling queue,” we
outline the implementation method for realizing extended features, and show

how one can nicely handle those features in a uniform manner.

4 ECP COMPILER

Our compiler translates the “ECP source program” to “Prolog” program.
Since we already have the “Prolog compiler” which translates a “Prolog”
program to the machine language, the “ECP source program” can be trans-

lated to the machine language.

“ECP program” and “Prolog program” have lots of similarity. Therefore,
the translation of the former to the latter is much simpler than the direct

translation to the machine language.

g2

4.1 Program Compilation

At first, we show the overall compilation strategy.

Comparing ECP “compiler” with ECP “interpreter,” we notice that there is

no change with the scheduling of goals. The ECP “compiler” can easily be

made from the ECP “interpreter” by changing the following points.

(1

(2

(3

Add scheduling queue to “goals”.

In the compiled program, every goal is modified to include scheduling

queue in itself. For example, if a goal is “goal(Args),” this goal is compiled
as “goal(Args, World, Qs).” Two arguments are always added to the
original ECP goal. One is the world name where the goal should be
solved. If nothing is specified with world name, world name “*” which
shows the global database world is automatically assigned. The other is
the variable which will be unified with the current scheduling queue when

the goal is dequeued from the scheduling queue.
Add scheduling queue to “markers.”

We have prepared various “marker” to realize the extended features of

ECP. We also add an argument “Qs” to “marker” in order to process it

as exactly the same manner as the ordinary “goal.” If the original marker

is “marker(Args),” the compiled marker becomes “marker(Args, Q;).”

Every process is put on the scheduling queue in the form of “$(Element,

QS).”

Processes in vthe»s'cheduling. queue are expressed as a binary term whose
principal functor is “4.” Note that the “Element” is either “goal” or

“marker,” i.e., if “Element” is the goal “goal(Args),” the enqueued process

becomes “$(goal(Args, World, Qs), Qs).” The same variable appears

twice ‘as the first argument of “goal” and as the second argument of the
enqueued “process.” This form makes the goal easier to get the current

scheduling queue when it is taken out from the queue. At that time,

230

the second argument of the process is unified with the current scheduling
queue by head unification. Since Qs is the shared variable, this results the

goal “goal(Argument, World, Qs)” to have the current scheduling quelié.

In summary, the main difference of the ECP compiler from the ECP inter-
preter is that all “Elements” keeps the current scheduling queue as its argu-

ment.

- 4.2 Compiled Code and Its Execution

The ECP compiler compiles the ECP programs to Prolog programs. The
followings are the rough outline how various extended features of ECP can

be compiled and executed.

4.2.1 OR-parallelism

The following two arguments are added to the compiled ECP. clauses.

(1) The world nén;e to Which the given clause belongs. If the élause is defined

13)

in the global database world, world name is assigned as a default

value.

(2) Scheduling queue the tail of which OR-clauses are expanded with markers

so that they can be processed in parallel.

4’The following ECP cla.uées
p(Args) :- G1 | B1.
p(Args) - G2 | B2.
p(Args) :- G3 | B3.

is compiled as follows:

231

p(Args,

“*’, %World name .

[$ (NextGoal, @h\Qt) |Qh]\

[$(ea(c.qs1),Qs1),
$ (p1(Args,C,Qs2),Qs2),
$ (8p$2(Args,C,Qs3),Qs3),
$(8p33(Args,C,Qs4) ,Qs4),

$(¢(C,Qs5),Qs5) 1Qt]) :- !, exec(NextGoal).

“Qsi” stand for the scheduling queue. D-list “Qh\Qt” is also used to express
a scheduling queue. Note that every process in the scheduling queue has the
form “$(Element, Qs).” OR-clauses from “p1” to “p3” are sandwiched
in between the marker ¢hand . The ECP compiler enumerates all the
OR-clauses which have the same principal functor and generates the names
from “p1” to “p3.” The variable C contains the information whether one

of the OR-clause is committed or not.

Each “pn” cbrresponds to the deﬁnition of original ECP program and it
has the following format.! | ‘
pn (Args, C,
[$ (NextGoal, Qh\Qt) (Qh]\
($(R(C,Fn,V,CVn,Qs1),Qs),
<head unification processes>, <guard processes>,
$(& (Fn, [<body processes>|Bt]\Bt,
Qs2),Qs2) 1Qt]) - ' exec(NextGoal).

“NextGoal” is used to get the goal which should be executed next. “Qh\Qt”
express the renewed scheduling queue and it is passed to “NextGoal” by
head-unification. The argument Fn of the markers } and £ shows whether

the n-th OR-clause has failed or not. The argument V is a list of variables

1You may notice that ‘pn” need not be separated, i.e., we only need one big structure in which all
OR-clauses are packed. The reason that we did not adopt this strategy comes from the regulations
of DEC-10 Prolog compiler, i.e., DEC-10 Prolog Compiler does not accept the structure which
includes more than 50 variables.

23%

which contains all variables in the original goals. The argument CVn is
the copied list of V. The body part of each clause is kept in the second
argument of the marker @@in D-list form. You may notice that procesées
between markers ¢pand @ are OR-related and processes between markers
R and. 2 are AND-related.

This compiled code is executed as follows:

- (1) When a user-defined goal is called, it finds the definition clause for the
given user-defined goals from the specified world. If it is found, enqueue
the scheduled goals to the tail of the queue, dequeues a goal from the top

of the queue, and executes this goal.

(2) When a system-defined goal is called, it computes the system defined
goal. If it succeeds, next goal is dequeued from the top of the queue and

executed.

(3) When a “marker” is called, it performs various computation depending
on the markers and renew the scheduling queue. New goal is picked up

from the queue and executed.

We should note that every “goal” or “marker” has scheduling queue in it.
Every time new “goal” or “marker” is called, the renewed scheduling queue

is put on it.
When “markers” are picked up, they are processes as follows:

(1) When marker @(C, Qs) or @(C, Qs) is picked up, the marker is aborted
if “committed” is set in argument “C.” Otherwise, the marker is put on

the tail of the scheduling queue.

(2) When marker ¢ais picked up and the top of the queue is marker @9, i.e.,
| the markers ¢hand @@are neighbors, this shows that all guards failed for
a given goal. Since the “failure” of all guards means the “failure” of the

given goal, “failure” is transmitted to the AND-relations to which they

233

belong.*

(3 When “psn” is picked up, it schedules the pre-scheduled goals to the
tail of the scheduling queue, following the definition of “pn” .

(4 When marker 2(C,Fn,V,CVn,Qs) is picked up, it checks whether “com-
mitted” is set in argument “C” or “failed” is set in argument “Fn.” In

these cases, all goals from R to % are removed from the scheduling queue.

(5) When marker R(C,Fn,V,CVn,Qs) is picked up and the top of the queue
is marker L(Fn,Bﬁ,Qs), i.e., the markers %(C,Fn,V,CVn,Qs) and g
(Fn,Bn,Qs) are neighbors, it means that all goals of a guard succeed. In
this case, we set “committed” to the argument C,‘ unify V and CVn, and
schedule Bn.

(6) When marker 2(Fn,Bn,Qs) is picked up, the marker is simply put on
the tail of the scheduling queue.

4.2.2 Set-abstraction

In the case of set-abstraction, there is no change in compiled code. “eager_
enumerate” and “lazy_enumerate” are compiled in exactly the same manner

as the ordinary goals.

When “eager_enumerate ({X|p (X ,q(X)},L)” is executed, this goal is reduced
to the following processes and they are put on the tail of the scheduling

queue.?
$(2(Qs1),Qs1), $(RL M, {XIpQ).,q()},Qs2),Qs2), $(@M,L,Qs3),Qs3)

Two pairs of markers appear again. The mea,nings' of these markers are
slightly different from the previous ones. However it is still true that the
markers daand @@express OR-relation, and the marker R & express AND-

relation. The markers ¢pand @surround the OR-relation andeork as a

! If the goal is at the top level, it means the total failure of the computation.

2 Although we chose to expand “set primitives” dynamically, it is possible to expand it at compilation
time. This is also true for “meta-inference primitives.”

10

234

solution collector. The solutions are collected in “L” in stream form. The
marker R & compute one solution. The computed value is substituted into

the argument “L.”

These processes can be executed as follows:

(1) When marker ¢his picked up and the top of the queue is marker @, i.e.,
the markers ghand @are neighbors, this means that all solutions for the
given goal have already been computed. We put [] onto the tail of the

argument “L” in this case.

(2) When marker 2 2 (M, {X|pC0).q()},Qs2) is picked up, we find definition
clauses for the leftmost goal of this set. If more than two clauses are found,
it is broken up into several goals. The argument “M” is also reproduced

by fission.

(3) When marker @3(M,L,Qs3) is picked up, the argument “M” is checked.
If it is instantiated, its value is sent to the stream “L” and the marker is

appended to the tail of the scheduling queue.

The following is ba,n éxample of fission. Assume that the marker is picked up,

and P is defined in the Pure Prolog world as follows:

pp((p(X) <- B1,B2)).
pp((p(X) <- B3)).
pp((p(X) <- true)).

There are three clauses. The marker R £ breaks up into three goals and they

are appended to the scheduling queue in the following form:

$(@@Qs1°).Qs1%),

$(R 2 (M1,{XIB1,B2,q00},Qs4),Qs4) ,
$(22 (42, {XIp(B3,q(},Qs5) ,Qs5),
$(R 2 (M3,{XIq00},Qs6) ,Qs6) ,

$ (ECML,M2,43] ,L,Qs3°) ,Qs3")

We can get all solutions for the given goal by invoking fission. Notice that the

11

235

solutions are computed by the depth-first search based on OR-parallelism.

The basic mechanism of lazy-enumeration is almost the same as that of
eager-enumeration. When “lazy_enumerate ({X|G},L)” is eXecuted, this goal

is reduced to the following processes.

$(H@, Qs1),Qs1), $(R 2L M, {XIG},Qs2),Qs2), $(EA(Qs3).Qs3)

As you notice, the form of the reduced processes are almost same, although
the “markers” works slightly different. The variable “M” compute one solu-
tion. The variable L is the variables used for the bounded buffer communica-

tion to the cutside world.

These “markers”are processed as follows:

(1) When marker ¢ais picked up, it checks whether “L” is a variable or not.
If “L” is a variable, it means that there is no demand of solution yet.
In this g:ase, all goals from to @are simply put onto the tail of the

scheduling queue.

(2) When marker gis picked up and “L” is instantiated to [1, it means that
the demand from outside world is ended. In this case, all goals from g to

ghare removed from the scheduling queue.

(3) When marker @his picked up and “L” is instantiated as [X|L1], it checks
the top of the scheduling queue. If the top of the queue is marker ¢,
i.e., the markers ¢ghand @are neighbors, this means that all solutions
for the given goal have already been computed. We instantiate X to
“$END_OF _SOLUTIONS,” and all goals from @ to @are removed from the
scheduling queue. | ' '

(4) If the top of the queue is (R & (M,{X|G},Qs2) ,Qs2) in case (3), M is unified
with X and R % (M,{X1G},Qs2) is executed after putting @(L1, Qs1’) to
the tail of the queue. |

When 2 & (M,{XIG},Qs2) is executed, “G” is reduced to find a solution.

12

236

If a solution is found, it is substituted for X and all goals to ®Qs3) is
moved to the tail of the queue. If the reduction fails, this goal is simply

aborted and the next goal is executed from the queue.

4.2.3 Meta-inference

There is also nothing special with “meta-inference” predicates, “simulate” is

compiled as same as the ordinary goals.

However, “simulate(W, (G1(Argsl), G2(Args2)), R, C)” is called at execution

time, this goal is reduced as follows:
$(2(R,C,Qs1),Qs1),
$(G1(Args1,W,Qs3),Qs3),
$(G2(Args2,W,Qs4),Qs4),
$(1(R,Qs2),Qs2)

Note that all processes between “markers” are defined in world “W.”

The following summarizes the actions when markers are taken from the

scheduling queue.

(1) When marker 2(R,C,Qsl1) is picked up and “failure” is already set in
argument “R,” all goals from R to £ are removed from the scheduling

queue.

(2) When marker R(R,C,Qsl) is picked up and the top of the queue is
marker 2(R,Qs2), i.e., it is empty between marker R and marker %, we

set “success” to the argument “R.”

(3) When marker R(R,C,Qsl) is picked up and “C” is instantiated as [
, abort | variablel, all goals from R to £ are removed from the

scheduling queue and “abortion” is set to the variable “R.”

(4 When marker R(R,C,Qs1) is picked up and “C” is instantiatedas [...,
stop | variable], all goals from R to R are enqueued onto the tail of the

scheduling queue without reducing these goals.

13

_37

(5) When marker 2(R,C,Qsl) is picked up, and “C” is a variable or instan-
tiated as [..., cont | variable], the marker is just appended to the

tail of the scheduling queue.

(6) When marker 1(R,Qs2) is picked up, the marker is appended to the tail
of the scheduling queue.

Just as before, the markers R and £ express AND-relation. If a goal between
R and 2 fails, “failure” is set to “R.” Goals between R and g are processed
as exactly the same manner as the ordinary goals, except that goals are
reduced in a specified world. No special problems are created even if OR-

parallelism, set abstraction and meta-inference are nested within each other.

5 RELATED WORKS

Here, we would like to survey related works on ECP.

Generally speaking, the language specification of ECP’s extended features is
based on the conceptual specification of Kernel Language Version 1 (KL1)
at ICOT [Furukawa 84]. The related works of each extended feature can be

summarized as follows:

(1) For OR-parallelism, Levy [Levy 84] proposed the CP interpreter using a
global queue. His interpreter is based on the lazy copying scheme. ICOT
also implemented various CP interpreters which realized OR-parallelism

using several implementation schemes [Miyazaki 85, Sato 84, Tanaka 84].

(2) The research in set abstraction is preceded by POPS [Hirakawa 84]. POPS
is a Pure Prolog interpreter written in Concurrent Prolog. It enumerates
all solutions for the given goals in stream form. In our approach, the

enumeration of all solutions is directly realized by the scheduling queue.

(3) The key issue in meta-inference is how to implement the interpreter of
the target language. In this field, research has been done by writing
meta-interpreters [Shapiro 84, Clark 84]. We have implemented meta-

inference predicates directly onto the scheduling queue. Compared with

14

the traditional approach, our approach is more direct.

In relate to the “compiler,” our ECP compiler is greatly effected by the
CP Compiler written by Chikayama and Ueda [Ueda 85a]. Our compiler is
essentially the “revised” version of their CP compiler to allow OR-parallelism

and various extended features of ECP.

After finishing up our compiler, we knew that Clark and Gregory [Clark
85] also made the Parlog compiler which compiles Parlog program to Prolog.
We also happened to know that Murakami and Miyazaki\designéd the similar
GHC compiled code which allows OR-parallel execution [Murakami 85].

6 CONCLUSION

In this paper, we described the various extended features of ECP and its
compilation. Although we have omitted here, there are various problems
which occur in the actual implementation, such as the copying variables,

suspension of head unification, etc..

As mentioned before, our ECP “compiler” converts ECP source program to
Prolog program. Although it is impossible to remove the scheduling (jueue,
we see all guard and body goals are completely pre-scheduled to the queue
in our “compiled” program. Therefore we can expect the speed up of the

“compiled” program compared to the interpretive execution of the program.

The current version of our ECP compiler only compiles the scheduling.
However, we can expéct further optimization of this compiler. Examples

of such optimization are as follows:
(1) The compilation of unification.

When enqueuing the head unification processes, we can call specialized
unifiers such as “ulist,” “uvect,” “uatom,” instead of calling general

unifier “unify.”

(2) The compilation of the immediate guard.

15

239

If the guard part of a clause only consists of system functions, we can

solve it immediately instead of enqueuing all OR-clauses to the queue.

These compilation techniques are already implemented in [Ueda 85a] or
[Miyazaki 85] and the effect of these optimizations are proved to be very

effective. We can adopt these techniques without any difficulty.

By the way, the scope of this “single queue compilation” method is not limited
to Concurrent Prolog. This method is also applicable to GHC [Ueda 85b]. In
this case, the implementation becomes simpler because it does not generate

multiple environments in implementing OR-parallelism.

ACKNOWLEDGMENTS

This research was carried out as a part of the Fifth Generation Computer
Project. We would like to thank Kazunori Ueda, Toshihiko Miyazaki and
other members of the KLL1 implementation group at ICOT for their useful
comments and suggestions. We would also like to thank Dr. Furilkawa,, the
chief of the First Research Laboratory, ICOT, Dr. Kitagawa, the president
of ITAS-SIS, Fujitsu, Dr. Enomoto, the director of IIAS-SIS, Fujitsu, and Mr.
* Yoshii, Fujitsu Social Science Laboratory, for giving us the opportunity to

pursue this research and helping us with it.

REFERENCES

Clark K, Gregory S (1984) Notes on Systems Programming in Parlog.
Proceedings of the International Conference on Fifth Generation
Computer Systems 299-306 ’

Clark K, Gregory S (1985) PARLOG: Parallel Programming in Logic.
“ Re‘vs,ealjch Report DOC 84/4. Department of Computing, Imperial College
ﬁ,@f\,Sciénce and Technology. Revised June 1985

N

16

2

410

Fujitsu (1984) The Verifying Software of Kernel Language Version 1 —Detailed
Specification— PART II. In: The 1983 Report on Committed Development

on Computer Basic Technology, in Japanese

Fujitsu (1985) The Verifying Software of Kernel Language Version 1 — the
Revised Detailed Specification and the Evaluation Result-, PART L.
In: The 1984 Report on Committed Development on Computer Basic

Technology, in Japanese

Furukawa K et al. (1984) The Conceptual Specification of the Kernel
Language Version 1. Technical Report TR-054. ICOT

Hirakawa H et al. (1984) Eager and Lazy Enumeration in Concurrent Prolog.
Proceedings of the Second International Logic Programming Conference
89-100

Levy J (1984) A Unification Algorithm for Concurrent Prolog. Proceedings

of the Second International Logic Programming Conference 333-341

Miyazaki T et al. (1985) A Sequential Implementation of Concurrent Prolog
Based on Shallow Binding Scheme. Proceedings of 1985 Symposium on
Logic Programming 110-118

Murakami K (1985) The study of “unifier” implementation in multi-processor

environment. Multi-SIM study group internal document, ICOT

Sato H et al. (1984) A Sequential Implementation of Concurrent Prolog -
based on the Deep Binding Scheme. Proceedings of the First National
Conference of Japan Society for Software Science and Technology 299-

302, in Japanese

Shapiro E (1983) A Subset of Concurrent Prolog and its Interpreter.
Technical Report TR-003. ICOT-

Shapiro E (1984) Systems Programming in Concurrent Prolog. Conference
Record of the 11th Annual ACM Symposium on Principles of
Programming Language 93-105

Tanaka J et al. (1984) A Sequential Implementation of Concurrent Prolog —

17

241

based on the Lazy Copying Scheme. Proceedings of the First National
Conference of Japan Society for Software Science and Technology 303-

306, in Japanese

Tanaka J et al. (1985) AND-OR Queuing in Extended Concurrent Prolog.
Proceedings of the Logic Programming Conference ’85 215-224, in

Japanese

Ueda K, Chikayama T (1985a) Concurrent Prolog Compiler on Top of Prolog.
Proceedings of 1985 Symposium on Logic Programming 119-126

Ueda K (1985b) Guarded Horn Clauses. Technical Report TR-103. ICOT

18

24%

APPENDIX A COMPILATION EXAMPLE

We show the ECP source of “merge” program and its compiled code as an example. Note
that ECP compiler automatically generates names such as ‘$merge$m$n’ where ‘m’ shows
the arity of that predicate and ‘n’ shows its OR-clause number.’

/% Source code of Merge mogram in ECP %/

ma"ae([],Y,Y).
m@ge(x,[]QX).
merge([X|Xs]1,Y,[X|Z]) := true | merge(Xs?,Y?,Z).
merge (X, [Y|¥s],[Y|Z]) :~ true | merge(X?,Ys?,2).

/% Compiled code #/
:=fast code,

s=publ ic merge/5.
merge(A, B, C, ¥,
[$(D,EF)|E]\
[$('$6s'(G,H),H),
$("$merge$3$1'(4,B,C,G,I),I1),
$('$nerge$3$2'(A, B,C,G,d),d),
$('$net‘ae$3$3'(AgB,C,G,K),K),
$('$merge$3sh’ (4,B,C,G,L),L),
$('$GE'(G,M),M)|F]1):= 1 ',%exec(D).

:-public '$merge$3s1’ /5.

"$merge$3$1'(4,B,C, G,
[$(D,E\F) IE]\
[$('&'(G,H,[A,B’C],[I,J,K]’L)’L)’
$(u(T,[1,M,M),$(u(J,N,0),0),$ulK,N,P),P),
$(C '$G'(H,Q\Q,R),R)IF]):= 1 ','exec(D).

:-public '$merge$3s2’ /5.
'$merge$3$2' (A, B, C, G,
[$(D,E\F)IEN
[$('$c'(G,H,[4,B,C],[1,,K],L),L),
$(U(I,MfN);N),$(U(J’[]9O)ro)a$(U(K,M’P))P)s
$('$G'(H,Q\Q,R),R)IF]):= 1 ',"exec(D).
s=public '$merge$3$3’ /5.
'&na'@$3$3 '(A, B,C, G,
[$(D,E\F) IEN\
[$('$'(G,H,[4,8,C],[1,J,K],L),L),
$(u(1,[MIN],0),0),$(u(J,P,Q),Q,$ulk,[MR],S),s),
$('$G' (H,[$(merge (N?, P?, R, %, T),T) IUI\U, V),
VIF]):=1 ','exec(D).

s=putlic '$merge$3dl' /5.
'$me'ge$3$ll '(4,B,C,G,
[$(D,E\F) IEN\
[$('w'(GsHo[ArB:C]y[I’JvK]»L)7L)!)
$(u(I,M)N),N)9$(U(J:£O'P]’Q) ’Q) ,$(u(K,[OlR],S),S),
$(96" (H,[$(merge (M2, P2, R, %, T),T)|UI\U, V),
VIF]):=1 t!,'exec(D).

19

243

APPENDIX B ECP COMPILER PROGRAM

We show the ECP compiler program. In the actual implementation, we use different

“markers” instead of them shown in the main part of this paper. The correspondence
between these “markers” are as follows:

e OR-parallelism

@(c.Qqs) . $GS(C,Qs)
R!(C,Fn,V,CVn,Qs) $G(C,Fn,V,CVn,Qs)
2 (Fn,Bn,Qs) $G(Fn,Bn,Qs)

g (C,Qs) | . $GE(C, Qs)

e Set-abstraction

Eager—-enumerate

&@s) ... $SSET(Q®)

R2WM,{X]...}.Qs) $SET(M, {X]...}.Qs)

g (M,L,Qs) - $ESET (M,L,Qs)
Lazy-enumerate

& (@,Qs) . $LSSET (L, Qs)

AL M {XI...}.Q8) ... $LSET (M, {X!...}.Qs)

9 (Qs) . $LESET (Qs)

e Meta—-inference

2(R,C.Qs) $SIMU(R,C,Qs)
-2 (R,Q8) $SIMU(R,Qs)

20

244

:= fastoode.
/% Top level %/

:= public (k1)/1.
t= mode I (+).

K(X) := settime,
solve(X, R),
nl,write('Resil ¢t (R)),nl,
mrtime, I,

s= mode solve(+).
solve(X) := solve(X,R),!.

:= mode solve(+,~).
solve(X,R) :-
c_schedul e(®, X, Y\Y,
[$(Goal, Qb\Qt) | Ch]\
[$(*$sTMI' (R, 1),Q1),
$("$SIMI' (R, **, @), @) |0t]),
!,exec(Goal).

:= mode exec(+).
exc(X) -
incore(X),!.
exec(X) :-
functar (X, F,4),
arg(4,X%,Q),
dequewe_failed goals(Q,Goal),l,
exec(Goal).,

/® Flags %

:= public '$SIMI'/3.
:= mode '$SIMI'(?,+,+)-

'$SIMI! (succeess,_,
[$('¢$SIMI" (success,),)I\[]) := 1.
'$SIMI? (Res,_,Qh\Qt) :=
Res==failuwre , !,
dequewe_simul ate(Qh, Cht),
(Qh1==Qt ;
Qh1=[$(Goal , 2\Qt) |Q21, 1,
exec(Goal)). :
1$SIMJ* (success,_,[$ ("$SIMI! (sucecess,_),),
$(Goal, th\Qt) IQhI\QL) := 1,
exec(Goal). '

'$SIMI' (Res, Cntl,
[$(Goal, Qn\Qt)|Qh]\
[$('$SIMI' (Res, Cntl, Q,Q) {Qt]) :=
(var(Cntl) ; Cntl==%f),1,
exec(Geal).
1$SIMI (abortion, Cntl, Qh\Qt) :=-
mer,_abort(Cntl),
dequeue_simul ate(Qh,

21

[$(Geal, Qu1\Qt)laQn]),

exec(Goal). !

'$SIMI' (Res, [stop, Cont {Cntl],
[$(Goal,Qh\at)|Qh]\
[$('$s1M)* (Res, Cntd, Q) ,Q) [QL]) :-

Cont==cont , !,
exec(Coal).
'$STMI* (Res, [stopiCntl],
Qh\
[$(*$SIMI* (Res,
[stopiCntl],Q),QIQt]) :a
skip simd ate(Qh\Qt,Geal),!,
exec(Goal).

'$SIMI! (Res, [cont ICntl],
' [$(Goal, h\Qt) {Qh]\
[$("$SIMI" (Res, Cntl, ©),Q) 1QL]) :- 4,
exec(Goal).

:= public *$SIMI'/2.
t= mode '$SIMI' (+,+).

'$SIMIt (Res, [$(Goal, Gh\Qt) {QhI\
[$('$sSIM" (Res, Q),Q) 1QL]) := I,
exec(Goal).

:= public '$GS'/2.
1= mode '$GS' (+,4+).

'$GS' (Comat, [$(Goal , Gh\Qt) |Qh\QL) :=
Cmmt==committed , I,
exec(Goal).

'$GS' (L[$('$GE (L,)) I0hINQL) =
dequewe_fail ed goal s(Qh\Qt, Geal), !,
exec(Goal).

'$GS' (Crmt, [$(Goal, Qh\Qt) |Qh I\

[$('$GS' (Comt, Q) ,Q) IQt]) := 1,
exec(Goal).

:= public '$GE'/2.
:= mode "$GE' (+,+).

'$GE' (Comt, [$(Goal, Gh\Qt) IQhI\QE) :-
Comt==committed , !,
exec(Goal).
'$GE' (Camt, [$(Goal, Qh\Qt) {Qh]\
[$('$GE (Comt, Q) ,Q) IQE]) := I,
exec(Coal).

s= public '$G'/5.
1= mode "$GT(2,4 gtk yt)

4G’ (Cmmt, Fails_:_!Q) -
(Cmmt==committed
;Fail==failed),
dequeue_guard(Q,Geal),!,
exec(Goal) .,
'$G ' (committed,_,oW,CV,
[$(rga (,Qe\Qtt,)),
$(Goal, Qb\Qt1) JQR\QL) :-

unify(oV, V), !,
exec(Goal).,
*$G ' (Comt, Fail,[],[],
[$(Goal, Qh\Qt) |QhI\
[$('$}'(0nmt,Fail,[J,[],Q)sQ)th]) el !!
exec(Goal).
$G (Cumt, Fail, OV, OV,
[$(Goal, th\Qt) |Ch]\
[$('$G'(Cmmt Fail, OVV, CVV,Q),Q) |Qt]) :~
copy (OV, CV, WV, CVV), 1,
exec(Goal) .
"w'(._’_a_a_oQ) Hd
dequeve_gard(Q,Goal), |,
exec(Goal).

:= public '$G'/3.
t= mode '$GY (4, y+).

'$G'(Fail, RQ,
[$(Goal, h\Qt) |Qh]\
[$('¢$G' (Fail,RQ, Q) QlQtl) = 1,
exec(Goal),

:= public '"$SSET'/1.
:= mode '$SSET! (+).

$SSET! ([$($ESET* ([1,[1,0)),
$(Gaal, Qh\Qt) JOhJ\QL) :-~
exec(Goal) .
'$SSET* ([$(Goal, Qh\Qt) | Qh 1\
[$('$3SSET'(Q),Q 1Qt]) :=~ 1,
exec(Goal).

s= public '$SET*/3.
t= mode '$SET'(=y+,+).

'$SET* (Mes, (L s, [$(Goal, Ch\Qt) |Oh]\QL1) :=
¢ _reduce_set(Cls,Mes, Qt1,Qt),!,
exec(Goal) .,

:= public '$ESET'/3.
t= mode '$ESET (+4=,+).

$ESET (Mes, S,
[$(Goal, Gh\Qt) IQhI\
[$('$ESET' (Mes1,51,Q),Q10t]) :-
collect_s(Mes, Mest,S, S1),1,
exec(Goal).

:= putlic '$LSSET'/2.
t~ mode "$LSSET (?,+).

$LSSET'(S, G\[$ (" $LSSET (S1,Q),Q) 1Qt]) :-
evar(S,S1),1,
skip_set(Qh\Qt,Goal),!,
exec(Goal) .
*$LSSET'([1,Q) :~ I,
dequeue_set(Q,Goal), !,
exee(Goal),

22

245

"$LSSET (['$END_OF SQ.UTIONS$'!_],
[$("$LESET' (D),
$(Goal, Ch\Qt) |Qh]\Qt) :=

exec(Goal).

*$LSSET" (S, [$('$LSET' (0,as,)) 10k

[$('$LSSET'(S1,Q),Q IQt]) :~

wait(s,[01S1]1),1,
'$LSET' (0, CLs, Qh\Qt).

:= pukllic '$LSET*/3.
i m& '&ISEI" (-’+,+)o

'$LSET* (0, CLs, Qh\Qt) :-
¢_1_reduce_set(Cls, 0,Qt\Qt1),!,
siip set(Qh\Qt1,Goal)l,!,
exec(Goal).

$LSET (0,__,

[$(*$LSET (0, s,),) IGhI\Qt) :
'$1,SET* (0, QL s, Qh\Qt).
*$LSET' ("$END_OF SCLUTION$',_,
[$(Goal, Gh\Qt)IQhI\QL) :~
exec(Goal).

t= public '$LESET'/1.
:= mode '$LESET' (+).

'$LESET' ([$(Goal, Gh\Qt)]\
[$("4LESET' (Q),Q 10t]) :-
exec(Goal) .

- /% Set ¥/

c_reduce_set(Cls, Mes, T,T1) :=
reducep(Cls, NextCls), !,
¢ _fark set(Cls,NextCls,Mes, T, T1), L
c_reduce_set(Cls, '$SQL'(Mes),T,T) -
termimtep(Cls, Mes), L.
c_reduce_set(Cls, Mes,
[$("$SET" (Mes, NC s,
Q1),Q)IT1,T) &=
systemp(Cls,NCls), I.
o_reduce_set(_,"$FALS',T,T) := 1.

1= mode ¢)_reduce set(+,-,?).

¢ 1_reduce_set(Cls, 0, T\T1) :=-
reducep(Cls, Next@.s), !,
o 1 fork set(Cls,NextCls, C, T\I1).
c_l_reduce_set(Cls, Ans, T\T) &=
termiratep(Cls, Ans), I,
el recuce set(Cls,G,T\T1) :-
g stezp(Cs,NCs), !,
¢l reduce_sst(NKds, 0, T\T1).

240

/* Simi ate #/

¢= public simulate/6.
t= mocb simid ate(+y+ = g+ p+,+)

si.mul ate(Wa'ld, Goal, Res, (bntcrl —s
[$(chtGoal Qh\Qt) [Qh1 I\
[$('$SIMI" (Res, Cntl,

Q,QiqQt1]) :-
¢_schedul e(Warld, Goal, Gh1\Qt1,
Oh\[$(*$SIMI' (Res, Q1),
Q) igtl),
exec(NextGoal), !.

/% Compiler %/
:= public comp/2.

comp(IF, OF) :-
¢_assert(IF,[J\WL),
reverse(NL,RNL),
¢_c(OF,RNL),
abolish all(M.),!.

qassert([],L\L) :~

¢ assert([FJR],IO\L) :-
¢_assert(F,10\L1),
¢ assrt(R,L1\L).

¢ as=rt(F,ID\L) :-
seelng(OF),see(F),
read(X),c assert1(X,L0\L),
seen, see(OF).

- q_asserti(end of_file,L\L) :- 1.

¢ _assert?((Head :- Body),LO\L) :-
functar (Head, F, 4),
check_member (F/A,I0\L1),
assertz((Head :- Body)),
read(X),c asserti(X,L1\L).

¢ aseert!(Cls,IO\L) :-
Cls=..[World, (Head <=~ Body)l,!,
functar (Head, F, A),
check member ((Werld, F/A),10\L1),
assertz(Cls),
read(X),c assert1(X,L1\L).

c_assert1(Head,IO\L) :
funct a {Head, F, A) ’y
check member(F/A,10\L1),
assertz(Head),
read(X),q_assertl(X,L1\L).

23

cc(F,N.) :=
telling(OF),tell(F),
write((:- fastcode)),
writenl('."),m,
¢_clause(N.),
tald, tel1(OF).

¢ cause([]) :=

¢ clause([F/AINL]) :=
functar (P, F, 4),
bagof((P <~~ B),clause(P,B),Cist),
¢ _clauses(F/A, CList, #),
¢ _clause(NL).

¢ _clause([(W,F/A) INL]) :=
functar (P, F, 4),
Cs=..[W,(P <~ B)],
tagof((P <-- B),Cls,Clist),
¢_clauses(F/A, Qlist,W),
¢ clause(lL).

c_clauses(F/A,[Clause],W) :-
2 is h+2,
functor (Head, F, &2),
Head=..[F|Args],
funct o (Dunmy , F, 4),
Dummy=. .[F |DArgs],
append(DArgs,

. [W, [$(Goal, Ch\Qt) |Qh]\Qh1], Args),
¢_each_d ause{Clause, DArgs, W, C, Qh\RQt),
(C=='committed' ,

Qh1=Rh,

Qt=Rt
;Qh1=[$('$6S'(C,Q1),Q1) IRQN],

Rt=[$("$GE'(C,®),®)Iet]),
writeg((:= public F/A2)),
puat(". "),
o,
n'etty_p'int((Head = l,exece(Goal))).

¢ clauses(F/A,Cls,W) @
R is 2, ‘
functar (Head, F, £2),
Head=..[F|Args],
funct o (Dumny, F, 4),
D.mnv—..[F;DArgs],
append(DArgs,
[w, [$(Goal, Oh\Qt)|QhI\Qh1], Args),
cor_clauses(1,F/A, A s, DArgs, W,
Gnpd_Cl s, @h\OQt, Gmt,_F ag),

(member._committed(Cmmt Flag,N),

piecup_queue(N, Cmpd_Cls, Qh1\Qt),

writeq((:~ public F/A2)),

put (", 1),)

d,

pretty_rrint ((Head :- 1, e:uec(coel)))

s1ink commit(Cmomt FL ag,C),
Qni=[$(*4$asr(c,Q1),Q1) {cQh],
@t=[$('$GE' (C,@),®)IQt],
writeq((:= public F/A2)),

pa(". "), V

ol,

retty_mrint ((Head := | e:uee(coal))),
rint_each d ause (and_Cl.s))

c_a_dauses(K, F/A, [CLause [Cl auses],
Args, ¥,
[(Head :~ ! exec(Goal))|
anq_m-slr
[$(Caller,Q [Calls]\CQt,
[ciCcs]) :=
e eadx_olause(Clause,h'gs,w,C,QhﬂQt),
append(Args, -
[c, [$(Gcal Qh\Qt) |Qh]\Qh1],NArgs),
make_rame(F, A, W, K, NF),
Head=..[NF|Nirgs],
append(Args, [C, Q] ,CArgs),
Caller=,.[NFiCArgs],
N is K1,
¢_ar_cdauses(N, F/A, Clauses, Args, W,
(mpd_Cl s, Ca11s\CQt, Cs).
e or clauses(_, ,[J,_, ,[]1,0Qt\Q¢t,[1) :~ 1,

¢_each_dl ause ((Head <-- VP),Args,
W,C, Rh\RQt) :-
var(VP),
I
coyp(Args, CArgs),
Head=..[_|HArgs],
c_unif_queue(CArgs, HArgs,
Mh\[$('$G" (F,
[$('$VP' (VP,RB),
Q3) IBQt1\BQt,
: ®),®)rt]),
queue_optimizer([$('$G*(C, F, Args, CArgs, Q1),
Q1) |TQh],Rh).
(Lead’l clause ((Head <=-- Guard : Body),
Mrgs,W, C,RQh\RQt) :~
copyp(Args, CArgs),
_schedul e(W, Body, X\X, R) ,
¢_schedul e(W, Guard, Y\Y,
mh\[$('$G'(F n,®8), @)lRQt]):
Head=..[_|HArgs],
¢ wif_ queue(CAr@, HArgs, Mh\GQh),
queue_ opt:.mizer([$('&‘z'(0,1", irgs, CArgs,Q1),
5 Q1) ITQh],Rh).
¢ each c ause((ﬂead <=~ Body),Airgs,
W, Cymh\RQt) -
cory p(Args, CArgs),
¢_schedul e(W, Body, X\X, R),
Bead=..[_|HArgs],
c_wnif queue(CArgs, Hirgs,

Rh\[$(*$a" (F n,®), Q)IRQtI),

247

queue_optimizer([$('$G*(C, F, Args, CArgs,Q1), |
Q1)ITQh]l,Mh).

c_unif_queue ([CA|CAs],[AlAs],
: [$(u(ca, 4,Q),Q JTQhI\NIQL) :-
¢_unif._queue(CAs, As, Mh\TQt),
e unif_queuve([],[], Rt\TQt).

:= public ¢ _schedule/l.

¢_schedul e(W, G,
Qbh\[$('$VP' (G, W, Q),
4 Qlotl,h\Qt) :-
var(G), 1.

q_schedul e(W, (4,B),Q, @) :~
c_schedule(W, 4,Q,Q1),
¢_schedul e(W,B,01,QR).

¢_schedule(_,true,Q,Q) :=~

¢_schedul e(_,simul ate(W,G,R, C),
Ch\[$("$SIMI' (R, C,Q),Q)} 1QL1],
Ch\Qt) :~
c_schedul e(W, G, Qh\Ct1,
Qh\[$('$sIMI' (R, Q1),Q1)IQt1), L.

¢ _schedule(_,set({X:Goal},Str),
Qh\[$('$sSET' (Q1),Q1),
" $('4SET' (Mes, {X:Goal},@),Q),
$('$ESET" (Mes, Str, B),B) {Qt],
Oh\Qt) :- 1.

¢_schedule(_,lazy_set({X:Goal},sStr),
Qh\[$('$LSSET* (Str, Q1),0),
$("$LSET' (_,{X:Goal},®),R),
$("$LESET' (QB),®B)Iet],
Qh\Qt) :- 1.

¢_schedul e(W, A, Qh\[$(CA, Q) |Qt],h\Qt) :=~
k=..[F|Args],
append(Args, [V, A1, GArss),
(A=, EF:CAI’§]

