goooboooogn
O 586 0 1986 O 263-283

263

ON THE OPERATIONAL SEMANTICS OF GUARDED HORN CLAUSES

Kazunori Ueda (£ ® 1 &)

Institute for New Generation Computer Technology, Tokyo, Japan

Abstract: We cdnsider the operational semantics of Guarded Horn
Clauées (GHC). ‘The purpose is to clarify what should be regarded
as primitive operations of GHC. Such consideration is important
because the existing algorithms for unification. and resdlution
have not been considered very well in terms of parallel execution.
We begin by showing the operational semanties of unification. It
is anarchical in that tefmihation is not guaranfeed for a couple
ofbreasons. Although we believe the anarchical -semantics 1is
meaningful as it is, we also‘discuss how to reduce the possibility
of nontermination. Lastly, we give the operaticnal semantics of

GHC by extending the semantics of unification.

1. INTRODUCTION

The language Guarded Horn Clauses [Ueda 85] (hereafter abbreviated to
GHC) is intended to be the standard of logic programming languages which
" allows parallel execution. GHC has introduced into Horn clauses the
coneept of guard in order to express causality (or the direction of
computation) and choice (don't-care) nondeterminism. This additicnal
mechanism provided GHC with an ability to express important concepts in
parallel programming such as processes, communication, and synchroniiation,-
and thus augmentéd the expressive power of the original Horn-clause logic
to the level of a practical programming language. From a practical point
of view, GHC may look similar to Concurrent Prolog [Shapiro 83] and PARLOG
[Clark and Gregory 84]. It has, however, the unique feature of simplicity:
GHC is unique in that guard is the only syntactic construct added to Horn
clauses. GHC has no multiple envirorments or backtracking (= multiple
" environments expanded in the time axis), sSo its semantics and
implementation should be simple compared with Concurrent Prolog and even
with sequential Prolog;

264

One may contend that GHC is not a logic programming language becadse
it bhas lost the completeness of the Horn-clause logic. However, GHC was
undoubtedly born from the investigation of logic programming. Moreover, we
have tc use cholice nondeterminism to write a program which interfaces with
a real world, and in such a case the completeness 1is rather a obstacle.
The only way £o stay with completeness would be to design another
programming language based on another lbgic which is capable of handling
don't-care nondeterminism in its own framework.)

Another view of GHC is to regard it as a generalization of
nondeterministic dataflow languages. Depending on available binding
information, a goal reduces itself to a (possibly enpty) set of other
goals, possibly generating additiomal binding information. GHC is a
generalization of nondeterministic daﬁaflow languages in the sense that the
data structures it handles are not 1limited to streams and that incomplete
data structures can be handled. The capability of handling incomplete data
structures enables us to express demand-driven computation naturally
without introducing new primitives.

In the following chapters, we first discuss three directions to the
semantics of GHC. Then we introduce a nondeterministic wunification
algorithm which models parallelism of GHC better than previcus ones.
Lastly, we describe the semantics of GHC by extending the wunification:
algorithm we propose. This paper assumes familiarity with‘GHC; for more
informal description and program eiampleé, the readers are asked to refer
to [Ueda 85]. ‘

2. THREE DIRECTIONS TOWARDS THE SEMANTICS OF GHC
2.1. Declarative Semantics as a Logic Programming Language

The declarative semahtics of a logic program which does not deal with
infihite computation is well studied in [van Emden and Kowalski 76] and
[Apt and van Emden 82]. [Hagiya 83] and [Lloyd 84] try to capture the
declarative semantics of infinite computation by the greatest fixpoint on
the extended Herbrand base which includes infinite atoms. This idea was

first mentioned in [van Emden and de Lucena 82]. |

Unfortunately, due to the don't-care nondeterminism resulting from the
commitment operator and the restriction of dataflow from guards, the
semantics along this line cannot capture all the aspects of GHC. Moreover,
it fails to show the causality among bindings which is often the central
matter of interest in parallel logic programming. However, it may still be
useful for understanding the semantics of a subclass of GHC programs which

dovnot require don't-care nondeterminism.

2.2. Process-Oriented Semantics

As we stated before, GHC can be regarded as a genefalization of
nondeterministic dataflow 1languages. A GHC goal generates new bindings
between variables and terms depending on, and possibly after.waiting for,
the bindings generated by other goals. Hence, GHC goals can be regarded as
processes interacting with one another by means of instantiation of
variables. The semantics of such processes could be given by modifying the
semantics of nondeterministic dataflow languages given in [Brock and

Ackermann 81] and [Staples and Nguyen 85], for example.

This direction is promising because the obtained semantics will
capture in an abstract manner all the aspects of GHC including causality
and don't-care nondeterminism. It should provide a theoretical foundation
for every kind of mechanical and manual handliﬁg of a prograﬁ including

program transformation, verification, compilation and optimization.

2.3. Operational Semantics

A general purpose of operational semantics is to show the guideline
for implementation algorithmically. In the case of parallel languages this
is especially important, since it shows' what should be considered as
indivisible or primitive operations. However, operational semantics bears
a general difficulty in its abstractness. If it dis too specifiec, it can
serve only for a small‘range of implementations and one cannct distinguish
between essential and inessential matters. Features whose implementation
is not essential for 1language definition should be described only

functionally: Examples are arithmetics and access to array elements.

On the other hand, if the operational semantics goes too abstract or

260

functional, it may fail to serve as a guideline of any possible

implementation. However, it seems that distinction between essential and

inessential matters can have only subjective - criteria. Being mbderately‘
abstract is especially difficult for new languages and parallel languages,

since it is hard to assume in advance all good implementations that may

appear in the future.

The operational (or procedural) semantics of a logic programming
language is usually identified with some proof procedure of a given
formula; in the case of a Horn-clause language it is identified with a
refutation procedure. The semantics of GHC also can be based on resolution
and it should be the cleanest way to capture the aspect of GHC as a 1logic
programming language, but it must also express the semantics of the
additional construect, guard. Moreover, the semantics must clarify what can
be executed in parallel in qrder to serve for fully parallel
implementation. Such consideration 1s important because the existing
algorithms for unification and resolution have not Dbeen considered very
well in terms of parallel execution.

We consider fully parallel execution as the standard and serialization
of primitive operations as optimization for the current hardware technology
which favors sequential computation. This view is the exact‘opposite of
the usual view of optimization. The reason why we do so is that our
purpose is to find the smallest possible granularity and to reveal -every
possible parallelism. However, fully parallel execution may fall into
anarchy and undesirable situations such as deadlock and’ starvation may
result. The anarchy could be avoided by controlling parallelism. It could
be achieved by

(1) employing larger units of data and larger unit of operations to handle

them, and/or

(2) introducing séme apparatus for control.
Sequential execution of some primitive operations falls into Item (2).

Moreover, we allow apparently useless computation as long as it does
not change the intended semanties. In parallel computation, it may often
be the case that we can gain efficiency by doing some computation in

267

- advance whose result may possibly turn to be unnecessary afterwards. To
disallow any useless computation would be very difficult and it would cause
serious inefficiency in distributed computation. Hence it seems better to
show what can be allowed rather than to show exactly what is needed. This
will again be the opposite of the usual manner which considers optimization

by means of backup computation only as a consequence of the semantics.

3. THE NONDETERMINISTIC UNIFICATION (SEMI-)ALGORITHM

i The most important and delicate operation in GHC is unification. This
chapter shows the nondeterministic wunification algorithm which will be
incorporated into thé semantics of GHC. Precisely speaking, it 1is a
semi-algorithm since termination is not guaranteed due to deadlock and
other causes. However, we discuss possible ways to guarantee termination

for unifiable cases in Section 3.5.

The algorithm gives the base of the semantics of the unification of
GHC. The point is that we no longer handle a complex term as an atomic
entity nor we consider a variable as atomic. Thus the algorithm is more
nondeterministic than the nondeterministic algorithm in [Martelli and
Montanari 82]. More importantly, while the algorithm of Martelli and

Montanari is sequential, ours allows parallelism.

3.1. The Algorithm

Our formalization basically follows [Martelli and Montanari 82].
Function symbols, variables, terms, and substitution are defined as wusual.
In examples, we begin function symbols with lowercase letters and variables
with uppercase letters. We underline those object-level symbols to

distinguish them from metasymbqls appearing elsewhere.
The unification problem is a set of equations of the following form
S1=T1, 0oy Sn-_-Tn.

where Si and Ti are terms. A solution of the unification problem, called a
unifier, is any substitution that makes S,and ‘Ti identical - for all i's

simul taneously.

i

268

Given a problem, the algorithm repeatedly performs any of the
following transformations. These transformations can be done in parallel,
as long as they do not interfere, i.e., they do not rewrite any part of
currently ‘chosen' entities. Unless stated otherwise, the chosen entities
become unchosen when the specified transformation is complete. We may
attach 'marks' to variables to prevent backward rewriting. The algorithm

terminates when no transformation applies.

(a) Choose any equation of the form S=T where S and T are not variables.
If the ¢two principal functionr symbols are different, unchoose this
equation and stop with failure. Otherwise, the equation is of the form
f(S1, ceey Sn)=f(T1, ceesy Tn) where f is some n(>=z0)-ary function
symbol and Si's and Tifs are terms which are possibly marked variables,
and rewrite it to S1=T1, eesy Sn::'l‘n in any way but without erasing Si's
and Ti's. When some of Si's and Ti's are marked, they are unmarked.
The condition "without erasing Si's and Ti's" means that S;'s and T.'s

i i
must not disappear from the problem during rewriting.

(b) Choose any equation of the form X:f(T1, cees Tn) or f(T1, coss Tn)=x
where f is some n(>0)-ary function symbol, Ti's are terms that are not
marked variables and X is a variable, and rewrite it to X:f(x1*, voey
Xn*), X4=Tys eees X =T in any way but without erasing X and Ti‘s,
where Xi's are distinet variables which are different from the
variables in the current problem. The original equation X=f(T1, ceey
Tn) or f(T1, ves Tn)=X becomes unchosen when it is rewritten to
X:f(X1*, cees xn*). Asterisks denote marks, and they are attached to
the new variables to prevent backward rewriting toward the original
term.

(c) Choose any equation of the form X=X where X is a variable, and erase
it.

(d)vChoose any equation of the form X=Y where X and Y are distinct
variables, and one of the other occurrences of non-marked X. Then .

replace that occurrence by Y.

(e) Choose any equation of the form X=f(X %, ..., Xn*) where £ is an

n(>=0)~ary function symbol and xi*'s are marked variables, and one of

265

the other occurrences of unmarked X.: Then replace that occurrence by
£(Xgs eeesr X))o '

3.2. Examples
The following examples illustrate some subtle points in the algorithm.

(1) X=a, X=b. The first equation can rewrite the second X to 'a', and the
second equation can rewrite the first X to 'b'. If the second X is
rewritten first, then the equation §=§ is changed to the equation a=b,
which causes failure. If the first Zlis rewritten first, the equation
X=a is changed to the equation b=a, which also causes failure.
Therefore, the order of rewriting is independent of the result. . When
the two equations {try to rewrite the other simultanecusly, however,
deadlock may occur. The problem of deadlock will be discussed in
Section 3.5.

(2) X=a, X=a, X=b. This example shows why an equation being chosen must
not be rewritten by other equations. Suppose that the first equation
and the second equation are simultaneously chosen and each of them
rewrites the other to a=a. Then the original problem is rewritten to
'§=§, a=a, X=b', and then to 'X=b'. This is obviously an erronecus
rewriting. If chosen equations are 1locked, this situvation never
occurs.

3.3. Properties of the Algorithm

Since the above algorithm does not guarantee termination, what we can
show at best is

(1) that when the algorithm terminates, the original problem has a unifier
which is evident from the obtained form, and

(2) that when the algorithm stops with fallure, the original problem has no

unifiers.

We give some theorems (proofs omitted) which together show that our
algorithm 'computes' the most general unifier of the original problem when

it terminates.

R70

Theorem 1. When the algorithm terminates, the obtéined set of equationé
" has the form '

X1=T1’ ecey xsz 9 Xk+1=Y1, scey xk+m=ym (k>=0’ m>=0)

where

(a) X1, cuey xk+m are distinct variables,
(b) The sets {X;} and {Y,} are disjoint, and

(c) Ti’s are of the form f(Xi1*, veey Xil*) where f is an n(>=0)-ary
function symbol and all xij's are distinet variables and {Xi} includes

{Xij}.

(end of Tﬁ;orem 1).

We say that a variable ¥ is immediately wunder a variable X in the
obtained set iff for some i (i=1, ..., k), x:xiand Y appears in Ti’ and
that a variable Y is under a variable X iff Y is immediately under X or
there exists a variable Z such that Y is under Z and Z is immediately under
X. Then we can prove the following theorem.

Theoremlz. The above set of equations has no cycles, that is, none of X1,

e+ey X, is under itself (end of Theorem 2).

We define an equivalence relation between two substitutions. We say
that substitutions 's' and 't! are equivalent with respect to a set of
variables U iff s(V)=t(V) for all V's in U. The equivalence relation is
denoted by '=y'. ‘ ‘

Theorem 3. Every transformation shown in Sec¢tion 3.1, if successful,
preserves the quotient set of all unifiers by the relation '=U', where U is
a set of variables appearing in the original problem. If the
transformation stops with failure in Step (a), then the set of equations is
ununifiable (end of Theorem 3).

We take an equivalence class because Rule (b) introduces new ..
variables. Those variables, which could take arbitrary values before the
transformation, are unified with some terms, and so the set of all unifiers
. is reduced. However, taking the quotient set ‘'forgets! the -differences
among unifiers in those new variables.

Theorem L, Assume the algorithm terminates and the following set of
equations is obtained:

X1=T1, ey Xk=Tk, xk+1=Y1, ceay Xk'l‘m:Ym‘

Let a substitution 'g' be defined as

.

g(Xx) = T, if X=X, for some i=1, ..., k
g(X) = Y, if X=X, ; for some i=1, ..., m
g(x) =X otherwise

and by gn we mean the application of g repeated n times. Then,
gn=gn+1=gn+2=... for some n which does not exceed k+1, and gn is the most

general unifier of the obtained equation (end of Theorem 4).

Theorems 1 to 3 together state that when our algorithm terminates, the
original set of equations is unifiable with the most general unifier almost
evident from the final set of equations, and that when it stops with
failure, the original set of equations is ununifiable. In faet, by adding
some conditions we can guarantee termination in the case where the original

problem has a unifier, as will be discussed in Section 3.5.

3.4. Motivations and Implications

We make some remarks on the above algorithm to clarify the wunderlying

motivations and implications.

Our algorithm differs from that of [Martelli and Montanari 82] in the
following three points. One is that a non-variable term with arguments
which are not guaranteed to be new variables is not treated as atomie, For

example, the equation

X=cons(a,nil) ' : eeo(d)

- enemumen == aseees

is not directly used for substitution of X appearing in the problem. It is

first rewritten to

x=00n8(é*,§'), £=E, §=nil --c(ii)- ‘

where A* and B* are new variables, and then the equation X=cons(A®, B¥) is

Py

used for instantiation. In general, only an equation of the form X=T where
X is a variable and T is the most general term with some principal function
symbol whose arguments, if any, are all distincet marked variables can be
used for instantiation. This means that the primitive operation for the
instantiation of some occurrence of a variable is to determine its
principal function symbol. This decision was motivated by the observation
that Equations (i) and (ii) are logically the same while Equation (ii) bhas
smaller granularity. We regard Equation (i) as an abbreviation of Equation
(ii). '

The practical meaning of this is as follows. When we transmit a large
data structure from one processor to another, we often transmit it block by
block. Our algorithm explicitly states that a large data structure is not
an atomic entity but can be transmitted little by little, = possibly on
demand, with untransmitted parts indicated by uninstantiated variables.
Moreover, the consumer can use the transmitted value before the

transmission is complete.

The second point is that we do not consider a variaﬁle as a
centralized entity but as a distributed entity. This decision was
motivated by the observation that the problem

X=a, Xeb
can be regarded as an abbreviation of

X1=a, X1=X2, X2=D.

The préctical meaning of this is that a variable need not be implemented by
a singlé memory cell. It is quite 1likely that each processor has a local
cache for variables. The algorithm explicitly allows it, and it alsc says
that local copies of a variable need not have the same value at the same
time (assuming that we have some notion of global time), as long as they
become identical finally. To put it differently, communication by shared
variables may have a potential delay.

The third point in which our algorithm is different from [Martelli and
Montanari 82] is that we have omitted the so-called 'occur check'; see
Section 3.5.3 for more detail.

- 10 =

XE

- 3.5. Termination

The algorithm shown in Section 3.1 may fail to terminate for the
following reasons:
(1) lack of a mechanism for controlling mutual exclusion,
(2) lack of the fairness assumption, and

(3) lack of the occur check.

The first two points are particularly important because they may cause.

nontermination in unifiable cases. In the following, we discuss each of
the above problems.

3.5.1. Controlling Mutual Exclusion

The algorithm states that the entities currently chosen by some
transformation should not be rewritten by other transformations. This is
the rule of mutual exclusion. However, as a result of regarding a variable
as a non-atomic, distributed entity, we must lock two‘ resources, an
equation and an occurrence of a variable, when we apply Rules (d) and (e).
As seen in Section 3.2, when we rewrite some occurrence of a variable X,
there should be a moment when both that occurrence and the equation being

chosen are locked or protected against rewriting by other equations.

The problem is that locking two resources may generally cause deadlock
if we wait until one of them is available, lock it, and wait until the
other resource is available. One way to avoid deadlock in such an
incremental locking scheme is to introduce an ordering to the occurrences
of equations and variables and to lock the entity'lower in that ordering
first. The only significant fact about the ordering is that two entities
to be locked are ordered; it does not matter how they are ordered and a

newly created entity may have an arbitrary order.

Ordering avoids deadlock. That is, if we can guarantee that the algo-
rithm terminates when each trahsformationbis performed nondeterministically
but sequentially, we can guarantee termination also when we allow
parallelism.

-t -

)

3.5.2. Fairness

However, ordering of entities alone does not guarantee termination
even in unifiable cases. Consider the following example:

X1, 1%, X=a.

The first equation X=Y may rewrite the third equation to X:é, and then the
second equation may rewrite the third equation back to X=a. We must
disallow such a sequence of rewriting to be exclusivelj performed
infinitely many_times by introducing some notiocn of fairness.

One possible definition of fairness is as follows. We first consider
a non-directed graph G formed by a set S of equations whose left- and
right-hand sides are both variables.. G has a node V corresponding to eaéh
vahiable V in S, and an are (Vi, V2) corresponding to each occurrence of
an equation V1=V2. The graph may have loops, and we assign to each arc the
size of the largest loop it forms. For example, the set of equations

forms the following graph:

(5) (5)
A X +
/™\ }
(5)1 (u)l |(u) c
! \ /
Voo]
T T ()

The number assigned to each arc shows the size of the largest loop it

forms.

Now we can define fairness. We first consider nondeterministiec but
serialized execution to keep the above notion of loops meaningful. Let L
be the sum of the values assigned to the arcs of the graph G formed by S.
A fair execution must not repeatedly choose the transformation rule (d)
without reducing L. Speaking more precisely, when Rule (d) is repeatedly
chosen, L must be reddced to L' after finitely many transformations and it

must never exceed L' thereafter, or else other rules must be chosen after

- 12 -

275

‘finitely many transformations. Nontermination illustrated in the beginning
of this subsection is now disallowed, since L is initially 4 and each
transformation never reduces it.

Fairness of parallel execution 1is easily defined in terms of fair
serialiéed execution: Every fair parallel execution is obtained from some
fair serialized execution by allowing overlapping of transformations under
the rule of mutual exclusion.

3.5.3. Occur Check

For a set of equations for which usual unification algorithms detect a
cycle and stops with failure, our algorithm indefinitely computes the
values of infinite terms. For example, an equation

X=£(X)
is rewritten as follows:

X=£(X1%), X1=X by Rule (b)
X=£(X1%), X1=£(X1) by Rule (e)
X=£(X1%), X1=£(X2%), X2=X1 by Rule (b)

ese

However, since the execution does not terminate, we cannot get any result
in the above framework. One way to observe the value of X is to introduce

the notion of 'observation variables'. We specify observation variables
V1, caey Vk in the unification problem as follows:

S1=T1’ XX R sn=Tn; V1, ceey Vk.

These variables are rewritten according to Rules (d) and (e). Then if we
give the above equation as

X=£(2); X

the observation variable X will be indefinitely instantiated to g(gl),

£(£(X2)), and so on. The notion of observation variables well models
stream-oriented output of GHC, Observation variables can be used also for
observing the result of terminating unification; we can prove that when the

- 13 -

276

algorithm terminates, an observation variable X is instantiated to mgu(X)
where mgu is the most general unifier.

When we take infinite computation into account, however, we need a
rather different notion of fairmess from that introduced in Section 3.5.2.
For example, it seems undesirable to continue to compute the value of g
without computing the value of Y in the following problem:

X=£(X), Y=g(1); X, Y.

However, this problem is out of the scope of this paper and we.do not
discuss it any further.

4. THE OPERATIONAL SEMANTICS OF GHC

In this chapter, we define the operational semantics of GHC by
extending the operational semantics of unification defined in Chapter 3.

4.1. Syntax of GHC
A GHC program is a set of guarded Horn clauses of the following form:

BH :- G1, eeay Gm { B1’ saey Bno (m ’= 0, n >= 0).

where H, G,'s, and B,'s are atomic formulas. H is called a clause head,
Gi's are called guard goals, and Bi's are called body goals. The operator
'|* is called a commitment operator. The part of a clause before '|' is
called a guard, apd the part after '|{' is called a body. Note that a
clause head is included in a guard. A goal is a call either to the
predefined unification predicate. '=' or to somé other predicate which
should be user~defined.

A goal clause has the following form:
HE B1, on-} Bno . (n >= 0)0

The predefined predicate '=' is used for unifying two terms. A call
to the predicate '=' was called an equation in Chapter 3. This predicate
should be considered as predefined, since it cannot be defined in the

-1 -

277

’ language merely for syntactical reasons.

u.2‘

Semantics of GHC

To solve a goal clause, we repeatedly perform any of the following

transformations.

(1)

(2)

Choose any user-defined goal (i.e., a call to scme predicate other than
the predefined predicate *=!') A and any program clause of the form H :-
G | B where G and B'are sets of goals. Then make a variant H' := G' |-
B! of the chosen clause, and supehimpose on A a guarded set of goals of
the boxed form [A=H', G' [B']]. These two operations can be done in
any manner, as long as each goal 1is not placed before the box directly
surrounding the goal bhas been created. Here, a box [] has a
semantical role of restricting dataflow, as will be stated below. We
say that each goal in "A:H', G'" belongs to the outer box, and each
goal in B' belongs to the inner box. Superimposing makes the original
goal clause partly multi-layered, as depicted by the following diagram:

+-[A3=Hé, G}, [Bé]]-l
T-[52=H{, G [B{]]-I -[A3=H§. Gé [B§]]-
X=X

A l -[11

[-- & -- A 3

Each layer shares the other parts of the goal clause. Some layer of
the multi-layered part may further become partly multi-layered. Note
that for uniformity, we assume two nested boxes between which the

original set of goals is initially placed.

Chocse any unification goal of. the form S=T, and perform an appropriate
transformation stated in Chapter 3 according to the forms of S and T.
The algorithm of Chapter 3 must be modified as follows:

{(2-1) Two general restrictions are added. Firstly, a unification goal

(i.e., an equation) belonging to some box (say 0) cannot rewrite a
variable outside 0. Such a goal, however, can rewrite variables
within O (including the variables appearing in some other boxes
within 0), and aléo it can be rewritten by other goals except those
- belonging to some boxes within 0. Secondly, when a unification

- 15 -

PARS

goal belonging to a box O 1is rewritten to a set of other
unification goals, they are also placed in, and belong to, O.

(2-2) Rule (a) of Chapter 3 is modified. Even when the both sides of the

equation have different principal function symbols, we do not stop
the computation with failure but merely leave the equation as it
is.

{(2-3) An additional rule exists. Choose any unification goal (equation)

E
(1) which appears in the guard G of the construct [G [B]], and
(ii) which is

o of the form X:f(x1', ceey Xn’) where X is a variable not
occurring anywhere except in B and E itself, f is some
n(>=0)-ary function symbol, and Xi*'s are all marked

variables, or

o of the form X=Y where X and Y are distinct variables and X

does not occur anywhere except in B and E itself.

Then move E to the body B.

(2-4) There is another additional rule. Chocse any equation which

belongs to a box O and which is of the form X=Y where X and Y are
distinet variables, and one of the other occurrences of non-marked
X outside O. Then replace X=Y by Y=X.

(2-5) The judgment of whether there are any occurrences of a variable

X in some multi-layered part (say P) of a goal clause is now - made
as follows. Let G be the goal on the ground layer of P for which
new layera‘have been superimposed. G must‘be a user-defined goal
because a unification goal never creates superimposed layers. If G
has not yet been committed (see below) to any of the layers, we say
that a variable X appears in P iff X appears in any of the layers
including the layer of the original goal G; if G has already beén
committed to some superimposed layer, we say that a variable X

appears in P iff X éppears in that layer.

(3) (The rule of commitment) Choose any layer (say L) of the form [[B]] of

- 16 =

scme multi-layered part, that is, a layer whose head unification and
guard have been reduced to an ‘empty' set of goalé (see below for
emptiness). Then confirm that the original goal (say G) on the ground
layer has been committed to no other layers. If confirmed; G ié
indivisibly committed to the layer L. Then, the outer box is simply
deleted since now it does not impose semantical restriction on any
goals, and the inner box is enlarged and amalgamated to the innermost
box containing it by taking in all the symbols between these two boxes
in any manner. If the original goal has already been committed to any
other layer, do nothing.

An 'empty' set of goals is a set of goals eonsistingv‘cnly of ‘empty'
mul ti-layered parts. A multi-layered part is said to be 'émpty' iff the
original goal G in the ground layer has been committed to some other layer
L and L denotes an 'empty! set of goals.

The original goal clause between the initial two boxes is regarded as
solved when it is redhced to the 'empty' clause or an 'empty' set of’goals,
whether the above transformation procedure terminates or not. Here, the
inner box of the initial nested boxes need not be empty but may contain a
set of unification goals (moved by Rule (2-3)) of the form

X1=T1, ssey xk=Tk

where X1, esey Xk are distinet variables. This set of goals has no cycles
(see Section 3.3), and the most general answer subatitution 1s given by
gk, where g is defined as follows:

g(X)
g(X)

'1‘i if X:Xi for some 1=1, ..., k

X otherwise

The final set of equations in the inner box is slightly different from the
final form obtained by the unification algorithm of Chapter 3. This is
because we used the concept of being solved which is different from being
terminated. ’

4.3. Motivations and Implicatiobs

.Some explanation will be necessary to clarify the motivations and the

=17 -

28U

implications of the above semantics.

First of all, the above semantics clarifies that a resolution
operation can be sepérated into two parts: goal rewriting and head
unification. Moreover; the latter can be executed in parallel with the
corresponding guard .goals. Spawning new layers also can be done
incrementally and in parallel with the execution of already generated
goals. A set of goals is regarded as solved even when some clause not
selected for commitment is still being executed. Stopping unnecessary
computation is considered an optimization in our framework.

The above semantics is based cn parallel term rewriting. However, the
new notion, superimposing, has been introduced to express OR-parallel
execution of candidate clauses. Since GHC is a single-enviromnment language
like PARLOG, candidate clauses can share its outer world. On the other
hand, the operational semantics of the OR-parallel execution of a wusual
Horn-clause program would have to express some mechanisms for multiple
environments.

Boxes are used for restricting information flow caused by
unification. The restriction is stated in Rule (2-1). Although the main
purpose of the introduction of boxes is to express the restriction iﬁpOsed
on guards, it is used also for stating what can be done with the clause
body before commitment. That is, the semantics allows the body B of a
clause C to be executed before C is selected for commitment, as long as the
execution of B never affects the execution of any goals outside B. This is
a kind of backup computation, since the execution of B need not ‘start

before C is selected for commitment.

Rule (2-2) has been added because the failure detected in some guard
does not mean the failure of the whole systenm. This rule makes the
treatment of the failure of unification similar tc suspension due to the
dataflow restriction.

The purpose of Rule (2-3) is to make a candidate clause selected for
commitment when the goals remaining in the guard have nothing to do other
than to instantiate the body. Such goals no longer rewrite other goals
except those in the body. Moreover, such goals themselves are - never

rewritten to other goals that may cause failure, since the conditions of.

- 18 -

281

Rule (2-3) guarantees that the variables on the left-hand sides of those
goals (of the form X:f(x1', ceey Xn') or X=Y) are never rewritten.

Therefore, they can be moved to the clause body.

The purpose of Rule (2-4) is to make the unification of two variables
X and Y proceed unless both X and Y appear outside the box to which the
unification goal belongs. Suppose that X appears outside the box and Y
does not. Then the goal X=Y cannot rewrite all the other occurrences of X,
while the logically equivalent goal Y=X can rewrite all the other
occurrences of Y. So in order to 1let the unification proceed, we have to
exchange the left- and the right-hand sides. However, we do so only when
the left-hand side variable appear outside the box, because arbitrary
exchange would make the termination condition (not discussed in this paper)
unnecessarily complex. Even under this restriction, Rule (2-4) may cause
Ybusy waiting' when both X and Y appears outside the box,

Rule (3) says that the dafaflcw restriction imposed on the body of a
clause is removed when that clause is selected for commitment, but that it
need not be removed instantanecusly. Moreover, the removal of dataflow
restriction is not an indivisible part of the commitment operation. It can
be done in parallel with the execution of the clause'body.

Note that although the answer substitutions are put in the inner box
of the initial nested boxes, we can also observe the result by means of

observation variables.

5. CONCLUSIONS

We have described the operational semanties of Guarded Horn Clauses
which tries to preserve parallelism inherent in GHC as much as possible.
The given semantics is anarchical and allows énything which is harmless.
However, we have also discussed how to guarantee termination when_the goal
clause consists only of unification goals and it has a solution. It should
be interesting to consider whether we can further refine the given
semantics without changing the intended informal semantics behind it.

-19 -

28%

ACKNOWLEDGMENTS

The author would like to thank Akikazu Takeuchi and Satoru Tomura for
helpful'diseussions on -the earlier versions of this paper.

REFERENCES

[Apt and van Emden 82] Apt, K.R. and van Emden, M.H., Contributions to the
Theory of Logic Programming, J. ACM, Vol.29, No.3, pp.841-862, 1982.

[Brock and Ackermann 81] Brock, J.D. and Ackermann, W.B., Scenarios: A
Model of Nondeterminéte Computation, In Formalization of Programming
Concépts, J. Diaz and I. Ramos (Eds.), Lecture Notes in Computer Science,
Vol.107, Springer-Verlag, New York, pp.252-259,'1981.

[Clark and Gregory 84] Clark, K.L. and Gregory, S., PARLOG: Parallel
Programming in Logic, Research Report DOC 84/4, Dept of Computing, Imperial
College, London, 1984,

[van Emden ana de Lucena 82] van Emden, M. H. and de Lucena, G. J.,
bPredicate Logic as a Languagé for Parallel Programming, In: K. L. Clark and
S. ‘A. Tarnlund (eds.), Logic Programming, Academic Press, New York,
pp.189-198, 1982.

[van Emden . and Kowalski 76] van Emden, M.H. and Kowalski, R.A., The
Semantics of Predicate Logic as a Programming Language, J.ACM, Vol.23,
NO.“, pp.733-7u2, 1976.

[Hagiya 83] Hagiya, M., On Lazy Unification and Infinite Trees, Proc. Logic
Programming Conference '83, 1983 (in Japanese). '

[Martelli and Montanari 82] Martelli, A. and' Montanari, U., An Efficient
Unification Algorithm, ACM Trans. Prog. Lang. Syst., Vol.l4, No.2, pp.
258-282, 1982.

[Shapire 83] Shapiro, E.Y., A Subset of Concurrent Prolog and Its Inter-
preter, ICOT Tegh. Report TR-003, Institute for New Generation Computer
Technology, 1983.

- 20 =

[Staples and Nguyen 85] Staples, J. and Nguyen, V.L., A Fixpoint Semantics
for Nondeterministic Data Flow, J. ACM, Vol.32, No.2, pp.u41t1-LLi, 1985.

[Ueda 85] Ueda, K., Guarded Horn Clauses, ICOT Tech Report TR-103, Insti-
tute for New Generation Computer Iechnology;i1985. Mso in Proc. Logic
Programming Conference '85, ICOT, pp.225-236. Also to'appear_in- Lecture
Notes in Computer Science, Springer-Verlag. '

-21 =

