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Regular subgraphs of a regular graph &)

Mikio KANO
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1. Introduction

We consider a finite graph, which may have multiple edges but has no

loops. A graph without multiple edges is called a simple graph. We denote

the vertex set and the edge set of a graph G by V(G) and E(G), respectively.
For a vertex v of a subgraph H, we write dH(v) for the‘degree of v in H.

A graph G is called an r-regular graph if dG(x)=r for all xeV(G), a spanning

r-regular subgraph is called an r-factor. Notation and definitions not
given in this paper can be found in [} ]

We shall consider the following problem. For given integers k and r,
O<k<r, does an r-regular graph contain a k-regular subgraph ? ILet us begiq
with some known results on this problem. The first theorem is well-known
as Petersen's 2-factorization theorem.

Theorem A.(Petersen [91] ) Every 2r-regular graph has a 2k—factof
for every integer k, O<k<r.

Theorem ‘B. ( Taskinov[/o]) Every (2r+l)-regular graph has a (2k+1)-
regular subgraph for every integer k, O<k<r.

Taskinov [m] also proved that every 4-regular simple graph contains a
3~regular subgraph, which was conjectured by C. Berge. The next cénjecfure
given by Chvatal et al [3] is stil open.

Conjecture Every 4-regular graph of even order contains a 3-regular
subgraph. |

In this paper we shall prove the following two theorems.

WXHE[0) o #4kLx ~BRCTHI & 5& c2& tdhrn




Theorem 1. Let r be an odd integer and k be an even integer such
that 2<k<2r/3. Then every r—regular graﬁh contains a k-regular subgraph.

Theorem 2. Let T be an even integer and k bé an odd integer such
that 1<k<r/2. Then every r-regular graph of even order contains a k-regular
subgraph. Moreover, every r-regular graph of odd order with edge-connec-
tivity two contains a k-regular subgraph.

Note that for every integer r, rx6, there exiéts an r-regular simple
graph which has no (r-1)-regular subgraphs ([7 ],[/0]). Furthermore, for
every odd integer r>0, there exists a 2r-regular graph of odd order that
has no (r+2)-regular subgraphs. For example, such a graph is obtainedvfrom
by r-multiple

the complete graph K, of order 3 by replacing each edge of K

3 3

edges.

2. Proofs of Theorems
| We begin by introduing some definitions. Let G be a graph, and g and
f be integer-valued functions defined on V(G) such that g(x)<f(x) for all
xeV(G). A spanning subgraph F of G is called a (g,f){gggigz_if g(x)de(x)
<f(x) for all xeV(G). A (g,f)-factor satisfying g(x)=f(x) for all xeV(G)
is brﬁefly called an f-factor. For a vertex subset X of G, we write G-X
for the subgraph of G induced by V(G)\X. For an edge subset Y of G, G-Y
denotes the subgraph of G obtained from G by deleting all the edges in Y.
For two disjoint subsets S and T of V(G), we denote by eG(S,T) the number
of edges of G joining S and T. For a set {a,b,.f;,dﬁ of integers, a graph
G is called an {a,b,...,d}-graph if d,(x)e{a,b,...,d} for all xeV(G).
A spanning {a,b,...,d}-subgraph is called an {a,b,...,d}-factor.

Lemma 1.(Lovasz [81) Let G be a graph, and g and f be integer-

valued functions defined on V(G) satisfying g(x)<f(x) for all xeV(G).

Then G has a (g,f )-factor if and only if
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8(5,7) = ] (a(t)-g(t)) + ] £(s) - e4(8,T) - h(8,T) > 0
teT \ seS

for all disjoint subsets S and T of V(G), where h(S,T) denotes the number

of components C of G-(SuT) such that g(x)=f(x) for all xeV(G), and

L f(x) + eg(1,U(C)) =1 (moed 2).
xeV(C)
Lemma 2.([§1,[6 1) Let G bé an n-edge-connected graph (n>1), f be

an integer-valued function defined on V(G), 6 be a real number such that
0<0<1, and A and B be disjoint subsets of E(G). If (1), (2) and one of
{(Ba),(Bb)} hold, then G has an f-factor F such that FoA and FnB=¢.

(1) ) £f(x) =0 (mod 2).

xeV(G)
(2) e =) |£(x)-6d,(x)| + 26[A] + 2(1-6)[B| < 2.
xeV(G) :

(3a) n6>1 and n(1-6)=1

(3b) {f(x) | xeV(G)} consists of even numbers and m(1-8)>1, where m-
e{n,n+1} and m=1 (mod 2).

Lemma 3. [2] Let k be an even integer and r be an odd integer such
that 2<k<2r/3. Then every 2-edge-connected r-regular graph has a k-factor.

Note that this lemma can be obtained from Lemma 2 with A=B=¢, m=3, 6
=k/r and f(xj=k for all xeV(G).

Proof of Theorem 1. Let G be a -connected r-regular graph. By

Lemma 3, we maj assume G has bridges. Then G has a block H which is a
2-edge-connected {r-1,r}-subgraph having exactly one vertex of degree r-1.
Put 8=k/r, A=B=¢ and n=2, and define a function f on V(H) by f(x)=k for
all xeV(H). We can show that H,® and f satify conditions (1),(2) and (3b)
of Lemma 2 since

e = |k-(k/v)(r-1)| <2 and m(1-0) = 3(1-k/r)=1.

Therefore H has an f-factor, which is a desired k-regular subgraph of G.
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Lemma 4. [4] Let k be an odd integer and r be an even integer such
that 1<r/4<k<3r/4. Then every 4-edge-connected r-regular graph of even
order has a k-factor.

Note that the above lemma can be proved by Lemma 2 with A=B=¢, n=4,
8=k/r and f(x)=k for all xeV(G).

Lemma 5. Let k be an odd integer and r be an even integer such
that 1sr/4sks§r/4. Let H be a 3-edge-connected graph of even order. If H
is an {r-1,r}-graph having exactl& two vertices of degree r-1, or an {r-2,r}
-graph having exactly one vertex of degree r-2, then H has a k-factor.

Proof Suppose that H is a 3-edge-connected {r-1,r}-graph Wifh
exactly two vertices u and v of degree r-1. We construct an r—regﬁlar
graph H* from H by adding a new edge uv. Then H* is a 4-edge-connected r-
regular graph of even order. Put A=¢, B={uv}, 6=k/r and n=4, and define
a function f by f(x)=k for all xeV(Hx). Then (1),(2) and (3a) of Lemma 2
hold since €=2(1-8)|B|=2(1-k/r)<2, nd=4k/r>1" and n(1-6)=4(1-k/r)>1.

Hence H* has a k-factor F which does not éontain fhe edge uv. Therefore,
F is a desired k-factor of H. If H is a {r-2,r}-graph with one vertex of
degree r-2, then H is 4-edge-connected, and so we can prove the theorem by
Lemma 2.

Lemma 6. | Let k be an odd integer greater than 1, and let H be a 3-
edge-connected graph of odd order. If H is {2k-1,2k}-graph having exaétly
two vertices of degree 2k-1, or a {2k-2,2k}-graph having exactly one vertex
of degree 2k-2, then H has a {k-1,k}-factor F such that dF(w)=k¥1 and
dF(X)ﬁk for all xeV(G)\w for any given vertex w of degree 2k-1 or 2k-2.

‘Proof  Set 6=1/2, n=3 and define a function f on V(G) by f(w)=k-1

and f(x)=k for all xeV(G)\w. Then (1),(2) and (3a) of Lemma 2 hold. Hence

H has an f-factor, which is a {k-1,k}-factor with the required property.
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Lemma 7. Let k be an odd integer greater than or equal to three,
and G be a connected {2,2k}-graph with at least one vertex of degree 2.

Then G has a {0,1,k}-factor F such that

Oor1l if dG(x):z
dp(x) =

k if dG(x)=2k.
Proof Define two functionsg and f on V(G) as
0 if dG(x)=2 1 if dG(X)=2
g(x) = and f(x) =
k otherwise, kX otherwise.

We shall prove that G has a (g,f)-factor, which is a desired factor.
Suppose that G has no (g,f)-factor. By Lemma 1, there exist disjoint
subsets S and T of V(G) such that

8(8,T) = ) (d5(t)-g(t)) + ] £(s) - ey(S,T) - u(8,T) < 0
teT ' seS ,

Among all the pairs (S',T') of disjoint subsets of V(G) such that &(S',T')

is minimum, choose a pair ($,T) so that |SuT| is minimum. Since G has a
vertex of degree 2, 8(¢,p)=-h(d,$)=0. Hence SuT#p. We first show that T
does not contain any vertex of degree 2. Suppose that T contains a vertex

u of degree 2. Let e, =uw, and e, =uw, be the edges of G incident with u,

where we allow W, =W, We can easily obtain

8(8,T\u) = 8(8,T) - 2 + e4(8,u) + h(S,T) - h(S,T\u)
We consider three cases. If Wl,W2€S, then eG(S,u)=2 and h(S,T)=h(S,T\u),
and so &6(S,T u)=8(S,T), which contradicts the choice of S and T. If wleS
and wzzs, then eG(S,u)=l and h(S,T)-h(S,T u)<l, andlso 8(S,T\u)<8(S,T),
a contradiction. If wl,wzgs, tehn eG(S,u)=O and h(S,T u)- h(S,T\u)<2, and
so 8(8,T\u)<8(S,T), a contradiction. Therefore, H has no vertex of degree

2.

Let Cl,C2,...,Cm be the components of G-(SuT) which satisfy the
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conditions on h(S,T) in Lemma 1, in particular, m=h(S,T). Since dG(x)=2k
for all XeV(Ci5 and

XEV(Ci)dG(X) = 2|E(cy)| + eg(suT,V(C,)),

we have eG(SuT,V(Ci))EO (mod 2). Hence
eG(SUT,V(Ci)) > 2 for all i, l<i<m. (1)

It follows that

§(5,1) == ¥ d(t)+L1 T d(s)- (s,T5 - n(s,T)
2 th G 2.s§s ¢® " % |
1 m 1 « o
> 5 {e,(T,8) + izl eq(T,V(C; )} + 5 { ey(s,T) +izleG(s,V(oi)}
~ eG(S,T) -m
- T {Ze(oumu(c) -132 0 (by (1)),
i=1

which is a required contradiction. Consequently, G has a (g,f)-factor.

Proof of Theorem 2. Let k be an odd integer greater than or equal

to three, and let G be a connected 2k-regular graph. If G is 4-edge-
connected and of even order, then G has a k-factor by‘Lemma 4. Hence we
may assume that the edge-connectivity of G is two. Note that the order of
G may.be odd. Choose a cut {e,f} of G (e,feE(G)) so that a component of
G-{e,f} is minimal. If {c,d} isAa cut of H, then {c,d} is not a cut of G
and {e,c,d} is a cut of G, which contradicts the fact that G is eulerian.
Thus H is 3-edge-connected. If H is of even order, then H contains a k-
factor by Lemma 5. Hence we may assume that H is of odd order. Let’{el,ff
-&2,f2}, ee ,{er,fr} be the cuts of G such that a component of Hi of G-
ibi’fi} is a 3-edge-connected. We obtain a {2,2k}-graph G from G by
constracting each Hi to one vertex LA (see Figure). By Lemma 6, G has a
{0,1,k}-factor F such that dg(w,)= O or 1, and dy(x)=k for all xeV(G)\

{Wl""’wr}' Without loss of generality, we may assume that dF(wi)=l
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Wy

for each i, 1<i<t, and dF(Wj)=O for each j, t<j<r. Let WWs e 5 WW

be edges of F, and let u be edges of G such that Vi€V(Hi>

V1o eee s WV

for every i, 1<i<t. For each i, 1<i<t, we can take a {k-1,k}-factor IL(i)

of Hi such that dL(i)(vi)zk_l and dL(i)(X):k for all er(Hi)\vi by Lemma
6. Consequently, we obtain a k-regular subgraph FuL(1l)u ... u L(t).
The theorem follows from the above result and Theorems A and B.
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A list of results related to this paper can be found in the following

survey article.
J. Akiyama and M. Kano, Factors and factorizations of graphs — A survey,

J. of Graph Theory 9 (1985) 1 - 42

On factors of regular graphs, the reader should refer to

M. Kano, Factors of regular graphs, J. Combinatorial Theory (B),to apper.



