0000000000
0 5870 1986 0 Lild)129

On Bouquets of Matroids and Orientations

Michel Deza
Universite Paris VII, C.N.R.S.

Kome i Fukuda¥* »
Department of Information Sciences
Tokyo Institute of Technology

Abstract. The notion of squashed geometries introduced by Deza
and Frankl is a common generalization of matroids and permutation

geometries. We study different axiomatizations for squashed
geometries. Some new classes of squashed geometries, including -
bouquets of graphic matroids, are given. We introduce a notion

of orientability of squashed geometries, which arises naturally
in our examples. Finally, some future research problems are
discussed.

1. Introduction

Let X be a finite set. A family D of subsets of X |is

called a clutter if it is not nested, i.e.,
M1> D, D € D and D # D ==> D & D,
Each memberbof a clutter is called a circuit.

A matroid is a clutter [ satisfying the

elimination property:
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M2 D, D € D, D # D’ and x € DND’

== 3 D" € D such that D" € DUD’\«x.

A typical example of matroid comes from a graph where the clutter
D corresponds to the set of all simple cycles. A more general
examp}e arises from a vector subspaée of a vector space F

over some field F. It is widely known that matroids capture
much of fundamental properties of graphs and vector spaces, and
it is recogniéed that matroid theory provides a fundamental
framework for many branches of combinatorics and optimization.
Furthermore, more recently, the study of "oriented” matroids

(BL, C, FL, F, Ma, Mu), which abstract the sets of directed
cycles in a digraph and vector subspaces over an ordered field,

has enhanced the importance of matroid theory even further.

While matroids offér an ideal setting for many combinatorial
problems, sometimes the second condition (M2) is too strong. For
example, one might want to study certain collection of matroids
or even any clutters, which one often comes across in

combinatorial mathematics. The notion of squashed geometries

or bougquets of matroids, which has been introduced by Deza

and Frankl (DFI) as a commoﬁ generalization of matroids and:
permutation geometries (CD), appears to Be appropriate for such
purposes. (Ackually, (DF1, DF2) consider more specified notion of
f -squashed geometry.) A successful application of squashed
geometry has been reported by Conforti and Laurent (CL) on the

evaluation of the greedy algorithm applied to wsighted
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independent systems.

The present paper is a first attempt to study orientations of

squashed geometries. Ve start with the known circuit axioms of
squashed geometry given in (@1). Then we give different
axiomatizations of squashed geometries. Some new examples of

squashed geometries, including bouquets of graphic matroids, will
be introduced. " The orientability of a squashed geometry comes

rather automatically from the new axiomatizations, and we explain
how this orientation arises in our examples. Finally, some open

problems for future research will be discussed.

The reader is assumed to be familiar with the matroid
theory. An appropriate reference is ((W). For the orientation of.

matroids, see (BL, FL, F, Ma).

2. Circuit Axioms

Let X be a finite set. Suppose that D is a clutter of
subsets of X. In general [) may not satisfy the elimination
property (M2) and thus not a matroid. But the recent work on
squashed geometries by Deza and Frankl ODF1), Laurent (L) has
shown that there is a very natural way to partition a clutter

into a "matroidal” part and a "nonmatroidal” part.

A squashed geometry or bouquet of matroids is a

clutter [ together with its partition D = S U C
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satisfying the following axioms:

(S1O s e 8§, ce€ C, and x € sNC

==> 3 ¢ € C such that €' € SUCN\x ;

(S2) S, S € §, S # S and x € SNS’

==> 3 D &€ [ such that D & SUS’'\«x.

We often denote a squashed geometry simply by the pair (S, C)D.

A member of S is called a stigme, and a member of C is

called a critical set. A matroid can be considered as a
squashed geometry (S=0D, Z)>. Let us associate with C the

clutter

f¢(CY) = {RESC X: R is maximal with respect to

CE R for all C € C 1.

Then we immediately obtain

Proposition 2. 1. Let S, C> be a squashed geometry.

Then for any R € f(C), the restriction of S to the set R
SIR= {Se€ S :5 € R}

is the set of circuits of a matroid.

In fact, we can easily prove (using the axiom (S1>) that the

axiom (S2) can be replaced by slightly weaker conditions

(R2) for any R € {f(C)>, S |R 1is a matroid,
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or more explicitly,

S, S € S, S # S, x € SNS’ and
SUS C R € £(C)

==> 3 5" € § such that S” € SUS’\x

(This fact was observed in (L}).

Let fC(C) = (R Rt). Each member Ri of fC(C)

1
is called a roof and each matroid Si = 8 IRi is called
a flower of the squ.ashed geometry. Since each S is

contained in at least one Ri’ the union of all flowers is S.

Proposition 2. 2. Let (S, C>Y> be a squashed geometry with

the roofs Rl""' Rt' Then for any 1i,Jj, the set. Rij =
RinRj is a closed set in the matroid Si (i.e. a flat of
S i).

Proof. Ve may assume i # j. Suppose Rij is not closed in

Si' This implies that there exists x € Rj\Ri and S €

Si such that S\ x C Rij' Since R, is maximal with
respect to the property C & Ri for all C € (C, thére
exists some critical set C € C with x € C &€ R,Ux. Using
the elimination property (S1) vfof S, C and x, we obtain C’
€ C with C* € SUC\«x C Ri' This contradicts Ri €

1CCH. O

There is a way to define squashed geometry without using

critical sets. For this purpose we need some definition. For
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any family R of subsets of X, we associate the clutter

g(RY = {CC X: C is minimal with respect to

CE R for all R € R ).

The next proposition says that this function g 1is the inverse

of the function f defined before.

Proposition 2.3. For any clutter C of subsets of X,

C = gUfCHY) = £g(CH.
Proof. The proof is left for the reader. O

The above proposition shows that the set of critical sets cén be
replaced by the set of roofs for defining a squashed geometry.
Here is one definition of such kind.

Theorem 2.4. Let S and R = (R Ryyevss Rt} be

1772
clutters of subsets of a finite set X, and let C = g(R).

Then the pair (8, C) is a squashed geometry iff the following
conditions ((R1)>, (R2) and (R3) hold:
(R1) S € § == 3j such that S € I?i;

(R2) 8§ IRi is a matroid for each i;

(R3I RifﬁRj is closed in S lRi for any i, j.

Proof. The necessity is clear from Proposition 2.1 and 2.2.
We will prove the sufficiency. Suppose the conditions (®R1), (R2)

and (R3) are satisfied.
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Claim 1. D = SUC is a clutter.
Suppose [) is not a clutter. Since both S and C are
clutters'and SNC = & by (R1), we have either S & C or C
C S for some S € 8 -and some C € (C. However, C & S
cannot hold because of (R1) and the definition of C. So we
must have S & C. Without loss of generality, we ¢an assume S
- Rl' Take any x € S. Since x € C € ‘C, there is some
set in R, say Ry, such that x ¢ R, and S\x & C\x €
R2. This implies that S\ x € R1”R2' contradicting
R;NR, being closed in the matroid S| R,

Remark that the axiom (82) is clearly satisfied b‘y D. To
complete the proof we must show
Claim 2. The axiom (S1) holds for D.
Suppose the contrary: there exist some S € S, C € (C and X €
SNC and some Ri such that SUCN\x € Ri' By (R1)>, there is
Rj # R, with S €& Rj‘ Since SUC\x € RjnRj and S
e S| Rj’ RinRj is not a closed set in S IRj. VThis

contradicts the assumption (R3). 0

Using Theorem 2.4, we can define a squashed geometry as

a special collection of matroids.

1 R2”"’ Rt} be a clutter

of subsets of a finite set X, and let Si be a matroid on

Corollary 2.5. Let R = (R

Ri for each i. Let S=SIU32U"’USt and C =

g(R)>. Then the pair (8, C) is a squashed geometry with

the flowers Sl’ 32,..., St iff
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(BD SiIRj = Slei for any i,3i;
(B2 RinRj is closed in Si for any i, J.

Proof. Suppose the pair (8, C) is a squashed geometry with

the flowers Sl’ 32,.... St'

Si = S | Ri for each i. This implies that SiIRj =

Then we can easily verify that

S | (RiﬂRj) for any i,Jj, and hence (B1) follows. This
together with (R3) immediately yields (B2). Conversely, suppose
the conditions (B1l) and (B2) are satisfied. Note that (R1) is
clearly satisfied. Using (B1), we have S IRi =
U(Sle_i:J=l,...,t}=U(Si|Rj:J=1,...,t)=Si.
Since Si is a matroid, and by (B2), we know that (R2) and
(R3) also hold. Hence, by Theorem 2.4, (S, C> is a squashed
geometry with the flowers Sl’ 82,..., St. [m]

At the end of this section, we mention some interesting

result given in (CL). Let D be a clutter of subsets of X.

A subset I of X is called independent if it does not

contain any circu'it of D. Now consider the set of all
possible pairs (8, C) of partitions D = SUC yielding a

squashed geometry. It was shown that this set forms a semi-
lattice in which (8, C> < (¢8°’, C’> if S ¢ S°.
Trivially, the leavst element in this semi—-lattice is (&, D).
If it is a lattice then the greatest element (é, é) is |

given by
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3¢’ € D such that CNC’\x

P
I
O
m
O

is independent in D 1},

‘For instance, it is a lattice if D is the set of edges of a

graph.

3. Examples of Squashed Geometries

Example 3.1. - Squashed Geometry induced from a Matroid

Let M be a matroid on a finite set X, and let R = {Rl'
R2,..., Rt} be a clutter of subsets of X such that for any

i and j, Ririj is closed in M. Then, setting

S; = MIR,
§ =8,U8,U...US8,
C = f(R),

the ‘pair. (8§, C)> is a squashed geometry. We say that the

squashed geometry (S, C) is induced from the matroid S by

the clutter R. A squashed matroid obtained this way is called

a matroidal squashed geometry. We can consider the natural
special case of the above in which each Ri is chosen to be a

flat of S. In this case, RiF1Rj is auiomatically closed

in §. Such a squashed geometry is called strongly matroidal.
There are various important classes of matroids, such as

graphic, binary, representable (over certain field)

matroids. Accordingly matroidal squashed geometries can be

classified as follows.
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Example 3.1.1. Graphic Squashed Geometry

Consider M to be the polygon (cycle) matroid of a graph

G with the edge set X. Let R = {Rl, R2V.:, Rt} be a

clutter of subsets of edges such that for any i, there is no

cycle S and an edge in -S such that S\ x € I?ij and S €
Rij' A graphic squashed geometry is a matroidal squashed

geometry obtained this way.

Fig. 3.1 shows an example of graphic squashed geometry on the

edge set X = (ai,bi,ci,di,ei: i=1,2,3}). Here the clutter

is given by

R1 = {all egdes of subscript 1 and a2,b2,02}
R2 = {all egdes of subscript 2 and a3,b3.03}
R3 =.{all egdesrof subscript 3 and al,bl,cl}.

Thus, for instance, R12 = {a2,b2,02}{

Sl = { {al,bl,cl}, {a2,b

{a

2,c2}, {al,dl,cz,el,cl},

1’d1’a2’b2’el’c1}’ {b dl,cz,el}, H)l,dl,az,bz,el}

1’

Fig. 3.1

Example 3.1.2. Reﬁresentable Squashed Geometry

/°
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Let F be a field, let m be a positive integer, and let
X be a finite subset of F'. Let M be the mafroid on X
determined by linear (affine) dependency over F, i.e., S € §
iff S is a’minimal linearly (affinely) dependent subset of. X.

A squashed geometry arising this way is called representable over

F.
Fig. 3.2 describes an example of a representable squashed
geometry on {pl,pz,...,p7}, a set of 7 points in R3

determined by affine dependency. Let us denote P, by

i for simplicity. In this example, there are two roofs
él = {1,2,3,4,5} and R2 = {1,2,3,6,7},

and
S 1= ({1,2,3), {3,4,5), (1,2,4,5}}

32= ({1,2,3, {2,6,7}, {1,3,6,7}}.

Note that R1r1R2 = {1,2,3) is a common flat of § ! and S:?

3.2

Example 3. 2. Bouquets of Particular Matroids

7/
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Let R = {Rl, R2""’ Rt) be a clutter of subsets of a
finite set X, and let S i be é matroid on Ri for each i
such that § = 81US2U"' U St is a squashed union of

matroids (recall Corollary 2.5). One fundamental question is the

following:

Question 3.2.1. Can a bouquet of matroids in one class

(e.g., graphic) be induced from a matroid in the same class?

In some cases one can easily see that the answer is no.

Proposition 3. 2. 2. There is a bouquet of graphic matroids

that cannot be induced from any graphic matroid.

Proof. Consider the bouquet of the four graphic matroids

Sl = {el,ez,eB), 32 = {e3,e4,85}, 83 = {el,es,es}

andS4 = {e3,e6,e7}, each corresponding to the triangle graph.
Then %t is routine to check that there is no graph with 7 egdes

.e.} inducing this squashed geometry.

{el,ez,... 7

Fig. 3.3

Proposition 3.2. 3. There is a bouquet of matroids

representable over some field that cannot be induced by any

/2
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matroid representable over some field.

lProof. An example.can be constructed using exactly the same way
as Lazarson’s construction of infinite class of non—representable
matroids (Laz). Namely, take a bouquet of two matroids, one
being representable only over fields of chéracteristic p and
the other being representable only over fields of characteristic
p’ # bp. Such a squashed geometry cannot be induced by any

representable matroid.

4. Orientations of Squashed Geometries

Let X be a finite set. A signed set (on X) is a pair

+ - +

S=(S', S ) of disjoint subsets S and S of X. The
- +

negative —-S o0f S is the signed set (S, S >. The

support S of S is sTUS™. For a set O of

signed sets, ( denotes the underlying set (S : S € O }.

For a family S of subsets of X, a family O of signed

sets is called an orjentation of S if the following

conditions are satisfied:

o Q9 =S;
(02> S € 0 ==> -5 € 0;
©3 S, S € O and S E 8 ==> S=+ §;

where S = xS’ means either S =S’ or S = -5’.

An oriented matroid Q is a family of signed sets on

~
W,
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X satisfying the following axioms:

(OM1> S € 0 ==> -S € 0;

(OM2) S, 8 € 0 and S € 8 ==> S ==+ S';

OM3) S, S’ € 0 and x € (S NS’ HUEG NS D
=> 3 T e O such that

5 ¢ S+US’+\x and T € S US’ \x

We call each .member of (O a circuit. The set Q  is a

matroid called the underlying matroid of Q.

A digraph G yields an oriented matroid in the following
way. For any (simple) cycle of G, fix any edge e in the
cycle, and let S+(S—) be the set of edges in the cycle having
the .same (opposite) direction as - e. Let 9] be the set of all
such signed sets (S+, SH and their negatives. The resulting

set O is an oriented matroid.

A squashed geometry (S, C)> is called orientable if

there is an orientation (Q of the set S of stigmes such that
for any R € f(C>, OIR = (S € Q0 : S S R} is an
oriented matroid. The squashed geometry (S, C) together with
the orientation’ 0 is called an oriented squashed geometry.

wWe will be-simply denoted it by (Q, C). Each oriented matroid

OIlR, R € f() 1is called a flower.
Using the equivalent definitions of squashed geometries,

Theorem 2.4 and Corollary 2.5, we obtain the different

axiomatizations of oriented squashed geometries as follows.

4
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Axioms 4. 1. Let O be a family of signed vectors on X

and let R be a clutter of subsets of X. O and R is

respectively the orientation and the set of roofs of an oriented

squashed geometry if

(ORD S € Q = 3i such that S © R

S i;
(OR2) 0 lRi is an oriented . matroid for each i;
(OR3) S€ 0, x €S and S\x & R;NR,
==> S € R.NR,
1 J

(i.e., Rir]Rj is closed in O IRi for any i, 1.

Axioms 4.2. Let R = (R R2,,.., Rt) be a clutter

of subsets of X, and let O i be an oriented matroid on Ri
for each i. Let O = OIUO2U"'UOt' O and R s
respectively the orientation and the set of roofs of an oriented

squashed geometry if

(OB1) Oi |Rj = Oj ]Ri for any i, i

(0B2) S € Oi’ x € S and S\ x & RiﬂRj
==> S C R.NR,
1 J

(i.e., RiFWRj is closed in O i for any i, 3).
The equivalence of the axiomatizations 4.1 and 4.2 can be easily

proved. From 4.1 to 4.2, we simply set O { = 0 IRi' The

reverse direction can be shown by checking O i = O IRi.

5. Examples of Orientable Squashed Geometries

We can easily verify the following:

/5



Proposition 5.1, Every graphic squashed geometry is orientable.

Proof. Let G be a graph inducing the squashed geometry.
It is clear that any orientation of edges induces an orientation

we need. ]

Proposition 5.2. Every squashed geometry representable

over an ordered field is orientable.

One natural question arises.

Question 5. 8. Is a squashed geometry (S, C) orientable if
all the flowers S IRi’ R € f(C) are graphic

(or representable over an ordered field) ?

We conjecture that there is a non-orientable squashed
geometry whose flowers are graphic. In such an example, if it
exists, there must be enough flowers being "tight” together in
order to restrict possible orientations pf each other. It seems
rather difficult.to find ah example of non—-orientable squashgd
geometry whose flowers are orientable but non—graphic, because
non—graphic ofiented matroids tend to have many different
drientafions (while éraphic oriented mafroids have unique
orientatioﬁs up to certain trivial transformations, see (BL)).
If the answer to Question 5;3 is yes, then one may be able to go

even further.

/6
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Question 5.4. Is a squashed geometry (S, C) orientable if

all the flowers S lRi, Ri € f(C) are orientable?

6. Some Operations on Squashed Geometries

Let (S, C> be a squashed geometry with roofs R = {Rl’
R2,..., Rt). Instead of considering the set of circuits of each
flower Si = S lRi’ let us take the set Fi of all

flats of the matroid S ; for i=1,...,t, and let F be the
union of all Fi’s. Clearly, F is closed under taking
intersections of any elements. Therefore F forms a meet
semi—lattice ordered by inclusion, whose maximal intervals

F IRj are (the sets of flats of) matroids. In fact‘

these two properties define a squashed geometry, see (DF1),

mwm, .

Many operations on the set of all squashed geometries were
considered in ((DOF1,DF2, DL). We present here large class of

operations coming from following notion of elementary cut —

removing of exactly one roof. This operation of removing some
Ri creates a‘new squashed geomet(y whose roofs are ‘R‘\Ri
together with hyperplanes of § i not contained in any of other
roofs. Let us call cut any sequence of elementary cuts and

call P -cut any cut satisfying to given property P. Ve

obtain poset, denoted by (P3, of squashed geometries, where G
< G* means that G <can be obtained from G’ by }7—cut‘> Call

P —enlargement inverse operation (if possible) to P —cut.

77

bR
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The problem will be to find maximal and minimal
elements of the poset (P) as, in local form, the maximal
and minimal elements compatible (by <) with a given

squashed geometry G.
Examples of interesting P —cut are:

a)- Uniform cut — removing of all roofs.

It coincides with elementary cut iff the squashed geometry

is a matroid. The partial order < become linear, G = (&) is
the smallest element so the problem is to find largest uniform

enlargements of given G.

b> j—unfolding — removing of roof Ro such that
R € ((R. UR., U...UR. D for some fixed j.
o i, i, lj
For any given G, the maximal element G’ (compatible by <

with G) will have property: no roof belongs to a union of j

other roofs.

7. Final Remarks

At the end of this note, we list up some open problems of

interest.

a) How to define a dual of a squashed geometry in méaningful way?

/?
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b) For roof Si' in a squashed geometry, let Ti be its

dual matroid. Since the set T'i of co—stigmes has

exactly the same information as S j0 we must be able to define
squashed geometrjes by using co—stigmes and something else Ce. g.

critical sets, roofs,...)D. Find simple axioms.

c) Single—element extensions (Lv, Ma)l, perturbations and
surgeries (F, Ma) have been studied for oriented matroids. These
operations should be generalized to squashed geometries. What

conditions do we need to perform these operations?
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