The statement AN is equivalent to the statement $n(\beta \omega \setminus \omega) > c$

Shizuo Kamo (Univ. of Osaka Prefecture)

1. Introduction and results. A filter \mathcal{F} on ω is said to be ample, if there is an infinite subset a of ω such that, whenever $x \in \mathcal{F}$, a x is finite. A filter \mathcal{F} on ω is said to be weakly ample, if for each free ultrafilter (uf) \mathcal{U} on ω , there is a function f on ω such that $f(\mathcal{U}) \supset \mathcal{F}$. Let us denote by AN the statement: "every free weakly ample filter on ω is ample." In [2], we showed

PROPOSITION 1.

- (i) AN implies the existence of c^{+} Ramsey ufs on ω , where c denotes the cardinality of 2^{ω} .
 - (ii) The existence of c^{\dagger} Ramsey ufs on ω does not imply AN.
- (iii) $\widehat{\mathbb{P}}$ implies AN, where $\widehat{\mathbb{P}}$ denotes the statement: "every free filter on ω generated by a set cardinality less than c is ample."

It seems to be interesting to consider how strong the statement AN is. As to this, we first show

THEOREM 1. AN is equivalent to the statement that $\beta \, \omega \setminus \omega$ can not be covered by a family of c nowhere dense sets, where $\beta \omega$ denotes the Čech-Stone compactification of ω .

Let us denote by $n(\beta \omega \backslash \omega)$ the Baire number of $\beta \omega \backslash \omega$ (i.e. the minimal cardinal of a family of nowhere dense sets covering $\beta \omega \backslash \omega$). As to the Baire number of $\beta \omega \backslash \omega$, the systematical estimation was given and several consistencies were shown in [1]. In [1], it is shown

PROPOSITION 2 (5.2.V in [1]) The statement $n(\beta \omega \setminus \omega) > c$ does not imply that $\forall \kappa < c \ (|2^{\kappa}| \le c)$.

Since \mathbb{P} implies that $\forall \kappa < c \ (|2^{\kappa}| \le c) \ ([3])$, by Theorem 1 and Proposition 2, AN does not imply \mathbb{P} .

Define the pseudo-ordering $<^*$ on ω^ω by $f<^*$ g iff $\lim_{n\to\infty} (g(n)-f(n))=\infty. \quad \text{A family F of subsets of } \omega^\omega \text{ is said to be unbounded, if there does not exist } g\in\omega^\omega \text{ such that,}$ whenever $f\in F$, $f<^*$ g. Then, it holds

PROPOSITION 3 (4.6 and 4.7 in [1])

(ii) (D) does not imply that $n(\beta w \setminus w) > c$.

- (i) The statement $n(\beta\omega\backslash\omega)>c$ implies the statement $\mathbb D$: "every unbounded family of subsets of ω^ω has the cardinality c."
 - By Propositions $1 \sim 3$ and Theorem 1, the following diagram holds.

$$\begin{array}{c}
\mathbb{P} \\
\downarrow \uparrow \\
\text{AN} & \longrightarrow \forall \, \kappa \langle c \, (\, | 2^{\kappa} | \leq c \,)
\end{array}$$

$$\exists \, c^{\dagger} \text{ Ramsey ufs on}$$

The only interesting in the above diagram which is not mentioned is whether AN + $\forall \kappa < c \ (|2^{\kappa}| \le c)$ implies P or not. As to this, we show

THEOREM 2. AN + $\forall \kappa < c \ (|2^{\kappa}| \le c)$ does not imply \mathbb{P} .

We shall prove Theorem 1 in the following section and Theorem 2 in section 3.

$$D_{f} = \{ \mathcal{U} \in \beta w \setminus w ; f(\mathcal{U}) \supset \mathcal{F}_{f} \}.$$

$$\bigcup \{ D_f : f \in \omega^{\omega} \} = \beta \omega \setminus \omega.$$

So, there is some $f\in\omega^\omega$ such that D_f is not nowhere dense in $\beta\omega\backslash\omega$. Take an infinite subset a_0 of ω such that

$$(*) \qquad \forall \ x \subset a_0 \ (\ |x| = \omega \ \Rightarrow \exists \ \mathcal{U} \in D_f \ (\ x \in \mathcal{U} \) \).$$

Set $a_1 = f''a_0$. Then, by (*), it holds that a_1 is infinite and $\forall x \in \mathcal{F}_1$ ($a_1 \setminus x$ is finite). Hence, \mathcal{F}_7 is ample.

Now, we shall prove that the inverse implication holds. The following fact which we shall use in the proof is well-known and easy.

FACT 1. There is a family W of subsets of ω such that

- $(1) \quad |W| = c,$
- $(2) \quad \forall x \in W \ (|x| = \omega),$
- (3) $\forall x, y \in W (x \neq y \Rightarrow x \land y \text{ is finite}).$

Assume that AN holds. Let $Q = \{D_{\alpha}; \alpha < c\}$ be any family of nowhere dense subsets of $\beta \omega \backslash \omega$. Let $\langle a_{\alpha} \mid \alpha < c \rangle$ be a monotone enumeration of a family W of subsets of ω which satisfies (1) \sim (3) in Fact 1. For each $\alpha < c$, take $f_{\alpha} \in \omega^{\omega}$ such that $f_{\alpha} : \omega \longrightarrow a_{\alpha}$ one-to-one and onto. Define the filter \mathcal{F}_{α} on ω by

 $x \in \mathcal{F} \quad \text{iff} \quad \forall \, \alpha < c \, \forall \, \mathcal{U} \in \, \mathbb{D}_{\alpha} \, \left(\, \, x \in f_{\alpha}(\, \mathcal{U}) \, \right).$ Then, it is easy to see that \mathcal{F} is free and not ample. So, by AN, there is $\, \mathcal{U} \in \beta w \backslash w \,$ such that

 $\forall \ g \in w^{\mathbf{w}} \ (\ g(\mathcal{U}) \not\supset \mathcal{F}_{1} \).$ Then, it holds that, for any $\alpha < c$, $\mathcal{U} \notin \mathbb{D}_{\alpha}$, since $f_{\alpha}(\mathcal{U}) \not\supset \mathcal{F}_{1}$. Hence, $\mathcal{U} \notin \mathbb{U} \otimes \mathbb{Q}$.

3. Proof of Theorem 2. Let \mathcal{M} be a countable transitive model of ZFC + GCH. We shall show that a generic extension of \mathcal{M} on the poset P×Q which will be defined below satisfies that AN + \forall K < c ($|2^K|$ < c) + \neg P. The poset P×Q is alike the poset used in 5.V of [1]. Let P be the Solovey-Tennenbaum's poset used for the consistency of MA + $|2^{\omega}|$ = ω_2 . Define the poset Q \in \mathcal{M} by, in \mathcal{M} ,

Q = { q ; $\exists \alpha < \omega_1$ (q : $\alpha \rightarrow 2$) }.

Let $G \times H$ be M-generic on $P \times Q$ and $\widehat{m} = M[G \times H]$. Then, similar arguments in [1] show that

$$\widetilde{m} \models " | 2^{\omega} | = | 2^{\omega_1} | = \omega_2 + AN ".$$

We shall show that $\widetilde{m} \models \neg \, \mathbb{P}$. Since CH holds in m, it holds that, in m, there is a dence embedding from \mathbb{Q} to $\mathbb{P}(\omega)$ /finite.

So, we may assume that H is M-generic on $(P(\omega)/\text{finite})^m$. Define $\Re \in \widetilde{\mathcal{M}}$ by

 $\widehat{m} \models \text{"} \ \Im = \{ \ x < \omega \ ; \ \exists \ a/\text{finite} \in \text{H (a x is finite)} \}. \text{"}$ Since $\widehat{m} \models \text{"} \ |\text{H}| = \omega_1$ ", it holds that

 $\widetilde{m} \models$ " \mathcal{F}_1 is an ω_1 -generated free filter on ω ." Moreover, since H is not in M[G], we have that

 \widehat{m} \models " \mathcal{F}_{r} is not ample. "

Hence, $\widetilde{m} \models \neg \mathbb{P}$.

References

- [1] Balcar, B., Pelant, J. and Simon, P., The space of ultrefilters on N covered by nowhere dense sets, Fund. Math. 110 (1980), pp. 11-24.
- [2] Kamo, S., Some statement which implies the existence of Ramsey ufs on ω , J. Math. Soc. Japan, 35, No. 2 (1983), pp. 331-343.
- [3] Rothberger, F., On some problems of Hausdorff and Sierpiński, Fund. Math.. 35 (1948), pp.109-126.