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THREE THEOREMS ON THE COMPUTABILITY
OF LINEAR OPERATORS

THETR EIGENVALUES AND EIGENVECTORS
by

Marian Boykan Pour-El and Tan Richards

In this paper, three questions are considered. Associated with each, a
theorem is presented. Let us begin by discussing the first question. Which
processes in analysis and physics preservé computability and which do not?

In order to answer this questioh, we need a definition of "computable
function of a real variable". Imckily, Grzegorczyk and Lacombe have provided
this (cf. [3], [4], [6]). The following is equivalent to the classical
Grzegorczyk-Lacombe definitions [11].

Definition 1. ILet a and b be recursive reals. Then o(x) is a

recursive function of a real variable on [a,b] if there exist five recur=

sive functions b,c,s,d,h such that
d(n)
1

o) -y (-1t Bl ) < L
j=0

if n > h(k) .

Note that the above definition is really an effective version of the
well-known Welerstrass approximation theorem. It states that there exists a
recursively enumerable sequence of polynomials which converges recursively

w0
to @(x) . The convergence is in the uniform or I norm. For our purposes
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it will be useful to view the definition in a slightly different way. Con;
sider the sequence of monomials l,x,xg,... . Consider further the linear
span of the monomials over the rationals--i.e., finite linear combinations
of the monomials with rational coefficients. The computable functions are
precisely those functions which are in the effective closure of the (Linear
span of the) monomials in L°° norm. The monomlals provide an example of

an effective generating set. We shall have more to say about this concept

later.

Definition 1 may be extended to computable sequences ﬂpm} in an

obvious way.

We now turn to Theorem I. It delineates precisely between those linear
operators which preserve computability and those which do not. 1In order to
obtain a variety of applications to physics and analysis, we present this
theorem in a very general form in terms of a "computability structure" on a
Banach space. Note that we do not define a computable Banach space. We
reason about Banach space theory classically--much as physicists and analysts
do. We merely put a computability structure on it. This is done axiomati-
cally. The precise concept axiomatized is "computable sequence of points"
of the Banach space.

Iet us assume for the moment that we have defined the concept "Banach
space with a computability structure". In order to state Theorem I, we need

the following definition.

Definition 2. Iet X be a Banach space with a computability structure.

Then X is effectively separable if there is a computable sequence {ei}
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whose linear span is dense in X . Such an {ei} is .called an effective

generating set.

Note. In a previous papef [15] we assumed that the effective generating
set was not merely dense, but "effectively dense". vWe have since learned
that this assumption is redundant.

And now for Theorem I. As is usual in functional analysis, a linear
operator T: X ? Y is only assumed to be defined on a dense subset of X .
Roughly Theorem I states that, under éome very mild conditions which are
always satisfied in practical situations, a linear operator preserves com-

putability if and only if it is bounded (cf. [15]). More precisely

Theorem I. Let X and Y be Banach spaces with computability strucs

tures, and let {en} be an effective generating set for X . Let T:X = Y

be a closed linear operator whose domain includes {en} and such that {Ten}

is a computable sequence of Y . Then T maps every computable element of

its domain into a computable element if and only if T is bounded.

The Computability Structure

We now turn to a description of a computability structure. As stated
above, this structure is defined axiomatically. The undefined notion is

computable sequence {xn} of points of the Banach space. A point x is

computable if the sequence xX,X,X,...,X... 1is computable. A double sequence
{Xnk} is computable if its elements can be arranged in a computable sequence

{ym} by one of the usual pairing functions.



In order to give the axioms, we need the following simple definition.

Definition 3. The double sequence {Xnk} converges to the sequence

{xn} as k?o effectively in k and n if there exists a recursive func-

tion e such that

x|l < L

Il
N

nk

for all k > e(n,N) .

In our published papers, five axioms are given. We have since found
that these five can be replaced by three--one axiom for each of the basic
concepts of Banach space theory (1inearity, 1limit and norm).

Axiom 1 (Linear Forms). ILet {xn} and {yn} be computable sequences
in X, let ﬂxnk}b and. {Bnk} be computable double sequences of real or
complex numbers, and let d: IN*IN be a recursive function. Then the

sequence
d(n)

e Z (G 2 + P V)
k=0

is computable in X .

Axiom 2 (ILimit). Tet {xnk} be a computable double sequence in X
such that {Xnk} converges to {xn} as k?o , effectively in k and n .
Then {Xn} is a computable sequence in X .

Axiom 3 (Norm). If {xn} is a comﬁutable sequence in X , then the |
norms {HXnH} form a computable sequence of reals.

It is clear that these axioms are "minimal" (i.e., they are just

sufficient to cover the three basic notions of Banach space theory --
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linearity, limit and norm). Recently we have found that these axioms are in
a sense "maximal". Namely, for effectively separable spaces, they determine

the computability structure uniquely. More precisely

Stability Lemma. Let {en} be a sequence whose linear span is dense

in the Banach space X . ILet 8' and 8" be computability structures on

X such that {en} €S  and {en} €8" ., Then 8' = 8"

Thus it is not possible to add axioms to an effectively separable Banach

space to obtain a more intuitive notion of computability.

Examples of Computability Structures

An obvious example is given by definition 1, and its extension to
computable sequences ﬁgm} . The space is Cla,b] with the Lw (i.e.,
unifdrm) norm. More generally we consider Lp—computability for p, a
recursive real with p > 1 . We need this definition because so much of the
work in theoretical physics and analysis is éoncerned with the properties of
Lp spaces and of linear operators on these gspaces.

In order to present the definition of Lp-computability let us return
for a moment to Definition 1, the classical definition of a recursive func-
tion of a real variable. This was defined as the effective closure of the
(linear span of the) monomials l,x,xg,... in the I norm. Now the L
norm is more stringent than the P norm for p < » . Thus one possible
definition for Lp computability for p < « 1is to take the effective
closure (of the span) of l,x,xg... in the I? norm. Call this class

Compp[a,b] .
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There are several other equivalent definitions. Suppose, for examplé,
the approach is via measure and integration. It is natural to consider
"computable step functions"--e.g. those with rational values and Jjump points.
Now take the effeétive closure of these Punctions under the I¥ norm. We
get the same class, Compp[a,b] . Suppose, instead, one is dealing with
Fourier series. -Then it is natural to ﬁake the effective closure of the
"trigonometric polynomials" in the ¥ norm. Again we obtain the class
Compp[a,b] . In general, if ﬁe take the effective closure of the span of any
effective generating set under the Lp norm, we obtain Compp[a,b] . This
is the same class of functions as can be obtained by taking the effective
closure of all "definition 1 - computable" functions in I? norm. wote
that if we apply these procedures in the case that p = « we get back what
we started with--the "definition 1 - computable" functions. However some
care must be exercised. A moment's thought will convince the reader that
Cla,b] 1is the only space where there are no computable step functions.

The above definitions may be extended to IP(R) , Ip[g,g] , IP(®RY) -
where {;,g] - is the n-dimensional rectangle with recursive coordinates
(ai,bi) . More generally they may be extended to any Banach space in which

the polynomials are dense.

Applications of Theorem I

In practical situations the hypothesis of this theorem is always satis-
fied. Thus to determine whether computability is preserved, we merely deter-

mine whether or not the operator is of bounded norm. We have found 1t



necessary to use a variety of Banach space norms, sometimes even considering
several different norms in connection with the same problem.

Iet us first consider the wave equation. We note that the Kirchhoff
solution operator is unbounded in the uniform norm.’ Hence computability
in the sense of definition 1 is not preserved. Thus there exists an example
of the wave equation with computable initial data, such that the unique solu-
tion, although conﬁinuous, is not computable. This specific result was
obtained directly by the authors in a previous paper [13]. On the other
hand, if we use a norm which is better adapted to the wave equation--the
so-called "“energy norm'--then computabiliﬁy is preserved.

By contrast, the solution operator forlthe heat equation is bounded in
uniform norm. Hence computability in the sense of definition 1 is preserved.
A similar result is obtained for Laplace's equation on regions of suitable
shape. These two results also hold if "definition 1 - computability" is
replaced by Lp-u-computability for p % ®

In the case of Fourier series and transforms, we know précisely for
which values of p and r the mappings from IF (or Py to ¥ (or 4F)
are bounded. Hence we know precisely for which p and r computability is
preserved. We note that for some p and r , computability is preserved;
for others it is not.

Tven trivial operators yield information. Since integration is a -
bounded. operator, the integral of a computable function of a real variable
is computable in the sense of definition 1. Since differentiation is not a

bounded operator, we obtain an example of a "definition 1 - computable"



function whose derivative, although continuous, is not computable. This
last result was obtained by Myhill in 1971, [9]. Even the identity operator
provides information. For, applying the identity operator I: P (or 2P )
Lr (or r ) , We obtain a complete description of the relation between Lp
(or ‘E;P ) computability and I (or &r) computability. For example, P
and I' cémputability are different if p ;! ‘r . Similarly for 4P ana 2% .

We now turn to Theorem ITI. It is associated with the following ques-
tion. Determine the "computability relationships" between an operator and
its eigenvalues in a general setting.

Theorem II also uses the notion of a computability structure--this time
on a Hilbert space. 1In order to present this theorem we need the definition
of an "effectively determined" operator. This involves an extension of the

notion of effective generating set given earlier.

Definition L. Iet X and Y be Banach spaces with computa‘bility

structures, and let T: X?Y be a (bounded or unbounded) closed linear

operator. Then T is effectively determined if there is an effective

generating set for the graph of T .

(More precisely, this means that there is a computable sequence {en}
in X such that {Ten} is computable in Y , and the set of pairs (en,Ten)
spans a dense linear subspace of the graph of T --i.e. a dense subspace of
{(x,y): y=Tx} in X XY ).

It is easy to check that the standard operators of analysis and. physics
are effectively determined. We now answer the question about eigenvalues/

spectrum which was posed above (cf. [16]).
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Theorem II. Iet H be a Hilbert space with a computability structure.

Iet T: H?*H Dbe an effectively determined (bounded or unbounded) self-

adjoint operator. Then there exists a computable sequencé'of’real numbers

{An} and a recursively enumefable set of integers A such that:

(a) The set of eigenvalues of T coincides with {kn: n€W-A} . In

particular, each eigenvalue is computable.

(b) Each A_ € spectrum (T) , and the spectrum of T coincides with
n e ]

the closure of {kn} in R .

(c) Conversely, for any sequence {Kn} and set A as in (a) above,

there exists an effectively determined ,self-adjoint operator T whose set

of eigenvalues is {Kn:~n E]H—.A} .  Likewise for (b), the closure of any

computable real sequence {kn} occurs as the spectrum of an effectively

determined self-adjoint operator.

Note that in (b) and (c) above the spectrum of T is not the effective
closure of {ln} 5 it is merely the closure of this set.

For operators which are compact--e.g. integral operators of the form
b
T(£)(x) = I K(x,y) - £f(y)dy with continuous kernel K --we have the following
a
stronger result.

Corollary. Let T: H?H be compact, self-adjoint, and effectively

determined. Then the eigenvalues of T form a computable sequence of real

numbers.
(Thus the set A in part (a) above can be taken to be empty. )
In_general; the behavior of eigenvalues can be highly discontinuous.

Thus arbitrarily small perturbations of a self-adjoint operator can cause an

9



158

eigenvalue to disappear while new eigenvalues in'quite different locations‘
are being. suddenly created. Examples of this behavior, involving bounded
effectively determined operators, are given in [16]. Such discontinuities
frequently indicate noncomputability. Nevertheless the eigenvalues are
computable.

Theorem II can be generalized to the case of bounded normal operators.
However, for operators which are not normal, our results fail-- as the follow-
ing example shows. (For details see [16].)

Example. There exists an effectively determined, bounded (but not

normal) operator T: H?H which has a noncomputable eigenvalue.

For the sake of brevity, we do not include any specific applications
of Theorem IT. Wewrecall the two hypotheses of this theorem: that the
operator be gelf-adjoint and effectively determined. In physics and classi-
cal analysis one knows which operators are self-adjoint. In addi%ion, in
practice, it 'is easy to verify that an operator is effectively determined.
All one needs is a dense sequence of very smooth functions, suitably adjusted
to the boundary conditions, on which the operator acts effectively. Note
that the operators of nonrelativistic quantum mechanics are self-adjoint and
effectively determined. These and other well known operators have been
studied intensively. |

Tt should be remarked that the proof of Theorem IT gives an algorithm

for computing the kn

We turn now to Theorem ITT. It answers a question concerning the com-
putability of eigenvectors. Theorem IIT has not yet appeared in any
published paper.

10
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Theorem IIT. Let H = L2[O,l] with the natural Lg-computability struc-

ture described above under Examples of Computability Structures. There

exists an effectively determined, compact, self-adjoint operator T: H-H

with the following properties

(1) The number A = 0 is an eigenvalue of T of multiplicity one

(i.e. the space of eigenvectors corresponding to A = O is one dimensional).

(2) None of the eigenvectors corresponding to A = O is computable.

Open Problems

Open problems abound. ILet us mentioh four areas.

Recall that the reasoning in this paper i1s blatantly classical. What
are the constructive analogs--for various notions of constructivity--of
these results?

For our second area we recall that the original formulation of defini-
tion 1 was given in terms of Kleene functionals on functions from non-
negative integers into themselves. Many equivalent definitions--more
amenable to work in analysis--were then given. As we have seen, the defini-
tion of Lp—computability is a generalization of definition 1, and the
concept of a computability structure is even more general. DPerhaps it is
time to go back and investigafe the relaﬁion of work in this paper to func-
tionals of higher type, E-recursion theory, as well as various éspects of
descriptive set theory, etc. (see, for example, [8] and [10]-including the
bibliographies ).

A.third area arises naturally by considering our proofs~-~-see also

1l
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[12, 13, 14, 15, 16]. As expected these proofs make use of recursively
enumerable nonrecursive sets and recursively inseparable pairs of sets. In
fact, for most of the results, any recursively enumerable nonrecursive set--
of any degree of unsolvability--will do. These results can most certainly
be refined by combining techniques (including priority arguments) and resultg
from degrees of unsolvability with our results.

A fourth area is concerned with more restricted classes of computa-
bility. The work in this paper is based on the general notion of recursivq/
partial recursive function. It is of interest to investigate this work from
the viewpoint of polynomial time/polynomial space computability [1], [5],
Grzegorczyk's hierarchy of primitive recursive functions [2], the Ldb-Wainer

hierarchy [7], etc.
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