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Hyper-principle and the functional

structure of ordinal diagrams
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The theory of ordinal diagrams (which will simply be called
the diagrams) has been developed over the years, and has been
applied to consistency proofs of subsystems of analysis. ' The
importance of the accessibility proof of the diagrams has been
discussed in various literatures (see [1 1], [3 ], [5]), and hence
let us confine ourselves to a brief remark on this matter. The
essence of the diagrams can be characterized by its functional
structure; that is, by determining the universe of the function-
‘als which produce '"moduli of finiteness'" for various decreasing
sequences of the diagrams.

I have recently reached a "concrete'" version of the acces-
sibility proof; the rough idea of this approach is to be explain-
ed subsequently.‘ (See [51~17 ] for details.)

Let I and A be two accessible sets and let O= O(l, A) be
the system of diagrams based on I and A. First define Fi and Gi

for each i € 1 U {=},
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Definition. Suppose i € 1 U (=},

F, = {a € 0; yj < i (every j-section of @ is
j—accessible in Fj)}
Gi = {a € Fi; a is i-accessible in Fi}

An element of Fi is said to be i-fit, and an element of Gi

is said to be i-grounded.
Then the theorem to be proved is this.
(Thm) ViVa(a €0 « o € G; < @€ F,;)

From this follows i-accessibility of every diagram for every i.
The theorem is proved via the key proposition:

(KP) If o« € G, then yj <i(e € Gj)'

That is, the groundedness property is inherited downward. The
proof of the key proposition requires a certain manipulation
which heavily relies on the theory of fundamental sequences of
the diagrams, latter having been developéd in [2].

Now the notions of i-fitness and i-groundedness should be
interpreted '"constructively.'" Let (C, <) be a concretely given
linearly ordered structure, and let c be in C. acc(C, £, c, M)
will express that M be a method which, for every f a <-decreasing
sequence from C led by c, gives a modulus of finiteness of f;

that is,
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Vn 2 M(c, £f)(f(n) = empty).
a € Fi and a« € Gi should then be read as follows.

a € F.: 3M;  (a method depending on i and @)
b
vVj<i Vo(:j oM, (], o) is a method

to concretely demonstrate that o € Gj)

a € G, * o € F.A ENi’a(a method) acc(Fi, <i’ a, N, )
So, we are in the world where, in claiming any property about
any objects, one has to have a method to establish that relation.
We can symbolically express this as follows. Put M; = raM,

b

and N. = 2aN. .  Then
i i, a

b

G. « /M, = (M.
1 1

F, < (M} = M..
* J j<i

‘Here N represents a modulus of finiteness for (F, a) for

i> 12
some @, Mi is the method for (determining the elements of) Fi’
M; is the method for G, and M;r is a slight modification of Mj.
The foundations of ordinal diagrams means, therefore, to
~determine the universe of the '"methods' which yield the "'moduli
of finiteness' for i-decreasing sequences of the diagrams uni-
form in i. It should be expected that such universe is of pe-
culiar feature as may be guessed from the outline given so faf.
The properties such as fitness and groundedness are not classi-

cal, since the existence of methods are incorporated in the

definientia multifoldly. We are therefore naturally led to an
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intuitionistic system in the attempt to formalize the accessi-
bility proof, and the nature of accessibility can be embodied

by the '"functional' interpretation of the existential quantifiérs.
They occur in the form YfinP(f, n), where P(f, n) is of first
order and J-free. A functional X such that VfP(f, X(f)) will
represent a modulus of finiteness (of f). The implication }
should be interpreted so as to be compatible with the idea of

the "methods." That is, 3XA(X) f 3YB(Y) should be interpreted as
JZYX(A(X) | B(Z(X))). We are thus led to the "modified realiza-
bility" (mr-) translation of the formulae of our system. The mr-
translation of G is defined so as to incorporate the idea of
methods and the mr-interpretation of connectives. Through these
procedures, the desired universe of methods can be determined.

In Part I of the work under the presented title, (Thm) is
proved in a system called ASOD (analytic system especially de-
signed for ordinal diagrams). The completely 'positive'' proof
of this thgorem naturallyldetermines the system ASOD. The crucial
step, (KP), is proved via the construction of a (bar) tree A of
diagrams.

In Part II the theory of 'methods', which will be called
the '"hyper-principle (HP)" is developed. It consists of general-
ized notions of types, functionals and formulae (called type-
forms, term-forms and formula-forms respectively), and serves
as the basis of the functional interpretation of the diagrams.
The term-forms without parameters are called hyper-functionals,
and they are interpreted with '"methods', where the continuity
principle of the functionals of the lowest type is assumed. The
formula-forms admit only three logical connectives A, b and V.

There is a special predicate symbol 4, which is to be the mr-

«
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translation of G. Some axioms on the predicates and the hyper-
functionals are introduced so as to represent their intrinsic
meanings, and the truth-values and the validity are defined so
that the axioms are made valid by the "methods'". A formula-form
which is valid in this sense is said to be HP—valid. The entire
content of this part is called HP. The bar induction and the
éontinuity principle are informally used here.

In Part I, the mr-translations are applied to the formulae
of ASOD according to the idea described above. An mr-translation

is of the form
(%) Exl..:-ian(xl,...,xn),
where A(Xl"“’xn) is a formula-form. We now attain our objective.

Theorem. If B is a closed formula of ASOD and the mr-

* *

translation of B is as in (%), then hyper-terms: e ,...,8_ can

n
. * *
be found so that A( %.""’Qn.) be HP-valid.

This yields the Conclusion that the functional structure of
ordinal diagrams 1is representéd by HP.

Before going into technical details, let us make some remarks.

Firstly, aithough it appears that we have carried out our
project indirectly through the general system ASOD, the entire
“argument realizes the intrinsic idea of '"'methods'", and hence the
concreteness is not lost.

Secondly, the informal use of the bar induction as well as
the continuity pfinciple does not affect thé spirit of the

"foundations" (of the diagrams), since, as was explained pre-

IS
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viously, our intention is to construct the '"methods' which inter-
pret the groundedness property, and that has been done. If one
clears all the intermediate treatments in the whole course, only

the concrete methods will remain.

Now some of the technicalities. First let us quote some

definitions and arguments from [5] and [6].

Definition. Hi = {(k, b,8); k< i and B € Gk}

v[i]: a new symbol corresponding to v if v € H;
J; ={v[i]; v E€H }
<i: the order of Ji induced from <i

I<i>= {jE I; j 211

0(i) = O(I<i>, A, J,)

D, = {xk € 0(i); «x is i-accessible in 0(i)}

For an o€ F;, a[i], the "i-projection' of a, is defined to
be the figure obtained from o by replacing in it each i-active
element of Hi by its corresponding symbol in Js - For a «x in 0(i),
the unique ¢ € F& such that o[ i] = « is called the '"i-elevation"
of k, and is denoted by x{i}. (Such an @ exists.)

A function which produces the fuﬁdamental sequences for a

system C will be called a fundamental method for C.

These constitute the design of the accessibility proof as
mentioned. Namely, we can show that the i-groundedness property
is reduced to the <i—accessibility in 0(i). That is; a € Gy if
and_only ifali] € D,. Through certain constructions induced by

the fundamental sequences in O(j) for some j < i, we can demon-
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strate that every diagram is i-grounded, and is hence <i—accessible
(for every i). Notice that j is the least element of I U (=} in
0(j) even if it is not in the original system O; this simple fact

has a decisive effect on the entire argument.

For Part I, the language L of ASOD consists of the language
of intuitionistic arithmetic with constants for elementary theory
of the diagrams, VYV on function type, Yf (but without 3f), augmented

by the following constants.

J, A, J: symbols which correspond to the fundamental methods
for I, A and J respectively.
G, Ord, 1lss: predicates which correspond to G, O(i) and the

orders of 0(i) respectively.

An /[-formula is said to be L-recursive if it is free of G,
Ord and the quantifiers (Y, 3). (Note: lss‘is allowed.)

The base of the system ASOD is the intuitionistic arithmetic
applied to [-formulae; added are the axioms on projection and
elevation, the axioms on the constants listed above, TI(1)(trans-
finite induction along the order of 1), TI(A) and the bar induc-
tion BI(R, A)(applied to R and A), where R is /[-recursive and A
is an arbitrary L-formula. The axioms on G, Ord and lss are
definitions by transfinite induction along the order of I, which
are formal expressions of respective definitions.

The essence of the proof of (KP) in this system is to con-
struct a sequence from 0(i), say A1, for any « in 0(i) from the
fundamental éequence for (i, ) in O(i), say {«_1} , so that

m

Am £ “p and that the i-accessibility of » implies that of «

Repeating this process, we define a tree A of the diagrams in O(i)
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with x at the bottom and then apply (formal)BI to A to obtain (KP).
Here A satisfies the finiteness property (that is, A is a bar-tree)

and the heredity with respect to the i-accessibility downward.

Part II is the main theme of the present report. It consists

of the theories of type-forms, term-forms and formula-forms.

Definition. 1) The language Ltp for type-forms is the lan-
guage of /-terms and /[/-recursive formulae in Part I augmented by
Noa ept, As{})+, C:[]a=>3 I, T,< >, R.
2) Definitions of type-forms, the variables in them (free
and bound) and the reduction rules (RR)(where necessary) are given

below.

(1) Ny is the atomic type-form.

(2) Ax(#) (x is a variable not bound in ¢ and # is a type-
form.)

(3) S » £ (5 and % are type-forms.)

(4) ClA); ()] ((A) = AgseeosAls L -recursive formulae,

mutually exclusive. (%) = Z,,...,t

13 , & : type-forms)

m m+1

(RR)

t,if A,, 1 < 45 m,
claay; (ol => 4 4

z otherwise.
m+1

(5) T<i> (i: an L-term of atomic-type)
(RR)

T<i> = MClL = 0, 4 = 1; T, <i>, Ty<i>, ept],

1

where
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T1<i>'=‘ AjC[j <1 NO > T<j>a ept]:

T2<i> = S_ - ((NO > T1<i>) > NO),

(6) m(S; o) (S = axt(x), ¢: L-term)

(RR)

(7) 1(S; ¢) (S = T<i>, ¢: L-term)

(8) Let M(s, £, v, x; 4) be an expression in Ltp without R
which is determined from the indicated parameters. If it is a
type-form for every numeral m, then ?td, t, v, x; 4] is a type-
form for any L-term L. |

(RR)

Rls, 2, vy, X3 L] Mla, 2, v, x; 4)

3) A term-form without free variables is called a hyper-type.

As a consequence of the definitions, we have that every hyper-
type is '"reducible'" to a ''mormal (terminal)'" form.

Let us explain what these type-forms represent by the objects
of respective hyper-types (which are called the methods of the

corresponding hyper-types).

Examples. 1. An object of hyper-type Ax(£) is a method to
associate with each x an object of hyper-type #£(x).

2. 4+ 1 represents maps in the usual sense.

3. The objects of T<i> are defined by transfinite inductién
on i according to the (RR) for T<i>, so that M. (the method for
G;) becomes an‘dBject of hyper-type T<i>, M, of T;<i> and N, of

T,<i>.

2
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Gi Al Mi = (Mi’ Ni) “r T<i> = (Tl<i>, T'2<i>)
* . . . S .
Fi + - j}- . =Mi<—+ T1<1> = AjC[J < 1ij NO-» T <j >, ept]
j<i
*

mj « > (NO > T(j))

These correspondences explain the reduction rule for T<i>.

Definition. 1) The language ltm for termfforms is Ltp
augmented by the following.
The variable-forms X S(n = 2,..., and S is an arbitrary

1,
type-form), jo, no,‘co, LNE B, x, n,C, [ ]

where S is an arbitrary type-form.
2) The term-~form of a certain type-form, its variables
and variable-forms, and the associated variables (which are the

variables occurring in type-forms) are defined simultaneously.

(1) The atomic consfants: 50? ng: Cos Moo BP (fgr some

type-forms p)

(2) Variable-forms
(3) L-terms
(4) n(¢; ¥), where the type-form of ¢ is either § - %,

Axt (x) or T<i>.
(5) AXo
(6) Cl(A); (92)

3) A term—form which does not have associated wvariables
is called a hyper-term; a hyper-term without free variables or

variable-forms is called a hyper-functional.

BP is a bar constant of a type-form p, and the type-forms

of constants such as 20, ngs e+ are naturally determined from



their intended attributes. 1 (¢; ¥) represents the projection of
¢ at ¥, AX¢ is the usual i-notation and C[(A); (¢) ] represents
the definition by cases.

Now we place some assumptions.

[Assumptions] 1. We shall henceforth work in the "universe
of methods'" (as explained previously).

| 2. We assume the continuity principle, CNPR (at the lowest
type):
VS'(STL(S) = SIL(S) p L(S') = L(S))

where L(S) = n{L; S).

Definition. 1) An assignment a of closed L-terms to
variables and an assignment b of ''methods" to variable-forms of
hyper-types are naturally defined.

| 2) If ba is an assignment to all the free variables and
variable-forms in ¢, then it is said to be "compiete” for o.

3) The interpretation of a term-form ¢ by its complete
assignment, 1(%, b, a), is a method of an appropriate hyper-type.
It is defined according to the construction of ¢ and its intended
attributes. For example, a method g# is assumed for QO (which is
supposed to interpret 7), and 1(n(B8°; Z), b, a) is defined as
follows, so that B satisfies the bar recursion at the lowest type
(that is, the bar recursion is applied to trees of objects of
atomic type).

Put 7= L, ¢1; ¢2, X, S, where S is a sequence of objects

of atomic type.

4



186

e ; SIx) if IL(S) < bx,
1(n(B8P; 2), b, a) = IT@ 53 SPx, AsH(8; L, e, ¢,, x + 1,

(Sfx)*s)) if bx< IL(S).
Proposition. The interpretation I is well-defined.

The proof is carried out according to the construction of ¢,
and the case for B8 is dealt with by an informal application of the

bar induction and CNPR above.

Definition. 1) The language LO for formula-forms consists -
of the language of /-recursive formulae (but J is replaced by jO
and lss is replaced by I), Ltp’ Ltm’ Ay, 0, I, A, Fs YX(X is a
variable or a variable-form)

2) The formula-forms of LO (and their variable-forms and

the associated variables) are defined as usual from the’

[-recursive formulae and the atomic formulae below:

a(i, ¢, o , where i and o are atomic-type
[-terms and ¢ is a term-form;
o(i, ¥, v)

iy j, v, 8)

3) A formula-form which does not have associated free vari-

ables is called a hyper-formula.

There are seven axioms of Lo—formula—forms, (40-1) ~ (40-—7).

(Ay— 1) (RR) of type-forms.

(AO-Z) The axiom on A(E.Al A AZ)' This claims that A be

the constructive interpretation of G. That is, a(i, ¢, o)
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expresses the following: '"it can be concretely demonstrated, by
the method ¢, that o be in Gi.”

Al(one way implication of the inductive definition of G):

ViVoVX{a(i, X, a)> ¥j <iYo(P (3, o5 o) b
A3, m (X5 0, 3, o), o)) A VSYY(P,(i, ay S)A
YoV j <iV0(P1(j, o, I(S; n)) p
A(j, 1(Y; n, j, ¢), o) }
Vn 2 0(X; 1, S, Y)(n(S; n) = ept))},

where P,(j, o, o) stands for o is a j-section of o and Py(i,a, S)

stands for S is an i-decreasing sequence of diagrams led by a.

(type-form of X) = T<i>

(type-form of Y) = Tz(i) = Ny ~ T1<i>

& stands for the opposite implicatibn.
(AO-—B) The axiom on ©; 6(i, ¥, v) expresses that ¥ guaran-
tees
vy € Ord(i)(= 0(i)).

A type form R[4, %, v, x; n] is used here.

(40-—4) The axiom on (= 1lss, the orders of 0(i)), which
is L-recursive.

(Ay-5)  The axiom on (7, o> co):‘jo is the fundamental
method for the diagrams which are guaranteed to be in Js by "o ’
and % .

(40-—6) The axiom on My expresses that w, serves as the

"modulus of finiteness'" function for the order <j.

VS(S is <j-decreasing | n(uy; S) gives the

"modulus of finiteness" for S)

’3
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(AO-—7) The formal expression of CNPR.

For the semantics of formula-forms, we place two more as-

sumptions.

-
"

* *
3. FSPR: Methods 7 , n , t exist in correspondence to
jo, "o and Lo respectively so that they satisfy (AO-S)._

*
4, MFPR: A method u is assumed for Yo to satisfy (40-6).

Definition. The truth-value of a formula-form relative to
a complete assignment, inst(A, b, a), is defined naturally and

""classically."

Examples. ¢ = Vvis true iff ¢ and Vv are equal as natural
numbers.

A(i, X, o) is false if (the assignment to) i, X, o do not
make sense; Suppose 1 € I, o« € 0 and X is a method of hyper-
type T<i>. Then the truth value of a(i, X,.G) is that of the
succedent of > in 4 of (4;-2). It can be shown to be consist-

ent with A2 also.

The theories of type-forms, term-forms and formula-forms
(including the semantics and the assumptions) is calléd the
"hyper-principle', HP.

Now the story returns to Part I as was described earlier.

The details will be omitted.

The manuscript has been typed by A. Shintani.
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