Hilbert irreducibility sequences and nonstandard arithmetic

(Masahiro Yasumoto)

Let \mathbf{Q}^* and \mathbf{Z}^* be enlargements of \mathbf{Q} and \mathbf{Z} respectively. Our aim of this paper is to give a sufficient condition for $x \in \mathbf{Z}^* - \mathbf{Z}$ that $\mathbf{Q}(x)$ has no algebraic extension of degree not more than m within \mathbf{Q}^* . As its application to number theory, we give irreducibility sequences explicitly.

By an arithmetical prime divisor, we mean a prime number or the archimedean prime p_{∞} . For each arithmetical prime p, we define p-adic absolute value of a rational number x,

$$|x|_{p} = p^{-n}$$

$$|x|_{p} = |x|$$

where $x = rp^n$ and r has no p factor. For each finite set S, of arithmetical primes, we define

$$H_{S}(x) = \prod_{p \in S} \max(1, |x|_{p})$$

$$H(x) = \prod_{p} \max(1, |x|_{p}) = \max(|m|, |n|)$$

where x=m/n and g.c.d.(m,n)=1.

/

THEOREM. Let x be a nonstandard rational number. Assume

(1) there is a finite set S of standard prime divisors such that

$$\frac{\log(\mathrm{H}_S(x)\mathrm{H}_S(x^{-1}))}{\log \mathrm{H}(x)} > 2 - \frac{1}{m} + \varepsilon$$

for some standard positive real ε ,

(2) for any nonzero standard rational number r and any natural number n with $2 \le n \le m$, there is no nonstandard rational $y \in \mathbb{Q}^* - \mathbb{Q}$ such that $rx = y^n$.

Then $\mathbf{Q}(x)$ has no algebraic extension of degree not more than m within \mathbf{Q}^* .

Let us give an application of the theorem to standard number theory. A sequence of integers $a_1, a_2, \ldots, a_n, \ldots$ is called a m-irreducibility sequence if for any polynomial $f(X,Y) \in \mathbb{Z}[X,Y]$ with $X - \deg(f) \leq m$, there are only finitely many a_n such that $f(X,a_n)$ is reducible. A sequence of integers is called a Hilbert irreducibility sequence (H.i.seq.) if it is a m-irreducibility sequence for all natural number m. In his papers [3] and [4], V.G.Sprindzuk proved that

$$a_n = [\exp \sqrt{\log \log n}] + n! 2^{n^2}$$

is a H.i.seq.. Oer theorem can give a different type of H.i. seq. from those given by Sprindzuk. For example, we will show that $2^n p_n$, $2^n (n^3+1)$ and $n! 2^{n^2}$ are H.i.seq.s.

In nonstandard arithmetic, we have a beautiful charactorization of a H.i.seq. due to Gilmor and Robinson.

PROPOSITION 1. a_n is a H.i.seq. if and only if for any nonstandard natural number $\omega\in \mathbb{N}^*-\mathbb{N}$, $\mathbf{Q}(a_\omega)$ is relatively

algebraically closed in Q*.

As for *m*-irreducibility we have the following sufficient condition for a sequence to be an *m*-irreducibility sequence

PROPOSITION 2. If for any nonstandard natural number ω , $\mathbf{Q}(a_{\omega})$ has no proper algebraic extension of degree not more than m! within \mathbf{Q}^* , then a_n is an m-irreducibility sequence.

Unfortunately the converse of Proposition 2 is not true but if m! is replaced by m, then its converse holds.

PROPOSITION 3. If a_n is an m-irreducibility sequence, then for any nonstandard natural number ω , $\mathbf{Q}(a_{\omega})$ has no algebraic extension of degree not more than m within \mathbf{Q}^* .

It is easily shown that Proposition 1 is a easy consequence of Proposition 2 and 3.

For the proofs of Theorem, Proposition 2 and 3, please refer to [5].

- A. Robinson and P. Roquette, On the finiteness theorem of Siegel Mahler concerning diophantine equations, J. Number Theory 7 (1975), 121-176.
- 2. P.Roquette, Nonstandard aspects of Hilbert's irredicibility theorem, L.N.M 498 (1975), 231-275.
- 3. V.G.Sprindzuk, Diophantine equations with unknown prime numbers, Trudy MIAN SSSR 158 (1981), 180-196.
- 4. V.G.Sprindzuk, Arithmetic specialization in polynomials, J. reine und angew. Math. 340 (1983) 26-52.
- 5. M. Yasumoto, Hilbert irreducibility sequences and nonstandard arithmetic, to appear in J. Number Theory.