goooboooogn
0 5900 1986 O 98-107

98

(5 1E P\ B a P E 1< L b < fi B% ¥y A7 2 NON-REGULAR /t\ﬁ )

AN EMPIRICAL BAYES SQUARED-ERROR LOSS ESTIMATION PROBLEM

IN NONREGULAR FAMILIES OF DISTRIBUTIONS.

by Yoshiko Nogami (?/,? r 4% 3_ )

University of Tsukuba

1. Introduction.

 An initial discussion of the empirical Bayes (EB) problem is given by
Robbins (1955, 1963, 1964). Johns and Van Ryzin(1972), Singh(1974, 1976)
and Nogami(1983, 1984, 1985) among others considered EB solutions involving
kernel-type (see Parzen(1962)) density estimation. On the other hand,
0'Bryan and Susarla(1975) and Susarla and O'Bryan(1975) considered EB soluti-
ons depending on the estimation of a marginal density using the inversion
formula for some absolutely integrable characteristic functioné.

In this paper we consider EB solutions using 0'Bryan and Susarla
(1975)'s method for the squared-error loss under the uniform distributions
U[6,8+1) and U(0,8). We first introduce an estimator of a marginal density
(in Section 2) and shall obtain convergence rates O(n-%) for Ut6,6+1)
(8elc,d] with = c<d<+w) (SectionyB) and O(n~%log n) for U(0,8) (8e(0,x))
(Section 4), respectively. We also remark (in Section 5) that the mean
squared error (MSE) of the nonparametric density estimator under a
location parameter family of certain gamma distributions has an upper

-1
bound O(n_1+(2a—1)

) for a>l.
In the empirical Bayes estimation problem, there is a sequence

{ﬂX ,@ )} of independent random vectors where the unobservable OJ are iid
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according to an unknown prior G and, Xj is‘independently distributed accord-

ing to density p6 conditional on @j=(%. Let = be a defining property and

let XéXn+1.’ By defining a nonrandomized estimator for 6=6

n+l by tn(X)zt(Xl’

X2’ ces ,Xn;X) in the (n+l)st problem the risk of tnfis given by R(tn, G)
=§;tn(X) —6)2 where E denotes expectation with respect to (wrt) all random.
variables {(xj,ej)}. With R=R(G) denoting the infimum Bayes risk in the

identical component problem, when R(tn, G) and R are both finite, we have

(1.1 (09 R(x,6) = R = EG(X) - £ (X))
where _ 7
(1.2) 6,1 = fBp, (X) dG(8)/ fp, (X) dG(O).

Since we use Singh's Lemma A.2(1974) in forthcoming sections we state

it beforehand without proofs.

Lemma 1.1. (Lemma A.2 of Singh (1974)) Let y, z and L be in (—»,»)
with z = 0 and L>0. If Y and Z are two real valued random variables, then

for every Y>0
+
vy _ Y Y, S YH(Y-1)", -y Y
: E({z~ziAL)§2 ]z] E|y-Y|
+
+ (LT 270D )2 - 2

where E means the expectation wrt the joint distribution of (Y,Z) and at=a
if a>0; =0 if QSQ.

“As notational convensions Ex and Varx denote expectation and variance
wrt a random vector (Xl’ e ,Xn,(@[x)) for given X=x, respectively. Let
[A] or A itself denote the indicator function of the set A. A distribution

function will also be used to denote the associated measure. Let V and A

denote the supremum and the infimum, respectively.
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2. Estimation of a Marginal Density.

Let gj(t) be the characteristic function corresponding to the marginal
distribution of Xj;
(2.1) ;j(t) = E(exp{ith}). |
Since gl(t)=c2(t)= ... =z(t), we do not exhibit the subscript j. Since
f];(t)l dt <+o, the marginal density of X is given as follows (cf. Loéve
(1963, p. 188)):

(2.2) p(x) = [ pg(x) d6(0) = (2m 11 T TFy(e) dt.

According to O'Bryan and Susarla(l1975b) we estimate a truncated pdf
of X on [-M, M] (for O<M<+w) defined by

(2.3) py(x) = (2w, () ae.

Since py(x)= E(n™ L] fp exp{Ae(X-y)) db),
(2.4) By(x) = @™ £ @m0 sin 0 - x0).

is an unbiased estimator for pM(x) for given x.

In Sections 3 and 4 we shall find upper bounds for |2np(y)— 2ﬂpM(y)l2
and Varx(sh(y)) for any y to obtain upper bounds for s&p Ex(ﬁﬁ(y) -
p(y))2 and shall then apply them for the bounds in Lemma 1.1(Singh(1974))

to get convergence rates for (l.1).

3. Uniform Distribution Uf[g,8+1).

For ge Q=[c,d] with —eo{c<d<+e, let pe(Y) =[0,6+1). Throughout this
section we denote y41.by y' and assume that fbr a positive constant C,
3.1)  EGTAH®) <C (< +w).

For this family, the marginal pdf of X is given by p(y)=G(y)-G(y'). Thus,

a telescopic series gives



(3.2) G(y) = Z,_gp(y-r).

Since J'epe(x) dG(8) = f y (x- f(

(1.2) and (3.2) yields that for p(x)>0,

(3.3)  4g(x) = x - Y(x)

where

(3.6)  w(x) = fp 15y (p(x'+t-r) = p(x'-r)) dt/p(x).

We estimate (3.3) by

(3.5) y(®) = x = Gy (x)

where

(3.6) () =00 V 5§ 55 (By(x'+t-1) = By(x'-1)) dt/p, ()} 1.

From (1.1), (3.3) and (3.5)

(3.7) (09 R(dys 6 = R = EE ((By(D) - (XN n1}).

101

g-x') 48 d6(®I=xp(x)~ f rx, +tyG(o) dt,

Denoting the quotients of @M(x) and Y(x) by Y/Z and y/z, respectively and

applying Lemma 1.1(Singh(1974)) gives

(3.8)  E((Gy(0 - 0())°A1) < 8 p72()(A, + (3/2)E (By(x) - p())?)
where ‘ '
(3.9) A =E_|[g 5y (By(x'+tr) = By(x'-r)) dt -

- 15 2o +er) - p(x'-r)) de |2,

To bound rhs(3.8) we introduce following two lemmas:

Lemma 3.1. For O<M<+w and any y

(3.10)  J2mp(y) - M e Te(e) de| < 2(m/2) M 412,
Proof.) From (2.2) and the fact that g(t)=((e -1)/(it))E(eiGF),
and Ie‘lt(Y'G) ii 1’
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11 = el
(3.11)  1hs(3.10) < 2/ |E52 | de.
1/2/

Since for t50 |(elt-1)/(it)| = (2(1~cos £)) %/t = 2|sin 27 ¢ | /1,

changing a variable u=t/2, applying Schwartz's inequality and weakening -

the range of integration leads to

o/ |sin uf 4

rhs(3.11) M/2

u_“2 du}%,
2

1% sin? >
5_2{ o Sin"u du IM/Z

-1 1 -
Since fg sinzu du = (2V2) 1n2 and f§/2 u “du =2/M, the proof is done

Lemma 3.2. For any y

(3.12) 7% Var (B(y)) < Mma ™'

Proof.) Since

1hs(3.12) < 072 (18 Gamy) Psin’ (iz-y)) d2) d6(e)
< 27T w¥sin%u du.
The fgct that ZIE u'2 sinzu du =g leads to the rhs(3.12).
Frog above Lemmas 3.1 and 3.2 we get thé following lemma:

Lemma 3.3. For OM<{+ >,

sup, B (y(y) = p(3)% < Bm + Mem) ™

Remark. Hence, we obtain that for M=n1/2

(3.13)  E Gy - % < (Br+ 72,

To get an upper bound for rhs(3.6), we notice from Holder's inequality
~ that with s=x' + t
o] A 2 >} ~ ) 2
E (Z.o(Py(s-1) = p(s-t))}" - I __g E (py(s-r) - p(s-1))

=L, * E{(py(s-1) - p(s—r))(ﬁM(s—r*) = p(s=r' )}

. % ~ 2 ~ * #0021
LI F B (py(s-r) = p(s-r))"E (py(s-r ) - p(s-r ))7}2.
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Applying Lemma 3.3 yields that with N=d- c+2

(3.16) B {57 (y(em) - p(s-r)}? < NO-D{smt 4 m(ra) 7l

Thus, since by an exchange of ordef of integrations and by cr—inequélify
(Loéve(1963)) k |

A 5_2{fé E {7 o(By(s-1) - p(s=r))}’ dt
+ E {57 _o(Py(x'-1) - p(X'-r))}2}5
Two applications of (3.14) and Lemma 3.3 leads to
(3.15)  rhs(3.8) < (32N(N-1) + 12)(8 vM "+ M(m n) ™ 1)p~2(x).
Thus, (3.15) and (3.1) gives the following theorem:
Theorem 1. For the prior G on [c,d] with the assumption (3.1),

(0<) R(8, 6) = R < (32N(N-1)+12)C(8n ™ 4te(mn) ™).
1/2

We remark that according to Theorem 1, with M=n

(3.16) (09 R(dy, ©) - R < 0(n™/2).

4. Uniform Distribution U(0,8).

For 6€$2=(0;m), 1Etrpe(x)=6-1(0,6)' For this family, we assume that

4.1 B <t
and
4.2)  E@AD) <B (<+a).

Let P(y)=fP,(y) dG(8). For this family, P(x)=G(x)+xp(x) and (1.2) gives
that for p(x) > 0,

(4.3) o0g(x) = x + Y(x)

where

(4.4) P(x) = (1 - P(x))/p(x).



104

For each n, Fn(x)=n-1

Z§=1[Xj§;] and let an(x) be a bounded nonnegative
function defined on the positive reals such that for fixed x(>0) an(x)*m

as n» o. Estimate y(x) by

A 1- Fn(x)
(4.5) Py(x) = "71;'1\;'&—)—_‘ pa (x).

From (4.3), estimate ¢G(x) by

(4.6) by(x) = x + Y.

From (1.1), (4.4) and (4.6) it follows that for sufficiently large n,
.7 (00 RG,6) - R = EE {@y(D) - vxN? halGob .
But, by Lemma 1.1(Singh(1974)),
4.8 E{Gy00 - ve)? nati< 8 O, (B - Fy(x)?

2 A 2
+ (3/2)a2(0E, (p(x) = By(x))°}.
To get a bound of rhs(4.8) we shall use forthcoming Lemma 4.3. To get
Lemma 4.3 we shall introduce two lemmas.

Lemma 4.1.
-3/2

).

Proof.) Since g(t) = E((eito - 1)/(it9)), as in the proof of Lemma 3.1

(4.9) |2 mp(y) - IP_{M e 1ty g(t) dt | < A(n/Z)#M'% E@©

(4.10)  1hs(4.9) < 2 57 13 2(:8)  [sin (271e8)] dt d6()

1/2

<4 etlUG sin’u du [y 5 w72 daw)'/? 46(6)

which is rhs(4.9).

Lemma 4.2.

(4.11)  wVar(By(y)) <Mm L.
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'22222;) As in the proof of Lemma 3.2
1hs(4.11) < n7ls5r8 (z-y) 2sin’(M(z-y)) dz dG(s).

Since fg (z—y)‘zsinz(M(z-y)) dy < My, the proof is done.

We shall use above two lemmas to obtain following Lemma 4.3:

Lemma 4.3. With by = 16(n /2)¥(E(e™>/2))2,
2 - -
sup, E_(5y(y) - p(3))° < bM Ly Manl,
1/2

Remark. Hence we obtain that for M=n
E(y(0) - pC0)? < {16(T /22 (EE/2)) 2 1} 0712,
To getvan upper bound for (4.7) we notice that lhs(4.8) 5_8pf2(x){n-1
+(3/2)a§(x)(b0+1r)n-l/z}. Thus, by (4.3) we obtain
Theorem 2. With ai(x)=log n

(4.12)  (0<) R(8,,0) - R < 24 B(bytm)n " Zlog n.

5. Remark.
For fe @ ==y, let p (0)=(N(@) ™ (x-8)""Te™* (x> 67 (for
a>1l) and I' represents the gamma function. For this family, the marginal pdf
of X is given by
(5.1)  p(® = TN ¥ (x-0)%71e™ 8 gg(p).
In this section we shall consider nonparametric density estimation of p(x).

To find an upper bound of MSE we shall derive two lemmas.

Lemma 5.1. For OM<+w,

(5.2)  [2mp(x) ~rhy e g(e) dt] < M/ (amD).
Proof.) Since for t<1, g(t) = (l—it)—aE(e-iOt), we have’

(5.3) 2711hs(5.2) < £ |14iu]™ du
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® 4 % du =‘M1—a/(a—1)

<

which is rhs(5.2).

Lemma 5.2. For anybx,

(5.4) n? Var ($,(x)) < Me¥! (a-1)17% a7l
Proof.) Since |
(5.5) n 1hs(5.4) < E {(X-0)7% sin?(M(X,x))}
and since sup ta—le—t = (a—l)a_le-(a-l) (1),
>0 n
‘ o : 1-a -l » . -—2 . 2 .
(5.6) rhs(5.5) < e” “(a-1) fque(y—x) sin“(M(y-x)) dy dG(g).

With a change of variable v=M(y-x) and weakenihg the range of the resulted
integral
(5.7) rhs(5.6) _<__Mel_c‘(m—l)m"1 2 fg v—2 sih2 v dv.

2

Since by a complex integration 2 fg v-zsin v dv =7, this gives the

asserted bound.

From above Lemmas 5.1 and 5.2 we obtain
2
(5.8) sup E_(By(x) - p(x))
X

< (a2 9007l 1y ()L

Therefore, we obtain the'following thoerem:

. . -1 :
Theorem 3. With M = n(%®™D) " ang o1,
-1
(5.9 EBy(X) - p(0)? < o)y,

For this family of distributions, since Ep_z(X) =o even if G is
a degenerate distribﬁtion, we are not able to use Singﬁ(1974)'s Lemma A.2.

So we leave for next time to consider EB problem for this faﬁily.
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