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Abstract. A partitioning automaton which is the modified version
of the alternating automaton is defined. The machine can
partition the input string into some blocks and check them
universally. . The classes of languages accepted by partitioning
finite automata and partitioning pushdown automata are shown to
be equivalent to the classes of CFL and Aho’s indexed languages,
respectivery.

1. Introduction

The concept of alternation was introduced by Chandra, Kozen and
Stockmeyer [2] as generalization of nondeterminism. Several interesting
applications of alternating Turing machines are known [3, 7, 8, 9]. There
are some investigation about the effect of adding alternation to other
automata [4, 5]. In this paper, we introduce the concépt of partitibning
automata which are modified alternating automta, and investigate the effect
of adding partition to (one-way) finite automata and (one-way) pushdown
automata. ' o ‘ ,

In the case of alternating machines, it can make "existéntial branches”
and "universal branches.” Instead of "universal Branches," partitioning
machines can make "partitive branches.” 1In partitive branches the machine
guesses partition of remained input string into k blocksl(b1,b2,g~-.bk), and
then reaches to each member of finite list of configuration [ﬁ1,ﬁ2,---,8k]
universally, where block bi is assigned to configuration Bi as remained
input string. , ,

In Section 3 we show that . o , .

(1) the class of languages recognized by partitioning finite automata (pfa)
is equivalent to the class of CFL, and ‘

(2) the class of languages recognized by parti{ioning pushkdown automata
(ppda) is equivalent to thg‘class_ovaho'stindexed languages.
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The deterministic complexity hierarchy
LOGSPACE ¢ PTIME < PSPACE ¢ EXPTIME ¢<---

shifted by exactly one level when alternatibn was introduced. Then the formal
language hierarchy ' ' ' )

REGULAR SET ¢ CFL & INDEXED LANGUAGE - - -

also shifts exactly one level when partitioning automata are introduced.

In Section 4 we consider about the power of partitioning automata as
complexity measures. And we show that
(3) for any polynomial-time bounded one-way alternating pushdown automaton ¥,

there is an indexed language L and L(M) <poly L.

2.Partitioning Finite Automata and Partitioning Pushdown Automata

A partitioning machine is similar to an alternating machine except
that a subset of the states are designated as partitive states instead of
universal states and the range of a transition function is defined by the
set of finite lists instead of the power set. ’

Definition 2.1. A partitioning finite automaton (pfa) is a 6-tuple
M = ( Q: U; Zr 6' qo: F )l o

where

Q is a finite set of states,

Ucq is a finite set of partitive states (Q-U is a set of existential
states), '

T is a finite input alphabet,

qer is the initial state,

FEQ is the set of accepting states and

5 is the transition function where

5:axz - Q1.

[A]* denotes the set of the finite lists, whose elements are elements
of A( [a1,a2,---,ak](k20). In general\definitions of nondeterministic or
alternating machines, the range of a transition function is represented
by the power set. In this paper, because the order of values of transition
function is important, the range is represented by the set of lists. In
following arguments, "beB" means also that b is an element of the list B.
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Definition 2.2. A configuration of pfa M is a pair (g,w) with geq
and wes®. An initiat configuration of M on input x is (9g-%)- An accepting
configuration of M is (g, &) where geF and ¢ is the empty string.

Definition 2.3. A pfa M accepts input x if and only if an accepting
computation tree of M on input x exists. An accepting computation tree of
pfa M on input x is a finite rooted tree whose nodes are labeled with
configurations of M and with the properties:

(I> A root of the tree is labeled with an initial configuration of M

on input zx.

(II> All the leaves of the tree are labeled with accepting configura-
tions of M. '

(IID 7For eécﬁ nonleaf n labeled with (q.aw) vwhere gqeQ, ae€ZlU{e} and

meZ*,
(a) 1if geQ-U and [q1;q2,---,qk]=5(q,a) then n has exactly one
child p with label (qi,m) 1<k,
(b) if gel and [q1,q2,~--,qk]=6(q,a) then 7 has exactly k
children PqrPos s Py ﬁith labels (q1,w1),(q2,w2).-'-,(qk,wk) »
and w1w2---wk=w.
Definition 2.4. A partitioning pushdown automaton (ppda) is a 8-tuple
IVI = ( Q;U;zrl—‘»zrdyqolF )l
where

I' is the pushdown store alphabet,
zel’ is the bottom symbol on the pushdown store and
6 is the transition function where

5:Qx(ZU{e})xT » [@xI" 1™

Definition 2.5. A configuration of ppda M is a triple (q,w,8) with
gea, wes™ and 6eT'™. An initial configuration of M on inmput x is (9. %, 2).

An accepting configuration of M is (q,g,6) with geF and per™.
Definition 2.6. A ppda M accepts input £ if and 6nly if an accepting
computation tree of M on input x exists. An accepting computation tree of

ppda M on input x is a finite rooted tree whose nodes are labeled with
configurations of M and with properties:

(ID{II> similarly with Definition 2.3.
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(ITI) For each nonleaf n labeled with (gq,aw, f@) where geQ, ae€ZU{e},
weZ™, fer' and ger™,

(a) if geQ-U and [(q4,5.).(95,85), . (9, & )1=6(q,a,f) then n
has exactly one child p with label (qi,w,ﬁi) 1<igk.

(b) 1if geU and [(q1,E1),(q2,€2),---,(qk,&k)]=6(q,a,f) then n has
exactly k children PyrPopr ™ 1Py with labels (qi,w1,€19),
(qz,wz,aza),---,(qk,uk,ake) and W o W =W,

3. Relationships Between Partitioning Automata and Formal Languages

In this section we establish fundamental relationships between
partitioning automata and formal languages. First we study about partitioning
finite automata and context-free languages.

Levma 3. 1. Every context-free fanguage L can be genmerated by a grammar
for which every production is of the form A-aba or A»c where 4 is a variabfe,
a and b are teminafs, ¢ i1s a terminaf or &, and a is a(poséibﬁy empty)string
of variables. :

PROOF. Let G = (N,7T,P,S) be a Greibach normal form grammar generating
the CFL L. Now consider a production in P, of the form A+a8132---8k(k>1). We
. can make new productions by replacing 81 by all productions of the form

B,»bC,C,---Cy (£20). O

TueoreEMm 3.2. . A fanguage L is accepted by a pfa iff L is a context-free
fLanguage. .

Proor. Let L be a CFL. There is a CFG G = (N,7,P,S) which generates L.

We assume that G satisfies Lemma 3.1. A pfa M = (Q,U,7,6,5,F) is defined as
follows:

Q@ = NU {KaylaeT} U {S} UU U F. v ‘

U = {<a,X>| asT, XeN', 1X1<f vhere £ is the largest length of strings
which appear in righthand of all productions in P }.

q9r € F.

For each productions in P of the form
(1 A»abB1Ba---Bk(k>1) set
'<b'8182"78k> € 6(d,a) and ‘
[81'.32' o ‘Bk] = 5(<b18132,’:' .Bk>'b>'
{2) A=ab set
<b> € 6(4,a) and
q- € 6(<b>,b).
(3) A-a set
. o G € 6(4.a).
(4) d-»e set
4 € F.
Obviously L = L(M) holds. Now for the converse, let pfa M = (Q.U,Z,é,qO,F).
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Let G =‘(Q,Z,P,q0) be a context-free grammar where P is defined as follows:
(1) For each qeQ-U and ae€Z, 1if g“€d(gq,a) then set
g » aq” € P.
(2) For each geU and ae€Z, 1if [q1,q2,---qk]=5(q,a) (k21) then set
q - a‘;1q2"'qk € P.
(3) For each gef, set
g - g € P.
It is easy to show that L(M) = L(G). O

Now we study about partitioning pushdown automata and indexed language.’
For the definition of indexed grammars and indexed languages see Aho(11.

THEoREM 3. 3. A fanguage L i3 accepted by a ppda i1ff L 18 an indexed
Language. ‘ .
Proor. Let L be an indexed language. There is an indexed grammar G=(N,T,

I,P,S) in reduced form, which generates L. Each index production in each
index feI is of the form A4-B, where A,BeN. Each production in P is of the
forms
(1) A-BC,
(2) 4-»Bf or
(3) 4d~a.
with A4,B,CeN, feI and aelU{e}. A ppda M=(Q,U,T,T',2,6,5,F) is defined as
follows: '
Q=NU{S} UU UF.
U = {KX,Y>|X,YeN}.
F = {qp}.
r=1U {z}. _ ; _
For each index production 4+8 in each index f;I set
(B,e) € 6(4,&,f). N
For each production in P of the form ‘
(1) 4-BC set for all fel, .
(<B,C>,f) € 6(4,e,f) and
C[(B.F). (C.F)] = 6(<B,C, e, f).
- (2). A»Bf set for all gel,
(B,fg) € 6(A,&e,9)-
(3) . 4=a set for all fel,
(qp. F) € 8(4a,f). ‘
Obviously L = L(M) holds. now for the converse, let Mz(Q,U,Z,F,z,é,qO,F) be
a ppda. Let G = (N,Z,I,P,S) be an indexed grammar which is defined as
follows: I
N = QU {S} U {<X,E>|XeQ, &eI'™, |£1<2 where £ is the largest length of
strings which ¥ can push in one move}. f
(1) For each geQ-U, ae3U{e} and feF,'if (g7,8)ed(q,a,f) then set
q + alq’,&> € f and
<q” ., &> » g’& € P,
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(2) For each gelU, ae€ZU{e} and feI', if [(q1,E1),(q2,€2),---,(qk,ak)]
=6(q,a,f) then set
qg - a<q1,§1><q2,52>---<qk.£k> € f and
for all 1<igk,
\ <qi,£i) > g8, € P.
(3) Set § -~ 992 € P.
(4) For each gqeF, set
qg > & € P.
It is easy to show that L(M) = L(G). O

4. The Power of Partitioning Automata

In this section we investigate the power of partitioning automata as
complexity measures.

The class of languages accepted by pfa’s (ppda’s) is denoted by PFA
(PPDA). The class of languages accepted by one-way alternating finite
(pushdown) automata is denoted by ALT-FA (ALT-PDA). Aho [1]1has shown that
the class of indexed languages 1s a proper subset of the class of context-
sensitive languages. Chandra, Kozen, and Stockmeyer [2] has shown that
ALT-FA 1is equivalent to the class of regular sets, and ASPACE(n) & ALT-PDA.
Thus by Theorem 3.2 and Theorem 3. 3:

CoroLLARY 4.1. ALT-FA & PFA.
CoroLLaARY 4. 2. PPDA & ALT-PDA.
We will consider time bounded one-way alternating pushdown automata.

We denote the class of languages accepted by real(polynomial)-time bounded.
one-way alternating pushdown automata by real-ALT-PDA (poly-ALT-PDA).

TuEOREM 4. 3. For each L € real-ALT-PDA, there 1s L’ € PPDA and
L <poly L.
ProoF. Let M be a real-time bounded one-way pushdown automata which

accepts L. Let k be the maximum number of branches which ¥ can make in one
move in univaersal states. The transducer f is defined as follows:
fiTa U’
f(e) = € and : -
flaw) = alf(w)ILf(w)l---[f(w)] (k times).
It is easy to show that there is a ppda M’ and x is accepted by M iff f(x)
is accepted by M/. O '

CorOLLARY 4. 1. For each L € poly-ALT-PDA, there i3 L7 € PPDA and

L < L.
poly
ProoF. Every L € poly-3ALT-PDA is polynomial-time reducible to L/€ real-
ALT-PDA. O
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