00000000RY28
05910 1986 0 228-236

Low-Level Tradeoffs between Cross And Alternation

=i
Kazuo Iwama

Kyoto Sangyo University
Kyoto 603

1. Introduction. .

What essentially makes alternating Turing machines (ATMs) more efficient
than deterministic or nondeternministic Turing machines (DTMs or NTMs) is, as
its name suggests, not the introduction of the universal states itself but the
alternation between the existential and universal configurations. The number of
alternations is therefore quite natﬁral as a measure of computétional complexity
and actually almost all papers on aternating devices discussed
alternation-bounded models [1-7]. However, there have been very few results
stating a concrete image of the power of alternation like "what more we get if
we allow more ‘alternations”. As far as the author knows, the famous hierarchy
theorem, ZE:AEE and HE:AHE for each finite k, is the only one from this point of
view. , »

In this paper we focus on low-level compiexity using the
single-read/write-tape TMs as the computation model. It is shown that the
precise lower bound of the cross complexity for nonregular languages is

logn, loglogn, logloglogn, ..., log[k]n, eesy, log*n
if we allow , (

0, 1, 2, eeey k-1, ..., unbounded }
alternations to the device, respectively (O0=deterministic and
1=nondeterministic). Thus we have the following trade-off between the cross
complexity c(n) and the alternation complexity a(n) for this lower bound

log*c(n)+a(n)=log*n-1

under the condition that a(n) grows more slowly than log*n. If a{n)>log*n-1
then c(n)=log*n.

This trade-off seems beautiful. An weak point might be the popularity
and/or the importance of the model and the measure, the singlé-tape TMs and the
cross complexity. The following remarks will compensate hopefully: (i) As for
the lower bound of resource usage for nonregular languages, only the cross
complexity of the single-tape TMs reflects the distinction among DTMs, NTMs and
ATMs. (For example, the lower bound of space usage is loglogn for both NTMs and
ATMs. See {2].) Thus inefficientness of the model works well here when
discussing this sort of low-level complexity. (ii) The proof of the present
‘trade-'off theorem will <clarify intuitively the structure how one more
alternation gives us one more logarithm, which might be useful for the future
stdudy on alternating devices. '

Throughout this paper, TMs ' (DTMs, NTMs and ATMs) mean always those device
having a single right-infinite read/write tape. Input strings are given
initially on the leftmost portion of the tape. ATMs M have universal and

-1-

ex1stent1al states but no negatlng states ‘in this paper. We assume that all
ATMs in this. paper have the universal initial state, but of course the 51m11ar
result holds for the other type of ATMs. For a given input string x, a

computation (tree) p of M on x is the following tree T: (i) T's root is

(associated with) the initial configuration of M on x. (ii) If a node v in T is
an existential configuration c then v has at most one son among c's proper
successors. (iii) If v in T is a universal configuration c then v has the sons
corresponding to all of c's successors. The computation p is said to be
accepting if its all sons are accepting configurations.

‘The ith boundary means the boundary between the ith and the (i+1)st cells

on the tape. Take some node v of the computation tree p and let r be the path
traversing the tree from the root to v. Then it is said that (i) path r (or

node v) crosses the ith boundary k times if M's tape head crosses the boundary k

times (from left to right for the first time, right to left for the second time

and so on) while operating along with the path r, (ii) r (or v) makes k crosses

if for any i>1, r crosses the ith boundary at most k times, (iii) computation p
crosses the ith boundary k times if all the nodes of p crosses the boundary at

most k times and (iv) p makes k crosses if all nodes makes at most k crosses.

The ATM M is said to be c(n) cross-bounded if for any string of length n that is

accepted by M, there is an accepting computation tree that makes at most c(n)
crosses.

Also for alternation, we use the similar notations such as "node v makes k

alternations", '"computation p makes k alternations”"” and "ATM M is a(n)
alternation-bounded". Fof precise definition of all those notions see e.g.,
[1,4].

Let. n be a positive integer. Then in this paper logn always denotes

llogznl where |r|, for real r, denotes the least 1nteger > r. Also for each
integer k>2, '

(k] [k-11,,

klhoq

» log " 'n=log(log
I ‘ (k=11
and log n=logn. Suppose that log

and log Then log*n is

defined asvlog*n=k, that means

[k]

2. Languages accepted with log n crosses and

with k-1 alternatlons 31multaneously

In th1s section, it is shown that there is a nonregular language that is

accepted by some clog[k]

n+(k-1) cross— and k-1 alternatlon bounded ATM for any
k>1 and any small constant c. Let b1n(1) denote the string over {0,1} whose
reverse is. the blnary representatlon of the 1nteger i>0 w1th no leadlng 0's.
However, as a spec1al case, bln(23;1) 11...10, i. e., we put one leadlng 0 if the
blnary number con51sts of only 1's. For e#ample, bln(6)'011 and bin(15)= 11110.
VINow let .) : '
' BIN (#}L)(#bln(o)#bln(1)#...#bln(n)#ln>0}

The idea is that if x is in BIN and le—n then the length of each block
surrounded by two #' s is at most logn.

We extend this idea one more step. Let PREBiNanIthere'is y in {0,1}* such

-2~

23U

that xy in BIN} and let bin'(m) denote the string x such that |[x|=m and x is in
PREBIN. Now we define DBLBIN as contains all the strings of the following
double track structure:

PO e
such that (i) n>0 and (ii) u;=bin(i) and vi=bin+(|ui|) for each i. From now op
in this section, to avoid useless confusion, we will use the term "tape" for 4
string with two or more tracks and therefore "string" will be used only for that
on some particular track. Similarly for subtapes and substrings. DBLBIN
includes, for example,

HO#1#01#110#001#101#......#0110101011#

FHAFHHOHHOHAHOHRHORAHHOF#TH#OTH1T 4
It 'should be noted that there is a cloglogn <cross-bounded and 1 1
alternation-bounded ATM (i.e., having just universal states) that recognizes BIN'
or the same cross-bounded NTM that recognizes the complement of BIN. The next‘
lemma will illustrate very well how alternation works to save crosses. (The
lemma is simply a special case of Lemma 2 but we nevertheless prove it for this:

reason.)
Lemma 1. There is a clogloglogn cross- and 2 alternation-bounded ATM M
that recognize DBLBIN for any small constant c. (Recall that "2

alternation-bounded" means M can change from wuniversal configurations to
existential ones just once.)

Proof. Recall that M's initial state is universal. At the very beginning
M splits universally into three submachines MO' M1 and M2. MO checks the syntax
of a given input x: (i) Its upper track is in {0,1,#}* and no two #'s appear
consecutively. Furthermore that has to begih with #0#... . Each subtape of x
whose upper track is of the form #(0+41)7# will be called a large block. (ii)
Every large block B has its lower track of the form BEO0+1))X (0+1) %4
beginning with ##0#... . Again each subtape of x whose lower track is of the
form' #(0+1)*# except for the leftmost two successive #'s will be called a small
block. ' It should be noted that the small block holds on its lower track
#bin(i)# for some i. But the last lower block of each large block B may not be
such a complete string, usually #z# where z is a prefix of bin(j) for some j.
We will call this last small block a rightmost small block (of B). Obviously MO
needs just one scan from left to right and needs only universal states

(deterministic finite automaton).

Suppose that the input x passed the above syntax test. One can see that x
is in DBLBIN if and only if the following conditions (A) and (B) are met. (A)
For all large blocks their lower t_rack can be written as #bin*(m)# for some m>1.
In more detail, for every two consecutive small blocks b1 and b2 of every large
block B, 1if b1 has the lower track that can be written as #bin(i)# for some i
and b2 as #bin(j)# for some j then j=i+1. (This condition will be slighly
modified if b2 is the rightmost small block of B.) (B) For any two consecutive
large blocks B‘I and B2, if B1 has the upper track that can be written as
#bin(i)# for some i and B2 as #bin(j)# for some j then j=_i+1. Rewrite the upper
track ,°fi B, from #bin(i)# into #bin(i+1)#. (Note that this can be done
deterministically with one scan from left to right with no overflow. Recall
that if i=2h-1 then bin(i) has an extra leading 0.) Then one éan see that the

-3-

231

condition above is equivalent to the following: For every pair (b1,b2) of small

plocks, b1 is taken from B1 and b2 from B2,‘ (i) b1 and b2 have the same upper

tracks or (ii) b1 and b2 have different lower tracks. Again a slight
modification should be made if b1 and/or b2 are the rightmost small blocks.

Submachine M1 is responsible to testing condition (A). While scanning -the

input from left to right, at each boundary between large bloks, M1 splits
universally into "continue scanning" process and 'checking the curreant large
pblock" process. The latter process again splits into '"continue scanning"
process and "check the current consecutive small blocks" process at each

poundary of small blocks. Now suppose that M, (the check process) is about to

1

1 and b2. What M1 is to do is very simple,

rewriting - the lower track of subtape b1b2 from #bin(i)#bin(j)# into

$bin(i+1)$bin(j)$ deterministically with a single scan from left to right. (The

test the consecutive small blocks b

symbol $ acts as a delimiter.) If bin(j)=11...10, then the third $ is put on
the. leading 0, one symbol left to the normal position.

Then ‘M1 calls a subroutine denoted by EQ(dwh,$—$-$,L) that checks whether
the two strings z, and z, in {0,1}* appearing in the context $z1$22$ are the
same. The first argument shows that such z, and z, are on the lower track ("up"
if on the upper track) and the third argument shows that z, and z, exist to the
left of the current head position. All the states of subroutine EQ are
universal. It checks (i) whether ,z1l=‘22| and (ii) for every pair (a;,a,) of
symbols, a, in z, and a, in Zy, if a1;£a2 then the position of a, (=the number of
symbols between the left $ and a1) # the position of a,. Both conditions (i)

and (ii) can be verified with clog|z crosses.

|

If b2 is the rightmost small 1block (M1 can tell that fact after scanning
bz) then M1 calls not EQ but PRE(dwn,$-$-$,L) that tests whether the two strings
z, and 2, has the relation z1=zzz3 for some 24 in {0,1}*. What PRE is to do is
~very close to EQ and may be omitted.)

Subroutine M2 is responsible to condition (B). While scanning the input
from left to right, at each boundary between :large blocks, M2 splits universally
into "continue scanning" process and ‘'check the current consecutive large
blocks" process. M2 in the latter process rewrites the upper track of the left
large block out of the two consecutive ones from #bin(i)# into #bin(i+1)#.
While carrying out this rewriting, at each boundary of small blocks{ M2 again
splits universally into '"continue rewriting"” process and "take the left small
block" process. The latter process still continues rewriting the upper track
and at the same time changes a' portion of the tape near the picked small block
b, (holding, say, bin(j) on the lower track) from '

I R e L L e Heeooo

P P 1S T.TE DY ZE S DR,

into
cese e $ommmm-- $--- - Beeoeo
PPN SR 1T TR BT+ TSRS DU,
where --- shows a string without #'s or $'s. Namely, Mv2 changes the leftmost

symbol of this small block and the leftmost symbol of the next small block on
" both tracks into $. .

Then Mz' just skips the rest of the. large block. After entering the next
large block, M2 “again splits universally at.each boundary of small tracks. into

-4~

"continue scanning" process and "take the right small block" process. M, in»ghe
latter process delimits that small block b2 exactly as b1 above using $'s. Then
M2 calls two subroutines EQ(up,$-%$%$-$,L) and DIF(dwn,$-$$-%,L) existentially
(recall that M,

z, and z, are different, that can be done with log|z

are now testing condition (B)). Subroutine DIF checks whether
] 1[crosses using just
existential states ($-%$%$-$ shows. that z, and z, appear in the context
$z1$(0+1+#)*22)-

Unfortunately this construction is not sufficient. = For M2 changes itg
configuration from universal into existential when it calls EQ and DIF, and then
M2 has to change again from existantial to universal in EQ, that is not 3
alternation-bounded but- 3. The following modification is enough. Instead of
calling EQ and DIF at the same time, M2 first calls only - EQ so that M2 can
continue staying in universal states. Recall the construction of EQ. In EQ if
M2 finds the two symbols a, and a, such that a1;£a2 and they are at the same
position, then M2 calls DIF(dwn,$-$$-$,L) or DIF(dwn,$-3$%$-%$,R) depending on the
head position at that moment and this is the only one moment M2 changes from
‘universal states into existential states.

We. need to treat a couple of exceptional cases. Suppose that b1 is the

rightmost small block of the large block B1. "Then in the next large block BZ'
"M, looks at only the rightmost small block as b2 (or if the taken small block is

2

not the rightmost then M2

delimiting is ‘also a little different: If the upper track of the large block B2

falls accepting states immediately). The way of

is not of the form 1*0 then the right delimiter $ is put on # (one symbol ‘left
to the normal position). Otherwise the right delimiter is put on ghe leading 0

(and the same position on the lower track also) in order to neglect that 0 when
compairing the. two strings on - the upper track. Furthermore M2 calls
EQ(up,$-$%-%$,L) and EQ(dwn,$-$$-$%$,L) universally. . Suppose that b1 is located
right before the ‘rightmost one. Then as bz, M_ picks only the small block at

Then

2
the same position (right before the rightmost) in the next large block B,.

again M, calls two EQ's universally.

2 .
Thus we have constructed M as a 2 alternation-bounded ATM. Observe that M

can make the maximum number of crosses, that is.one by the first scan + those bi
EQ + .those by DIF or
: 2109'21|+1
If the- input x (|x}=n) is accepted then it is guaranteed that

lz | <loglogn. ‘ -
It should also be noted that the subroutines .EQ, DIF and PRE can be constructed
so as to save the number of crosses by any constant rate if we increase the
number of states. Thus we can.claim the lemma. - ; :

The next lemma is a generalization of Lemma 1. Again the string bin+(m) or
the language ({#}PREBIN)*{#} that contains such strings as is on the lower track
of DBLBIN, plays a key role. . In .the next lémma,' the tape has another two
‘tracks, totally: four tracks t1, t2, t3 and t from up.to down. . Suppose that
some track ‘t; holds a'string in ({#)PREBIN)*{#} .Then each: subtape of the tape
which has a strlng of the form #(0+1)*# on track t:i is‘called gi—block. (If we
let the :lowér: track of. ‘the double-track-structure tape in Lemma -1 be t2, then
“the small block ‘we :called before. is. called _tz—block by .the new definition.)
Suppose that every ti—block of the tape has, on track tj (tiitj), a string

B

-5

#bin+(m)# for some m. Then t. is said to be one 1level finer than ti' (In

DBLBIN, the lower track is one level finer than the upper track.)
Let QUDBIN be the set of quadruple-track-structure tapes x such that track

" t, of x holds a string in BIN, t. is one level finer than t1, t, is one level

1 2 3
finer than t2 (or we may say that t3 is two levels finer than t1 if t2 is clear)
and all cells of track t4 hold the special character & called a blank.
Lemma 2. There is a clog[k]n+(k—1) cross- and (k-1) alternation-bounded

ATM T that recognizes QUDBIN for anylsmall constant c.

Proof. Basic idea is the recursive call of the subroutines used in the
previous lemma. See ([3].

Lemma 3. There is a log*n-c cross- and log*n-c alternation-bounded ATM
that recognizes QUDBIN for any positive constant c.

Proof. See [3].

3. Lower bounds.

In this section we prove that the result obtained in the previous section
is the best possible for not only the particular languages (DBLBIN and QUDBIN)
but also for any nonregular language in the sense that if ATM M can make
essentially less crosses or alternations then M can recognize only a regular

set. Basic tool in the proof is crossing trees, a generalization of well-known

crossing sequences. Before we introduce the crossin@ trees, we need a couple of
preliminalies. ’]

Lemma 4. Suppose that a string x is accepted by k cross- ahd d
alternation-bounded ATM. M. - Then there exists a (k «cross- and d
alternation-bounded) accepting computation tree T such that at any node in T if
M's head is on the ith cell then i<|x|+g(k) where g is some integer function
determined by M. ‘

Proof. See [3].

A configuration with cross count is (s,j,x) where s and j are the same as

those of the configurations (the current state and head position, respectively).

x is called the tape with cross count being of the form

xch(1)xcr(1)xch(2)xcr(2)...xch(i)xcr(i)...xch(m)xcr(m)
where xch(i) shows the symbol on the ith cell of the tape and xcr(i) is the
number of times M already crossed the ith boundary. (The "tape" means of course
" its nonblank portion or xcr(m—1)#0 and x_ (m)=0.)
Next we generalize the notion of the computation tree. The computation -

tree having root (s,j,x) is ‘the same as the normal computation tree except that

its root is the explicitly given (not necessarily initial) configuration (s,j,x)
and each node including the root is associated with the configuration with cross
count.’ ' ‘ '

o Ffom now on, unless otherwise stated, a ‘configuration means the
configuration with cross count. -Let i and k be positive integers and T be the
computaion tree having root (s,j,x) such that xcr(p)ik for all p and j2>i+1.
Then the 'k cross-bounded cross section of T at the ith boundary is denoted by
SEC?(T). ; SEC?(T) is the set of the dohfiguratibns"c such that (i) c can be

reached from the root of T, (ii) all c¢'s ancestors have head position > i+1, ‘and

(iii) the following (A) or (B) or (C) holds: {2) c's head position is i,
namely, just crossed the boundary for the first time since the root of T. (B) c

—6-

234

is an accepting configuration. (C) ¢ is a rejecting configquration including the
following cases: (C1) c is not accepting and has no successors. (C2) c crosseg
some boundary k+1 times. (C3) c¢'s head position goes off the area describeg in
Lemma 4. SEC)i((T)' is similarly defined if the root's head position j is less
than or equal to i.

Recall that the computaion tree is constructed by the principal rule "one

son from existential node and all sons from universal node". From now we will

call this computation tree the DNF computation tree and introduce the dual one,

called the CNF computaion tree, that is constructed by the rule "one son frop

universal node and all sons from existential node". SECli((T) is similarly
defined for the CNF computation trees T.

Now we are ready to construct the k cross-bounded crossing tree at the ith

boundary CRS};(XO) for an input string Xq- (i) The node set is decomposed into
two disjoint subsets called labeled nodes and unlabeled nodes. The labeleg

nodes have labels of the form (s,cr,y) where s is in the union of M's state set
and (A,R} (A and R mean acceptance and rejection, respectively), cr is 0 or 1
and y is right(x) or left(x) (x is the current tape, left(x) is x's prefix until
the ith cell and right(x) is the rest of x). (ii) The root is specially labeled
with ROOT. (iii) Each labeled node v has its sons like ’

e

ma,
Vo1 O -~ ™

Vos, ;)

where Ujr ey U are (posibly the empty set of) unlabeled nodes, Vorr s Yoy

0

(called direct sons), Viqr eeer Vpg (called indirect sons) are all labled
m

nodes. When we refer to the level of nodes or the hight of the tree, we count

only labled nodes. Therefore if v is at the jth level then all v through v
are at the (j+1)st level. The root is at the 0th level.

The rule of the construction is as follows. First of all a node becomes a

mi

01 n

leaf if the first element of the 1label (state) is A or R. Otherwise suppose
that v is at the hth 1level (h<k) for some odd h, its label is (sh,crh,yh) and
its father has 1lebel (sh_1,crh_1,yh_1). Note that Yh is the left half of the
tape and Yh-o1 is the right half. Then obtain all DNF computation trees T (if Sy
is existential, CNF computation trees otherwise) having root (sh,i+1,whyh_1) and‘
all corresponding cross sections SEC];(T). It is very important to observe the
following: The "wh" above should be the left half of the tape at the moment of
node v. However, one can notice that if our objective is only to get SEC);(T)
then we do not need any information about this L% since we are interested in
only the right side of the boundary at that stage.

Suppose that some SEC?(T):{C} for a single configuraion c=(s,i,why) and ¢
can be reached from the root of T with no alternation. Then we have a direct
son v, corresponding to this ¢. 1Its label is (s,cr,y) where cr=1 iff y has some
ycr(j)=k. Otherwise all the configurations in SEC)i((T) become a set of indirect
sons {wj1,wj2,...,w. . '} having a common unlabeled fgther.

i
) J

-7-

If h=1 (v is at the first level), then we let z=right(xo). The
construction is similar when h is even. If h=0 (v is the root), then we obtain
all CNF computation: trees having root (50,1 left(x)) where Sg is the initial
state. That 1s the construction of CRS (x).

From CRS (x) T we construct the reduced CRS (X), denoted by R- CRS (x),
by the follow1ng step-by-step modification. R CRS (x) has two labellng
function state(v) and tape(v). To get the final R- CRS?(XO) Sf, we first let SO
be the same as T except that if v in T has label (s,cr,y) then in v of SO’
state(v)=(s,cr) and tape(v)={y}. (The reason why tape(v) becomes a set will be
given in a moment.) Let the current R—CRS?(XO) be S. Consider the following
two operations: (i) If v,, and voj are direct sons of some common father v in §

0i
and if state(vOi)=state(v0j) then merge them into v such that

state(v0)=state(voi) and tape(v0)=tape(v0i)LJtape(voj). (The merged node v has
the sons of both Voi and Voj‘) (ii) For a node v, let subtree(v) denote the
subtree of § beginning with node v. Define subtree =st subtree(w) as follows:
If v and w are leaves then subtree(v) =st subtree(w) iff state(v)=state(w).
Otherwise subtree(v) st subtree(w) iff state(v)=state(w) and they have the same
number of sons v1, es ey vj and Wir ey wj for some j such that {subtree(v1),
ooy subtree(vj)} =ct {subtree(w1), cees subtree(wj)}. Now the sedcqnd
operation is as follows: If v and w have a common father and if
subtree(v):stsubtree(w) then trim subtree(w) and change the labeling function
tape into tape(vj) = tape(vj) tape(wj) where vj and wj are two same—positiqn
nodes of the two subtrees.

It is not difficult to see that R—CRS?(X) is determined uniquely by the

input string x, the boundary under the attention and the integer k (upper limit

of crosses). We sometimes denote it by R- CRS (xy), xy is the input and the
boundary is between x and y, if it is more adequate. Now we are ready to show
the following two fundamental lemmas on R—CRSE(X). (Proofs are omitted, see
(31.) ; : .

Lemma 5. R—CRS?(X) with only labeling function state has enough
information to decide whether or not x is accepted with k crosses but not k-1.

iemma 6. If R—gRSt;yz(xyz) =st R—CRSiy;z(xyz) then R-CRSi;z(xz) =St
R-CRSX;yz(xyz) st R—CRSxy;z(xyz).

Then what we have to do essentially to get the following lemmas is to count
st* (For detail see [3].)

Lemma 7. Let M be f(n) cross-bounded and k alternation-bounded (k is a
{k+1]

the number of different R-CRS?(X)'S in the sense of =

constant) ATM. Then M can recognize only a regular set if f(n)=o(log n).
Lemma 8. Let M be f(n) cross-bounded ATM. Then M can recognize only a

regular set unless f(n)>1og*n -c¢ for some constant c¢ but for a finite number of

n's.

4. Conclusion.)

By'summing up all eight lemmas we can get our main theorem.

Theorem. The cross/alternation tradeoff described in Section 1 holds
regarding their precise lower bound for nonregular languages.

23v

References.

{1] Chandra, A.K., Kozen, D.C., and Stockmeyer, L.J., Alternation, J. Assoc.
Comput. Mach., 28,1 (1981) 114-133.

[2] Iwama, K., ASPACE(o(loglogn)) 1is regular, Res. Rept. KSU/ICS 86-01,
Institute of Comput. Sci., Kyoto Sangyo Univ., Kyoto, Japan (1986).

{3]) Iwama, K., Low-level tradeocffs between cross and alternation, Res. Rept.
KSU/ICS 86-02, Institute of Comput. Sci., Kyoto Sangyo Univ., Kyoto, Japan
(1986).

[4) Ladner, R.E., Lipton, R.J., and Stockmeyer, L.J., Alternating pushdown ang
stack automata, SIAM J. Comput., 13,1 (1984) 135-155.

[5] Ladner, R.E., Stockmeyer, L.J., and Lipton, R.J., Alternation bounded
auxiliary pushdown automata, Inf. Contr., 62 (1984) 93-108.

[6])] Ruzzo, W.L., Tree-size bounded alternation, J. Comput. System Sci., 21
(1980) 218-235.

[7) Volger, H., Turing machines with linear alternation, theories of bounded
concatination and the decision problem of first theories, Theoret. Comput,

Sci., 23 (1983) 333-337.

