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Conformally Self-Dual Metrics and Integrability

Kanehisa Takasaki ( % \l\éf /__‘?\, ﬁ)

RIMS. Kyoto University

0. Introduction

Let dsz = gijdxlde denote a four-dinensional Riemanhnian metric

and Rijkﬁ the components of its Riemann curvature. From the

Riemann curvature one can construct the Weyl curvature Ciij
and the Ricci curvature Rij‘ the latter being further

decomposed into the tracefree part Rij - gin/4 and the scalar
curvature R = RijglJ. Conversely the Riemann curvature can be
reproduced from these three fundamental invariants. These

properies are independent of the dimensions.

{ Cijkﬂ (Weyl curvature)
Rijkﬂ I Rij - gin/4 (tracefree part of Ricci)
R {scalar curvature)

A feature specific to the four-dimensional case is that the
Riemann curvature breakes into the self-dual part and the
anti-self-part (written symbolically as R and R_

respectively). The self-dual part (anti-self-dual part) in



itself decomposes into three fundamental components. which are
the self-dual part C, »(anti—self—dual part C_) of the Weyl
curvature. the tracefree part of the Ricci curvature and the
scalar curvature. [t would be worth notiﬁg here that this
decomposition (usuélly formulated by means of "Spinor calculus")
corresponds to the irreducible decomposition‘of a class of

representations of SL(2): see Ativah et al. [1]1. Eguchi et al.

[2], Plebanski [31.

[ C, (self-dual part of Weyl)
R, '[ Rij - gin/4
R
‘ [ C_ (anti-self-dual part of Weyl)
R

A four-dimensional metric is said to be conformally
self-dual if the anti-self-dual part C_ of the Weyl curvature

vanishes. On the other hand it is said to be Einstein (or. more

precisely. Einstein without cosmological term) if the Ricci
curvature Rij vanishes. These notions have iﬁ principle no
relation to each other because C_ and RiJ are distinct
components of the "irreducible decomposition" of the Riemann
curvature mentioned above: their combinétions however yield

various interesting classes of metrics as follows (see Eguchi ef

al. [21).

CLASSES OF METRICS

a) self-dual Einsten:

C_=0.Rj;-9;R/4=0.R=0



b) self-dual Einstein with cosmological constant:

C. = 0. Ry - 9,R/4 =0
c)  conformally self-dual: C_ = 0
d) Einstein: R.. =0

1]
e) Einstein with cosmological term: Rij - quR/4 = 0

class a) < <class b) <« class c¢)
N N
class d) < class e)

Metrics in classes al)-c) share a remarkable property that
they admit a "twistor-theoretical" description (see Atiyah et al.
[1]. Penrose [4]. Ward [5]. Hitchin [6]. Bover [71)). This is a
sort of "coding" of geometric structures that "encodes" a
conformally self-dual metric into a three-dimensional complex
manifold (called "twistor space"). from which., in principle. all
information on the metric can be "decoded". At present such a
satisfactory way of understanding is not known for general
Einstein metrics with or without cosmological term. though there
is an attempt by LeBrun (81 and Manin and Penkov ([91].

The purpose of this article is two-fold: The first one is
to introduce basic ideas of twistor theory to be used to
describe conformally self-dual metrics (spaces): this occupies
most part of this article. The second one is to show how the
method presented in my previous work [10] on self-dual Einstein
metrics can be extended to the case of general conformally
self-dual metrics: this subject is discussed in the last section.
Probably some comments should be added here concerning the first

point above. because the approach to twistor theory adopted here
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may look somewhat different from presently more popular ones
such as that of Atiyah ef al. [11. Until now various methods
are known to built up a twistor-theoretical description of
geometric structures, but it seems that they can be classified
into. roughly speaking. two classes. vOne may be called "feal
methods". which is based on the theorem of Auslander and
Nirenberg on the integrability of almost complex structures. as
adopted by. for example. Atiyah et al. [11. The other one.
going back to Penrose's original work [51. could be célled
“complex methods". whose basis lies in the theorem of Frobenius
on the integrability of Pfaffian systems. A concise account of
the latter approach is provided in Boyer's paper [7]1. 1In this
article we take the latter approach and attempt to make clear.
as far as possible. what roles the notion of integrability plays
in such a twistor-theoretical description of conformally self-
dual metrics. Some basic ideas are also borrowed from the work

of Gindikin [11].

1. From metrics to twistor spaces

1.1. COMPLEX METRIC. In "complex method" one starts from
a "complex Riemannian metric" (LeBrun [8]). i.e. a nondegenerate

complex quadratic form ds2

= gijdzldzJ on the holomorphic
tangent bundle of a four-dimensional complex manifold X. where
Z = (zl. z2. 23. 24) denote a set of local coordinates, and

gij = gij(z) holomorphic functions of =z +that give metric
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components. A complex Riemannian metric may be thought of as an
analytic continuation of a real analyvtic metric on a Riemannian
manifold into a complexification. The notions of the Levi-
Civita connetion. the Riemann curvature. etc. can be extended
quite naturally to such a complex metric (see LeBrun [81). Thus
the classification of metrics mentioned in /ntroduction also
makes sense for complex metrics. In what follows we consider

complex metrics alone. calling them simply "metrics".

1.2. NULL TETRAD. Representing a metric ds2 by the

components gij is actually not very useful for our purpose. A

better way is to use a null tetrad (or null vierbeinl.i.e. a set

1 2 3 4 1 2 4

of I-forms (e’ . e“, e“. e’) on X with e A e™ A e3 A e

# 0 for which the metric is written

. 3 1

(1) ds® = 2ele® + 2¢3e? = 2 det { e ¢ ]
- e

A metric can always be written (at least locally) as above as

far as the metric in question is nondegenerate. To see this.
1 2 3 4

first take an orthonormal frame (o . 0. . o ) of 1-forms:
then define el. ‘e e e4 to be: --

e1 = wl + /—lw2 e2 = ml - J—1m2.

83 = m3 + /-1m4. e4 = 03 - /:Tw4.

which indeed give a null tetrad that represents the metric as

above. Note here that even if one starts from an ordinary real

Riemannian metric. the 1-forms el. e e4 do not bhelong to



the cotangent bundle itself., but its complexification. This is
a reason why the present formulation inevitably requires the

notion of complexification.

1.3. STRUCTURE EQUATIONS AND CONNECTION COEFFICIENTS.

Given a moving frame of 1-forms. the derivation of various
geometric quantities (the Levi-Civita connection. the Riemann
curvature. etc.) can be reformulated by means of exterior
differential forms instead of tensor calculus (see Eguchi et al
(2]). This often simplifies calculations to a cosiderable
extent. In this respect the use of a null tetrad is of
particular importance. because it causes a decomposition of the
Levi-Civita connection (see Atiyah et al. [11, Plebanski (3].
Bover [6]1) which corresponds to the decomposion of the Riemann
curvature into the self-dual and anti-self-dual parts.

To give a more precise account to this, let us use the so
called "spinor notation": Let o. 8, ¥. ... be a set of indices
("undotted" spinor indices) and «. 8, ¥. ... another set of
indices ("dotted" spinor indices). both of which take values in

{1. 2}. A null tetrad is then regarded as a set of 1-forms

o

e with two spinor indices: --
. e11 el2 e3 e1
(2) (%% = . s
e21 e22 - e e

Spinor indices are raised and lowered under the following rule:

_ 8 8 _ . ob .--..é é:-
Ea—easﬁ . F, —Eae . na"easn « 0 ﬂae

&b
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where €, (= %8y ang €. (= €®®) denote the totally anti-
symmetric spinors to be determined by the contions that eaB
= e&é =1 for (x.B) = (a,B8) = (1.2).

o

[f the null tetrad (e ") 1is taken as a moving frame.
Cartan's first structure equations for the Levi-Civita

connection can be written

(3) de®® + F+d8 A eBa + r_“- A eaB = 0.

where F+a8 and T _ B denote 1-forms with the symmetry

(4) r r

vap = Tegar T-ad = T-da

t-forms r,%, and r_%; satisfying (3) and (4) are unique. and
can be calculated from the null tetrad. Now let S+ denote the
rank-two vector bundle of undotted spinors u® on X and S_
the rank-two vector bundle of dotted spinors la on X. Then

taking them as connection coefficients. one can intruduce two

. ) o ) o,
connections v _ =d + (', g) on S, and v_ =d + (I'_ B) on

S_

These connections give a decomposition of the Levi-Civita
connection as mentioned above. Indeed. choosing a null tetrad
is eqivalent to fixing an isomorphism TX ~ S_® S_, and under
this identification of TX and S5,®5_ the Levi-Civita
connection agrees with the tensor product v_® v_. Accordingly
the Riemann curvature splits into the direct sum of the
curvature forms of Vv_ and V_. which are nothing but the

self-dual part R, and the anti- self-dual part R_ of the



Riemann curvature (see the references cited above for details).

1.4. A PFAFFIAN SYSTEM. We now introduce a new variable

A running over a Riemann sphere Pl and consider the following
Pfaffian system on Pl x x (or, to be more precise. the pl-
pundle P(S_): see Atiyah et al. [11. Boyer [61): --

3 1 |

e” + xe” =0,
(5) - e2 + Ae4 = 0,
d)\ - 9 = 09

where 9 denotes the 1-form

1

-
5 ¥ A(r_ r

(6) 2 = A" T_ 1 s e

The integrability conditions of system (5) in the sense of

Frobenius take the following form:

d(e3 + xel)/x(e3 + Ael)A(— e2 + Ae4)A(dA -92) =0,
(7) d(- e2 + Ae4)A(e3 + lel)A(- e2 + Ae4)A(dx -2 = 0,.
3 1 2 4

didx - 2IA(e” + re JA(- e“ + 2e’IAldr - 92) = 0.

The following proposition is a key to the present construction.

1.5. PROPOSITION [1.4 - 7.113. Integrability conditions

(7) are eqivalent to the conformal self-duality C _= 0.

1.6. REMARKS. i) Eqgqs. (5) and (7) are form-invariant

under "gaudge transformations" of the null tetrad,

e3 e1 e3 e1 -1
(8) 2 4 '-'> 9,_'_ 2 4 .Q._ .
- e e - e e

if x 1is simultaneously transformed as
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1

(9 X ===> (Q_21 + Q_221)(Q_11 + Q_lzx)
where ¢ = (2 ) and g_ = (2_4p) are GL(2)-valued
functions.

ii) In the above argument we gave an explicit form of the

1-form 9 1in advance. but this is actually unnesessary because.
as noted by Gindikin [11]. integrability conditions (7) (to be
more precise. the first two equations) determine % uniquely

except for the trivial indeterminancy

(10) 9 ---> 9 + linear combination of e3+1e1. -e2+1e4.

From the last equation in (7) one then obtains a system of
equations which are indeed equivalent to C_ = 0. (It is not
hard to see that the above indeterminancy of 92 does not
affect the final result.) In applications this method of
finding an explicit form of the equation C_ = 0 1is sometimes
much simpler than directly executing the calculation of F_&é .

etc.

1.7. TWISTOR SPACE. As the proposition stated above

shows. a conformally self-dual metric d32 (represented by a
null tetrad) defines a completely integrable Pfaffian system (5).
Let 7 denote the set of its maximal (two-dimensional) integral
manifolds. Under some assumption on the "convexity" of X with
respect to these integral manifolds (see, for example. Ward (51])
7 forms a three-dimensional complex manifold. which is exactly

a twistor space corresponding to the given conformally self-dual
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metric (see Boyer). The space-time manifold X and the twistor
space J are connected by the following triangular diagram of

maps: --

p
(11) =P xx ---2_3 ¢

where Py is the projection onto X and Py is the map that
assigns to each point (x. z) of % the integral surface of
(5) (i.e. an element of 7J) passing through (x. z). This
diagram gives a curved space version of the so called "twistor
correspondence". which defines a correspondence of subsets of X

and of 5 such as

"point <---> subset"”
or

"subset {(---> point"i

Note. in particular. that to each point z of X corresponds

1(z) of ¥ which is a nonsingular curve

the subset 92°P;
isomorphic to Pl with normal bundle is isomorphic to the pull
back of the vector bundle O0(1)®0(1) over P!. Thus the
spave-time manifold X can be interpreted as a parameter space
of this four-parameter family of curves in J. Moreover, this
family becomes "complete" in the sense of Kodaira (see Penrose
[4]1. Ward [51. Hitchin [6]1. Gindikin [111). Such an
ihterpretation of the role of space-time is a Key to the problem

of how to (re)produce a conformally self-dual metric from a

twistor space (see Penrose [41. Ward [(5]. Hitchin [6] for

10



details): we shall discuss this in 82.1 and §2.2.

1.8. FIRST INTEGRALS. The complete integrability of

Pfaffian system (5) means that there exist (locally) three
independent first integrals. We write them u% = ua(x. z) (&
= 0. 1, 2). Each integral manifold belonging to J can be

represented by a set of local equations as: --

(12) Wi, 2y = % (x=0, 1, 2).

where ca's are constants that depend on the integral surface.

These constants may be thought of as representing a point (or
its coordinates in a local coordinate patch) in 7. because the
first integrals (uO, ul. u2) give a representation of the map
P, in terms of local coordinates.

These first integrals can also be characterised as

independent solutions of the linear equations

(13 Llu = [- 183 + 81 + (= 1@3+ Ql)a/exlu = 0,

L [xd

2u 5 + 84 + (x@2 + 94)8/81]u = 0,

where 81. ceaa 84 denote the dual null tetrad. i.e. a unique

frame of vector fields obeying the orthogonality relation

(14) <ed. 8, = aab (Kronecker's delta).

and @a {a = 1. .... 4) the tetrad components of 9
_ a

(15) 9 = ﬁae .

As simple calculations show. integrability conditions (7) then

become equivalent to the condition that the commutation relation

11



(16) (L,. L,J = QILI + Q2L2
is satisfied for some functions Ql and Q2 of (X, Z).
From the above linear equations we can derive another

characterisation of first integrals. To see this. let us note

the formula df = (8 fle? = (Slf)el oL+ (84f)e4 + (3, f)dx
that holds for any function f on X. Applying it to uo, ul.
u2 and using Eqs. (15) one can compute duO. dul. du2 as:
0 _ 0 _ ,_ 0, .1 0,.2 0,.3
du” = (183u ( 1@3 + @l)alu Je  + (82u Ye“ + (83u le
0 0, 4 0
+ (- 182u - (192 + 24)81u Je + (eku Ydx
= @ ulrdr - (- 29, + 2.0e! - 12, + 2,0eh)
X 3 1 2 4
+ (83u0)(e3 + Ael) - (azuO)(-e2 + Ae4). etc....
Eqs. (13) thus turn out. to be equivalent to the following
equation (cf. [10. section 21): --
0 0 0 0
du alu 83u -82u 1 93 - 92 dx - 2
1 _ 1 . 1 1 3
(17) du = alu 83u 82u 0 1 0 e + ae
2 2 2 2 _ .2 4
du eku 83u 82u 0 0 1 e + xe

1.9. AN EXAMPLE. We now consider the case where the null

tetrad takes the following form: --

3 1

e” = dx + Adp + Bdg. e = dp.
(18) - > . 4
- e~ = dy + Cdp + Ddg. e’ = dq.
where (p, 9, X, y) are coordinates in X and A, .... D are

functions of these coordinates. (In fact. this assumption does

12



not cause any loss of generality. because any null tetrad
representing a conformally self-dual metric can be re-set into
the above form after some gauge and coordinate transformations;
see Boyer and Plebanski [12].) The dual null tetrad can be

written

e
]
[eD)
(¢))
]

o) 5 = 9, | =8, - Ad - Ca.

5 v 4 8q - Bax - Day.

|
3]

n
(o3
(e

1}

where ax = 9/8x. etc. After a long and tedeous
calculations it can be shown that the tetrad components of the

1-form 9 take the following form: --

D. 9,

1 9

- 84A + 818.

©
"

- 82C - 83

B. 2

(20)

1
o)
Tl

82A + 9

3 4

The conformal self-duality of the metric now reduces to the

following system of equations: --
8194 - 8491 + 9192 + @394

(21) 81@2 - 8291 - @3@4 + @493 0.
9293 - 8392 = 0.

n
.

We next consider first integrals of Pfaffian system (5).
It should be note here that the notion of first integrals of an
integrable Pfaffian system is of local nature: at any point
there indeed exist a maximal number (e.g. for the case of (5).
three) of first integrals. but in general they are defined just
in a small neighborhood of that point. From the point of view
presented in [10]. first integrals of particular interest are
those defined in a neighborhood of (x. p. 9. X. ¥y} = (=, 0. 0,

0. 8). A detailed analysis shows that one can choose such first

13
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integrals to have the following Laurent expansion in x: --

_ 0 g
u = x o+ ug + u_lx + e
(22) ul = px o+ x 4 pug_ + uflx'l + L.
u? = ax o+ oy o+ qug + u%l,\_l, oo,
where the Laurent coefficients of uq (. = 0, 1, 2) are written
Ug = uﬁ(p. d, X, ¥) (n=1, 0. -1, ... ). From a geometrical

point of view a more appropriate choice of first integrals would
be to take (1/u0. ul/uo. u2/uG) (which also gives a triple of
intependent first integrals), because those in (22) carry poles
at X = o whereas the latter are regular at x = « 3and give a
coordinate representation of the map Py in the corresponding
local chart in J. Nevertheless the choice as shown in (22) is
rather useful in order to make clear the relation to the
approach presented in [(10].

Relations connecting first integrals and null tetrads
become particularly simple for the case of first integrals with
the Laurent expansion as showh in (22). To see this, let us
insert (22) into (16} and consider the infinite number of
equations thus obtained for the Laurent coefficients of the

1 0

first integrals. From the coefficients of x and x . in

particular, the following equations arise: -

0 0 0 _ 0 _ 1
(23) - A(l + paxuo) - Cpeyu0 + Uy qu_l axu_1 =0
0 0 _ 0 _ 1 _
(24) - B(1 + paxuo) - Dpayu0 Syu_1 ayu_l 0,
0 0 0 2
(25) - AQd u, - C(1 + qeyuo) - 9u_y o.uZ, = 0,

14



. _ 0 _ 0 0 _ 0 _ 2 _
(26) quxu0 D(1 + qeyuo) t Uy ayu_l ayu_l = 0.

Thus in generic position (for example, if p and gq are

sifficiently small) the coefficients A. .... D of the null
tetrad can be reproduced from the Laurent coeffcients ug. u?l.
1 2

u_;. u-, by soving the above linear algebraic equations.

2. Construction of metrics

2.1. TWISTOR-THEORETICAL CONSTRUCTION. Let 7 be a

three dimensional complex mnifold with the properties mentioned
in §1.7. i.e. J contains a complete (in the sense of Kodaira)
four-parameter analytic family of rational curves (i.e. curves
isomorphic to Pl) whose normal bundles are isomorphic to 6(1)
®0(1). Under some condition (convexity etc.) this family of
curves forms a four-dimensional complex manifold, which we
write X. We now briefly review how a conformally self-dual
metric on X <can be produced from these data: for details. see
references [1. 4-7. 111.

We first re-defirne basic triangular diagram (11) from the
above data. There is no problem in the definition of the first
projection P,- The second projection P, can be defined as
follows. Take any point (z. x) of ¥ = P! x X. To the point
z of X there corresponds a rational curve 2 in 9. which

one may identify with an embedding map

15



(27) 5 .pl > g

that parametrises the curve as x ---> %(x). We then define P2

as follows:-
(28) Py(x. Z) = 200 ( (X, 2) € F ).

To see that p2 is of maximal rank. we have to specify in more
detail the structure of the tangent space TZX and the tangent

map dp2 ¢ T F --> TQ(A)f. (If ¥ 1is the twistor space

(z,x)
obtained from a conformally self-dual metric as discussed in
§§1.1-7, the above maps indeed agree with those in the original
construction.)

From the assumptions we have the following isomorphism:
(29) T X = r(N(2)).

where N(Q) denotes the normal bundle of the rational curve é

and F(N(%)) the set of all its global sections: this is

- pasically due to the "completenes" of the analytic family of

rational curves {Q: z € ¥X}. Since we also assumed that
(30) N(2) =~ Q*(etl)eotl)).

F(N(2)) certainly forms a four-dimensional vector space: recall
that T(0(1)) =~ {polynomials of first degree in one complex
variable } = €2 (see. for example. Hitchin [61). Geometrically.,
the right side of (29) represents the infinitesimal deformations
of the curve 2 embedded in 7.

The kernel of the tangent map dp2 I § 7 _">Tﬁ(1)7

(x,z2)

16
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now can be specified as follows. Since T ¥ decomposes as

(X,2)

T F = TllP1 ® TzX‘ any tangent vector at (x. z) can be

(x.2)
represented as yal + v, v € €. v € TzX‘ dp2 does not wvanish
on Tlpl because 2 : Pl --> 93 is an embedding. and causes an

isomorphism between dp2(TAP1) and Ta (Q). the tangent space

Z(x)
of the curve Q at Q(A). Therefore by factoring out the sourse
and target spaces of the tangent map dp2 by TAIP1 and

T%(A)(é) respectively, one obtains a linear map

(31) TX =T ?/TAPI <> NA. . (B) = TA. . T/TA. . . (5)

(x.z2) Zx) AGQ] yAOW]

for which the following relation holds:
dP1
(32) Ker((31)) = dp, (Ker(dp,)) (==~ Ker(dp,).

On the other hand it is not hard to see that linear map (31) is
just the composition of isomorphism (29) with the evaluation map
C(N(2)) -=> N%(l)(%) that assigns to each section its value at
the point 2(x). Thus under isomorphism (29) we have the

isomorphism

(33) Ker((31))
~ {5 € F(N(%)); s wvanishes at some point of the curve Q}.

Recalling that T[(N(2)) =~ r@(1e6(l)) = {(sy. 5,01 5

are polynomials of first degree in one complex variable } =~ C4

and 52

(cf. (30)). the right hand side can further be specified as:

(34) Ker((31)) =~ {(51. 52): S4 and So are polynomials in
one complex variable that vanish
simultaneously for some valuel},

17



which evidenlty forms a two-dimensional complex vector space.
This. in particular, implies that the tangent map dp2 is of
maximal rank. Moreover. not only its dimension. we can also
give a more explicit represenation of Ker(dpé) as follows.  Let

9;+ 95. 95, 8, denote the tangent vectors in dp,(Ker(dp,))

|
‘that correspond to (s

1

1, 52) =‘(l| 0)0 (GQ -1)0 (1. 0). (Dq l)
respectively under isomorphism (34), and el. e2, e3. e4 their
dual cotangent frame (cf. (14)). Then from (34) one can show

without difficulty. that

(35) dp (Ker(dpzi) C-28, + 8) & TXD, + 3,)
= {e3 + Ael = - e2 + 1e4 = 03%.

1

The structure of the "spatial"” part of Ker(dp2) is thus made

fully clear. Because of the isomorphism dp Ker(dp2) 3

l:
dp, (Ker(dp,)) the kernel itself can be represented as: --
i _ 2

(36) Ker(dpz) {<£9. v>al + v i v € dp

1
€3+ ael = -e2 s et =ar -2 = 0).

(Ker(dp2))}

where 9 is a complex linear form on TZX whose evaluation is
written v --> <2. v>.

The linear forms el. RSN e4 and %2 on TZX found above
then define (at least locally) holomorphic 1-forms on X
because of the analyticity of the parametrization X =~ {rational
- curves 2 in 7}, the last formula (36) then being valid at
every point of %. We can thus reproduce a Pfaffian system of

the same form as (5). Besides. this Pfaffian system is

integrable (i.e. Egs.(7) are satisfied) because the fibers of

18
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p2. under some convexity condition. give a foliation in % each
of whose leaf is a two-dimensional integral manifold of the
Pfaffian systems. In particular. the metric to be constructed

from el. e e4 as in (1) is conformally self-dual.

2.2. COORDINATE REPRESENTATION AND ITS GEOMETRICAL MEANING.

To describe the above construction more explicitly. we now cover

the manifold J with coordinate patches as J = U U(i) where
i€l

. . _ 0

each U(i) carries a set of local coordinates u(i) = (u(i).
1 2 :
u(i). u(i)). Local coordinates u(i) and u(J) are related on
Uy MUy as: ==
o _ o 0 1 -

(37) u(i) = F(ij)(u(j). u(J). u(J)). o =0, 1. 2
The functions F - w9 .Fl F.2.) (i € 1) arising

(ij) (i3 (ij)* " (iJ)

above are called "patching functions" of the twistor spacé 7.
In terms of these local coordinates and patching functions the
family of rational curves in 7 are represented by a set of
functions u?i)(x. z) (¢ = 0.1.2. 1 € 1) which are defined on
pél(U(i)) respectively and which satisfy Eqs. (37) for all 1.
j € 1. These functions. moreover. have another definite

gemetrical meaning. that is, they are first integrals of

Pfaffian system (5). This is obvious from the construction
o

(i)
of the image of the map Py with respect to the above local

because the u (x, z)'s arise as the coordinate-components

coordinares (recall that Py gives a fibration whose fibers are

two-dimensional integral surfaces of Pfaffian system (5)).

19
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Thus we find an alternatiove formulation of the twistor
construction of conformally self-dual metrics. which consists of

the following steps:

i} To give an appropriate set of holomorphic patching

functions F (i, j € 1) for which the corresponding

(ij)
twistor space includes a complete four-parameter family of

rational curves.

ii} To find a set of holomorphic functions u?i)

- 0.1.2. i € 1) of five variables (1. z) = (x. z'. .... zh
that satisfy Egs. (37). where =z runs over a (coordinate patch
of a) four-dimensional complex manifold and X over an open
subset D ,,(2z) of P! that may move as z varries. It is

moreover required that the D {(z)'s cover the whole Riemann

(i)
sphere

(38) Pl = u D
i€l

(i)(Z)'
(In. the case discussed above. for example, D(i)(z) = {x € Pl:

-1
(U(i))}.) |
iii) To construct a null tetrad (el. e e4) and the

(x, z) € p2
corresponding metric ds2 from u?i)(x. AR

Some examples of self-dual Einstein metrics are indeed
constructed along the above process (see Curtis et al. [131],
Ward [141, Tod and Ward [151, Hitchin [161). In general,
however. the above construction is very hard to éxecute. The

hardest step is ii). The first step is rather easy because. as
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pointed out by Penrose [4]1. such a complete family of rational
curves do exists as far as the corresponding twistor space 7
is a "small deformation" of the flat one P3 N\ Pl. Finding its
explicit form. on the other hand. is extremely difficult in
general and this forms a main difficulty in this constfuction.
The last step. iii). includes nothing difficult as we observed

in previous sections.

2.3. SIMPLEST CASE. In order to illustrate the above

construction in more detail. let us now consider the simplest
case where 7 is covered by just two coordinate patches as J

= U vy and where the corresponding covering of Pl. Pl

(0) (@)
= Dyy(2) VD,(z). consists of two discs with center at 0

and <« ., respectively: see Penrose [4]. Bover [7]1. Curtis et al.
[131. Ward [14]1. Tod and Ward [15] for details . The family of

rational curves parametrised by X 1is now represented by two

triples of functions. uf,,(x. z) and uf,,(x. 2) (a = 0,1.2),

0

(o) (s

For the sake of convenience we here further assume that u

zZ) is normalises as: --

0 -1

() (Xe Z) = X7+ 0(x"2

(39) u ) as A = @,

(In fact. as a simple argument shows. this does not harm the
generality of the present argument). According to what we

observed in §1.9. we now consider the following functions: --

0

(40) ud = 100 1 1

_ 0 2 2
(o) U 7 Ua

_ 0
AUy U7 = ULy

/U -

From their Laurent expansion we can pick out four functions Xx.

21



y, P, 4 as in (22). As far as the manifold J 1is "close"
enough to the twistor space of the flat space. the functions X.
y, P, 4 are (at least in a small neighborhood of (p, q. X, ¥)
= (0. 0, 0, 0)) functionally independent and. therefore. can be
’adopted as new local coordinates in X. From the construction
u®(x. z) and u

?O)(l. z). z = (P, 49, X. ¥V). nhow sa{isfy the

functional equations

0 1

o Y { ) 2
(41) ux, z)y = f (u(o)(k. zZ). u(O)(A. z), U(O)(A. z))
(¢t = 0. 1, 23,
where
0 _ 0 1 _ o1 0 2 _ L2 0
(42) | f- = I/F(Om). f° = F(ﬂm)/F(Dw)’ f= = F(Ow)/F(Ow)'

F?Ow)’ o = 0. 1. 2. being patching functions between the
coordinate patches U ., and U ,. Thus for the present case
the problem of finding a four-parameter family of rational
curves in 7 reduces to solving Eqs. (41) under the additional
requirement that uO(A. z), ul(x, z)/uo(k, z), uztx, z)/uo(x.
z) and u?o)(x. z) (z = (p, 4, X, ¥)) be holomorphic in U(w)
and in U,. respectively. where U, , and Uy are
considered open subsets of €3. |

Once the curved twistor construction is re-formulated as
above. it is now quite straightforward to incorporate a group-
theoretical description of conformally self-dual metrics just
the same way as for the case of self-dual Einstein merics
discuSsed in [10]J. To see this, we define holomorphic local

transformations u(p.q), u(O)(p,q) and f in @3 (the first

two include (p. gq) as parameters) to be
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ulp, @ : (x, x. y) --> (. p, 9. X. y))
. v o o
(43) u(o)(p. g): (A, X. V) > (U(O)(l. P, 9. X, ¥))

f o, x.y) -=> (f%. x. y») (x = 0, 1. 2),

where the variables (1. X. y)} are now considered global

coordinates in CS. Egqs. (41) then can be written

(44) uip. q) = f o u(O)(p. q).

The local transformation u(p., q9) can further be decomposed as
(45) ulp, q) = T(p.g9) © ¢(p.q).

where

T(p. g): (Xxv X, ¥) ==> (Ao X + PA, ¥V + qy},

(46) o(p., g): (Xx. X, ¥) =-=> (uO. u1 - P, u2 - qa).

Therefore Eq.(44) can rewritten

(47) 9P, @ O u g, (P oY s T-p. ) 0 f(p. Q.

Thus we encounter a decomposition problem in the pseudo-group of
holomorphic local transformations in CS very similar to the
one in [10]. that is. to decompose the local transformation
T(-p. -q) o f into the composition of such two local
transformations that arise on the left side of Eq.(47). Note
that e¢(p. @) 1is now holomorphic in D, (P, 9. X. V¥).

As mentioned in /nfroduction, conformally self-dual metrics
includes self-dual Einstein metrics as a special subclass. It
is also straightforward to characterise them in the present

formulation. They indeed correspond to the case where the
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following conditions are satisfied (cf. [10] and references cited
thereinl): --

1 2
0 - o(f~, £7) _
(48) f (., X, ¥) = X, a(x. vy -

2.4. AN APPROACH BY MEANS OF GRASSMANN MANIFOLD. We now

conclude this article by showing how the geometry of conformally
self-dual metrics can be encoded into a sort of dynamical motion
in an infinite dimensional Grassmann manifold (see [10] for the
case of self-dual Einstein metrics). We present here basic
ideas alone. and omit the full details of the formulation.

The argument employed to derive this result is almost the
same as those in [10]1. Roughly speaking. it proceeds as

follows: --

i) Take an appropriate pseudo-group I’ of holomorphic
local transformations in CS and a vector space V of
holomorphic functions of (X, X. y) 1in some domains of CS

such that the map

p¥ 1 T --> GL(V),

(49) 1

where p (f)(£) = £ 0 f~ for f e€r and £ €V,

defines a linear representation of the pseudo-group T.
ii) Let V¢ denote the linear subspace of V that
consists of elements of V which are also holomorphic in some

neighborhoods of x = 0, and 7v(¢(p, gq)) the one defined as: --
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(50) ye(p, 9)) = p (e(p. ) V.

iii) The linear subspace vy(¢(p, q)) of V gives a moving
point in an infinite dimensional Grassmann manifold GMv (see
(10]) with p and g multi-time parameters.

iv) The dynamics of the above moving point is described by

the following simple law: --
(51) Y(@(p. q)) = exp(prd/ax + qxa/3y)y(e(0, 0)).

where exp(pxd/9x + dqxd/3y) 1is considered a linear operator

that acts on V as:
(52) expP(pPrd/9X + qrO/9VIE(X. X. y) = E(X, X + PX. YV + q1)

for £ = E(x. X. y) € V.

The choice of the I' and V is the most delicate part of
this construction. In order to avoid cumbersome analytical
arguments and to make algebraic features more clear. one may as
well take a formal framework as adopted in [10] for the
description of "formal metrics”: various algebraic tools
developed therein can be applied to the present case almost the
same way (with slightest modifications). For example. the
vector space C<x. X. y> and its variation CU[p. qll<x. x. y>
defined in [10. section 5]. which is formed by formal power
series in x. 1_1. X. ¥y satisfying some conditions. can play
the role of V. The role of I' is then played by a group of

3

"formal" transformations in C that can act on the above
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vector spaces of formal Laurént series through the linear
representafion shown in (49). Such a "formal transformation
group" includes various "formal loop groups" introduced in [101:
the latter become subgroups of the fbrmer and can be reproduééd
by imposing constraints as shown in (48).  By use of'such
aléebraic tools the aboﬁe arguments 1) - iv) can be justified on

a mathematically rigorous basis.
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Corrections to "Conformally Self-Dual Metrics

and Integrability"”

Kanehisa Takasaki

There are two mistakes in this article that should be corrected

as follows.

page 17. line 17. (33) 1is incorrect.' The correct

statement is:
Ker((31)) ~ {s € F(N(Q): s vanishes at Q(x)}.

page 17. line 21. {34) is incorrect. The correct

statement is:

Ker((311) =~ {(s,. 5,511 s and s, are polynimials of
degree one in one complex variable that

vanish simultaneously at 3.
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