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Algebraic surfaces for regular systems of weights

ABSTRACT:> We costruct following families of surfaces by compactjfying Milnor fibers.

i) 49 families of K3-surfaces with certain curve configulations, most of which
admitt elliptic fibrations over P .

ii) 9 families of algebraic surfaces of K= 1, q = 0, % = 1 or 2 with elliptic
fibrations over P .

jii) 6 families of algebraic surfaces of general type satisfying the numerical
equalitiy B = [cf/2) + 2 for ¢f= 1,1,2,2,3,5.

(K:=Kodaira dimension, %,:=geometrjc genus, a:=irregularity, ¢

IZ=second Chern number)
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¢1 Introduction

(1.1) Pinkham [20] gave an interpretation for the Arnoid’s strange duality 11,
using comapactifications of 14 triangle singularities of Dolgachev [5], where the
comactifications are K3 surfaces with certain curve configulations. Looijenga
studied such compactifications in details for triangle and Fuchsian singularities
{15,161, to describe possible singularities in the deformation of them.

Along similar idea, we study compactifications of some hypersurface singularities
listed by regular systems of weights [24], As a result we obtain 49 fémilies of K3
surfaces with curve configulations for minimally elliptic singularities of Laufer,

9 families of elliptic surfaces of Kodaira dimension | and 6 families of surfaces



of general type with the equality % =£é’/2]+2. (See (1.6),(1.7),(1.8) and $'s 2,3,4)
One motivation of this paper is an attempt to extend examples of period maps
associated to primitive forms(cf (3.6),018),[261), which were well understood

only for simple and simple eltiptic singularity cases.

(1.2) We briefly recall Pinkham’s compactification %, at a special point 1 of the
modulti S . A review on weighted homogeneous singularity of dim 2 and the constru-
ction of the family §G (tESZ& of the surfaces for the singuiarity are given in §5,
which prepare notations and concepts for the paragraphs 2,3 and 4. Some readers

may be suggested to go directly to §'s 2.3 and 4 and refer to %5 for notations.

(1.3) Let positive integers a,b,c and h with GCD(a,b,c,h)=1 ,called a reduced

system of weights, be given. The hypersurface X,:=( (x,y,2)EC : f(x,y,2)=0 )

for a weighted homogenocus polynomial fix,y,z) = X crhxiyJZk with coefficients
ai+bjrch-h

generic in € has an isolated singular point at the origin 0, iff the following

rational function in T dose not have a pole on the unit cicle (Tl = 1 (cf [231).

o Q*‘-T“)(Tk - (Th-T9)

A(T) =
(T% =118 =1)(T® =1)

We call such (a,b,cih) a regular system of weights. Then X(T) can be developed in,

m m
Ty = T T2 e T

for some integers ml,...,mp , called the exponents for (a,b,cih). This establish

Solatéd
a one to one correspondence between the hypersurfachETﬁgjlarity Xo with a Cx-action

th-a)di=b)rth-)

and the regualr system of weights up to a suitable equivalence, Here M:= abe

is the Milnor number of the singularity. The smallest exponent = a+b+c-h =:¢ is
characterized by several means ( for jnstance [83,0323,[231), playing an important
roll for Xp. For instance the singularity Xp is a rational double point for £> 0,

a simplty elliptic singulariy for €= 0, and a Fuchsian singutarity for £= -1,

(1.4) For a regular system of weights (a,b,cih), let us consider the hypersurface
X; 1= ¢ (xiyiziw)€P(a,b,c.1) @ f(x,y,z) = wh ),

where P(a.b,c,1):=(€%=(0))/((x,y,z,wn( 14, Py, €2, tw) for te€X). ¥, is a compact-

ification of the Milnor fiber X;:=( (x,y,2)e€3: f(x,y,2z) = 1 ) by adding a curve at

~
infinity, Denote by Xl the surface of the minimal resolution of the singularities of
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of ;‘at infinity. Put Dg:= YI’ X, and call it the divisor at infinity, which defines
. a star froming dual graph with the central curve E .
. ~

o 2 ~
For example, X, is a rational surface with K= 2 for €> 0 , X =X, is a Del Pezzo

surface for €= 0, and Y‘ is a K3 surface for £=-1 (See for instance [ 1{ 3I[ 1L 1.)

(1.5) After the above mentioned systems of weights (a,b,cih) with €= 0 or &1, we
are interested in the following three extremal boundary cases in the present paper.

i) (a,b,c:h) having only one negative exponent € without 0 exponent.

ii) (a,b,cih) having only one negative exponent £ with some 0 exponents.

iii) (a,b,cih) such that the smallest exponent §&:= a+b+c-h is equal to -2 .

(1.6) The surfaces %, far the first group (1.5) i) is studied in §2.

There are 49 = 22+7+8+2+7+3 such reduced regular systems of weights according
as £= -1, -2, -3, -4, -5 and -7 (See [241), All these weights defines minimally
elliptic singularities i, in the sence of Laufer [141 (cf. (5.7) iv) b)),

This group includes 22 systems of weights with &= -1 for Fuchsian singularities,
particularily 14 exceptional unimodular singularities. Including these Fuchsian
cases, the surfaces %a for the group (1.5) i) have the .following descriptions,

There is a maximal sub-configulation Dy of De which can be blow down to

% -4
a_smooth point. The blow down surface X, := X,/D; is a K3 surface with a

curve configulation Da/D . (Particularly D, = ¢ for Fuchsian singularities.)

o~ .
There is a sub-configulation D; of D4/D;, whose linear system defines a fibration

f Xy over P , most of which are elliptic fibrations.

—

The detailed descriptions of the divisor Dy and the fibration are given in § 2.

Note 1. Shioda’s study on elliptic surfaces [29].

&
(1.7) .The surfaces X; for the second group (1.5) ii) are studied in §3,
There are 12 = 9+2+1 reduced regulér systems weights according as €= -1,-2 or -3

for this group. The surface Y, is already minimal whose Kodaira dimension K is equal

1o 0 or 1 according as &= -1 or less, The geometric genusl% and the first Chern

number c, of the surface are 1 and 0 respectively. The linear system }-tE,| defines

an elliptic fibration which admitts a glabal simple double or triple section

according as €= -1,-2 or -3. The details will be described in §3.

3
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~

(1.8)  The surfaces Xy for €= -2 of the group (1.5) iii) are studied in §4.
There are 21 reduced regular systems of weights with &€= -2, In this case the

e Where E, is smooth of genus

cannonical divisor of the surface is given by K§ = E
|
a, and E; = ap~- l. Here a, is the multiplicity of 0 exponents.
N ~
Therefore the surfaces Xy are classified according t0 a, as follows.

i) a,= 0: There are 7 regular systems of weights of this class. They belong

to the class of (1.5) i) too, which are studied in $§2. By blowing down the

curve E, ,» One obtains a family of elliptic K3 surfaces as described there,

ii) ay= 1: There are 8 regular systems of weights of this class, Two of

them belong to the class (1.5)ii) studied in $3. The remainings are surfces of

Kodaira dimension I<= 1 with the irregularity g = 0 and % = 1. The linear system

lE,! defines the elliptic fibration over P' which has a global section.

iii) ap,> 11 There are 6 regular svstems of weights of this type. They give

families of surfaces of general type. The pair (Pa,cf) of the geometric genus

and the second Chern number of %; are (4,5),(3,3),¢(3,2),(3,2),(2,1) and (2,1),

which satisfy a relation % = [07/23 + 2. The linear system lE,l defines either

a g=2 fibration, a triple or double covering or an embedding as a quintic surface.

The more detailed description of the surfaces is given in §4.

Note 1. These 21 regular systems of weights are naturally corresponding
10 co-compact subgroups [ of SL(2,R) satisfying ;.ﬁ)&{' (cf. (5.3) Note 2.).

Note 2. In general an inequality ng [c?/2] + 2 holds. Those surfaces
with the equality are studied by sevral authers Enriques, Noether, Moischezon,

Horikawa, Todorov and others (cf [131,0321,(281).

(1.9) The auther was supported by MP1l for Math. in Bonn in SDriné '85 when he was
preparing this paper. He expresses his gratitude to Prof. Hirzebruch and the
members of the institute for the hospiatlities and encouragings. He also
expresses his gratitude to E. Brieskorn, E. Looi}enga, I. Naruki, F. Sakai,

E.fSato. A. Todorov, M. Tomari and J. Wahl for their inspiring discussions.
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§ 2 The class having one negative exponent without 0 exponent

In this paragraph, we study the surfaces for regular systems of weights which has one
negative exponent but no 0 exponent. The main results formulated in (2.5),(2.6) show
that the most of them give families of elliptic K3 surfaces,

(2.1) Systems of weights for minimally elliptic singularities.

Consider a weighted homogeneous hypersurface isolated singular point at 0 'in Cg,

(2.1.1) Xo i= ¢ (x,y,2)€@: f(x,y,2) = 0 ),

(2.1.2) flx,y,2) =2 ¢ xtylzk .
avtbyeck=h , ‘ © Definition

where (a.,b,cih) is a reduced regular system of weights (cf. (1.3),(5.5)).

The singularity Xy is minimally elliptic (characterized as DS = 1, Laufer [141),

iff there exists one non-positive exponent for (a,b,cih)(cf(5.7)iv)b)). The conditfon
is equivalent that either ane of the followings‘holds((S.S.T),[24 (4.3)1):
(2.1.3) i) €= - and min(a;b.c) > -€ + b

ii) min(a,b,c) = =€ + 1.

The TABLE 1. is a recalling of the tist of reduced reguiar systems of weights

(a,b,cih) satisfying i) or ii) fram [243. (The 14 systems of = -1 Type [1 in the
table satisfy the innequality i) and all the remainings satisfy the equality ii).)
TABLE 1.
(a,b,c:h) exponents
€ =0 '
(1,1,1:3) 0,1,1,1,2,2,2,3
(1,1,2:4) 0,1,1,2;2,2,3,3,4
(1,2,3:76) 0,1,2,2,3,3,4,4,5,6

€= -1 Type I,

(2,2,3:8) -1,1,1,2,3,.3,3,4,5,5,5,6,7,7,9
(2,2,5:10) -1,1,1,3,3,3,5,5,5,5,8,8,8,9,9, 11
(2,3,3:9) -1,1,2,2,3,4,4,5,5,6,7,7,8,10
(2,3,4:10) -1,1,2,3,3,4,5,5,6,7,7,8,9,11
(2,3,6:12) -1,1,2,3,4,5.5,6,7,7,8,9,10,11,13
(2,4,5:12) -1,1,3,3,4,5,5,7,7,8,9,9,11,13
(2,4,7:14) -l.1,3,3,5,5,7.7,7,9,9,11;11‘13.IS
(2,6,9:18) -1,1,3,5,5,7.7,9,9,11,11,13,13,15,17,19

J..



€= -} Type 11.

(3,4,4312)
(3,4,5:15)
(4,5,6:16)
(3,5.6:15)
(4,6,7:18)
(6,8,9:24)
(3,4,8:16)
(4,5,10:20)
(3,5,9:18)
(4,6,11:22)
(6,8,15:30)
(3,8,12:24)
(4,10,15:30)
(6,14,21:42)

¢ = -2
(3,3,4:12)

(3,5,5;15) °
(3,5,7317)
(3,5,10:20)
(3,7,9:21)
(3,7,12:24)
(3,10,15:30)
E=-3
(4,5,7:19)
(4,5,8:20)
(4,5,12:24)
(4,7,10:24)
(4,7,14:28)
(4,10,13:30)
(4,10,17:34)

(4,14,21:42)

-1;2.3,3,5,6,6,7,9,9.10,13
-1,2,3,4,5,6,7,8,9,10,11,14
-1,3,4,5,7,8,9,11,12,13,17
-1,2,4,5,5,7,8,10,10,11,13,16
-1,3,5,6,7,9,11,12,13,15,19
-1,5,7,8,11,13,16,17,19,25
-1,2,3,5,6,7,8,9,10,11,13,14,17.
-1,3,4,7,8,9,11,12,13,16,17,21
-1,2,4,5,7,8,9,10,11,13,14,16,19
-1,3,5,7,9,11,11,13,15,17,19,23
-1,5,7,11,13,15,17,19,23,25,31
-1,2,5,71,8,10,11,13,14,16,17,19,22,25
-1,3,7,9,11,13,15,17,19,21,23, 27,31

-1,5,11,13,17,19,23,25,29,31,37,43

-2,1,1,2,4,4,4,5,5,7,7,8,8,8,10,11,11, 14
-2,1,3,3,4,6,6,7,8,9,9,11,12,12,14,17
-2.1,3.4,5,6,7,8,9,10,11,12.13{14.16’19
-2,1,3,4,6,7,8,9,10,11,12,13,14,16,17,19,22
-2,1,4,5,71,7,8,10,11,13,14,14,16,17,20,23
-2,1,4,5,7,8,10,11,12,13,14,16,17,19,20,23,26

-2,1,4,7,8,10,11,13,14,16,17,19,20,22,23,26,29,32

-3,1,2,4,5,6,7,8,9,10,11,12,13,14,15,18,22
-3,1,2,5,5,6,7,9,10,10,11,13,14,15,15,18,19,23
-3,1,2,5,6,7,9,10,11,12,13,14,15,17,18,19,22,23,27
-3,1,4,5,7,8,9,11,12,13,15,16,17,19,20,23,27
-3,1,4,5,8,9,11,12,13,15,16,17,19,20,23, 24,27, 31
-3,1,5,7,9,10,11,13,15,17,19,20,21,23,25,29,33
-3,1,5,7,9,11,13.15,17,17, 19,21, 23, 25,27, 29, 33,37

-3.1,5,9,11,13,15,17,19,21,23,25,27,29,31,33,37,41,45
6
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£= -4

- (5,6,9324) -4,1,2,5,6,7,8,10,11,12,13,14,16,17,18,19,22,23,28
(5,6,15:30) -4,1,2,6,7,8,11,12,13,14,16,17,18,19,22,23,24,28,29,34
E= -5
(6,7,9:27) -5,1,2,4,7,8,9,10,11,13,14,16,17,18,19,20,23,25,26,32
(6.8.11:30) -5,1,3,6,7,9,11,12,13,15,17,18,19,21,23,24,27,29,35
(6,8,13:32) -5,1,3,7,8,9,11,13,15,16,17,19,21,23,24,25,29,31,37
(6,8,19:38) -5,1,3,7,9,11,13,15,17,19,19,21,23,25,27,29,31, 35,37, 43
(6.16,21;48) -5,1,7,11,13,16,17,19,23,25,29,31,32,35,37,41,47,53
(6,16,27:54) -5,1,1,11,13,17,19,23,25,27,29,31,35,37,41,43,47,53,59
(6,22,33166) -5,1,7,13,17,19,23,25.29,31,35,37,41,43,47,49,53,59,65,71
g€= -1
(8,9,12:36) -7,1,2,5,9,10,11,13,14,17,18,19,22,23,25,26,27,31,34,35,43
(8,10,15540) - =1,1,3,8,9,11,13,16,17,19,21,24,27,29,31,32,37,39, 47
(8,10,25;50) -7.1,3,9,11,13,17,19,21,23,25,27,29,31,33,37,39,41,47,49,57

(2.2) The polynomial f(x,y,z,X) and (m+.mo,m_).

Let f(x.,y,z) be a weighted homogneous polynomial (2.1.2) having an isolated
critical point at 0, for the system of weights (a,b,c:h) of TABLE t.(cf (1,3). Laufer
{14, appendix] has already listed such polynomial equations for minimally elliptic
singularities. Among them, 3 cases for = 0 are simplly elliptic singularities [ 1
and 14 cases for €= -1 Type Il. are exceptional uﬁimodular singutarities [ 1. In
general, singularities for = -1 are called Fuchsian (L 1),

In the TABLE 2. we recall and complete the list of polynomial f(x,y,z, ) with

m -number of parameters X=(X,....) » where m_, m

m’ and m_are dimensions of positive,
0 .

0

zero and negative graded part of the universal unfolding of f respéctively (5.7.2).

The poliynomials are normalized for a later application (see (2.4) Note.).

TABLE 2.
;é;bac:h) v M m_,mo;m+ poliynomial
(1,1,1:3) 8 0,1,7 x(x=y ) (X~ W) - yz O a%0, 1.
(1,1,2:4) 9 6.1,8 Xy (x=y)(x-Ay) - z ' A50, 1.
(1,2,3:6) 10 0,1.9 y(x.-y)(x -ay) -z AkO, 1,
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S = -1 Type I.
(2,2,3:8)
(2,2,5:10)
(2,3,3;9)
(2,3,4:10)
(2,3,6:12)
(2,4,5:12)
(2,4,7:14)
(2,6,9;18)
€= - Type 11.
(3,4,4512)
(3,4,5:13)
(4,5,6116)
(3,5,6515)
(4,6,.7:18)
(6,8,9:24)
(3,4,8516)
(4,5,10:20)
(3,5,9;18)
(4,6,11:22)
(6,8,15:30)
(3,8,12:24)
(4,10,15:30)
(6,14,21:42)
€= -2
(3,3,4:12)
(3,5.5:15)
(3,5,7517)
(3,5,10:20)
(3,7,9:21)
(3,7,12:24)

(3,10,15:30)

18

16

1,0,11
1,0, 11
1,0,10
1,0,11
1,0,10
1,0,9
1,0,12

1,0,11

1,0,10
1,0,13

1,0,12

3,1,14
2,014
2.0, 14
2,0,15
2,0, 14
2,0,15

2.0,16

yl " il
Xy(y=x")(y=-ix~) - .2z

L

X{x=y)(x=Ay)(x-dy) + yzl L#O.I,A,#LL

Xy (x=y ) (x=y) (x=1y) + z2 l§0,1, 1
Wy + z(z-y)(z=1y) Az0,1.

x(Z=x21(2-Ax2) - vz 20,1,

Cytexdytaaxdy o+ 22 10,1,

y(y-xl)(y-ixz) - x22 X£0,1.
9.

y(y-xj)(y-}x3) - 22

L'L

x' + yz(y=-2z)

Oy o+ oyZz o+ 2

x o+ ylz + 2%

3 3 2

Xz + y? + xz

x3y + y3 + Xz

2
x¥ + y3 + le
YXV + Y22 + Zl

2

2

X2 + yTz + z

x3z o+ xyd + z%
yx? + xy3 + z2
£, Xyz + ZQ

)(5124-5/*?4'2':Z
yx; +yd e 22

X

x/ + y3 + 22

Xy{x=y)(x=-Ay) + 23
s

X" + yz(y-z)

7 A+0,1.
xgy + y22 + zlx

xfy + yzz + z‘2

x7z + y3 + zzx

xkz + xy3 + z2

X

o3 2



£= -3
(4,5,7:19)
(4,5,8:20)
(4,5,12:24)
(4,7,10:24)
(4.7.14:28)
(4,10,13330)
(4,10,17:34)
(4,14,21:42)
&= -4
(5,6,9:24)

(5,6,15:30)

€= -5
(6,71,9:27) .
(6,8,11:30)

(6,8,13:32)

(6,8,19:38)

(6,16,21;48)

(6,16,27354)

(6,22,33:66)

€= -1

(8,9,12:36)

(8,10,15:40)

(8.10,25:50)

20

20

19

20

18

20

21

20

21

3,0,15
3,0,15
3,0,16
2,0,15

2,0,16

3,0,16

3,0,17

4,0,16
3,0,16
3,0,16
3,0,17
2,0,16
2,0,17

2,0,18

4,0,17
3,0,17

3,0,18

151

Bz Bx v Py
Wz o+ yf o 2x
3

x“z + yyx + 72
X6 - ylz + le
x,7 + yzz + 21

xfy PVE 2x
xéy + y3x + ZQ

Ty + 43 + 2

Sz + v3x + 3
X; + y3X + 22y

4

xby + ¥+ 22

X
xy + y¥x + 22
$ o+ 3 Ay
xT o+ y3x + 22
T+ y? o+ 2
3 ¢,

X7z +y

X&+y¢+z:zy

23

Fy v yF e 2

As a consegence of the table we see and it is not hard to prove the following.

Assertion i)

m

Mo

i) The polynomial

in x,y and z.

polynomial f(x,y,z)

1

[}

fix,y,z,2)

( ee{a,b,cy : e < -2¢) + 1,

{ ee{a,b,c) ¢ e = =-2¢8) .

can be expressed as a sum of m, + 3 monomials

Particularly if myg = 0 (which is most of the cases), the

\

is unique up to automorphisms of the coordinate ring.

(Proof is a combination of (5,7.2), (2.1.3) and [23 (1.9.1),(3.6)1.)

9
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(2.3) From now on in this paper, we caonsider only the 49 cases with £< 0 , Note
that the .intersection form for the middie homology group of the Milnor fiber for
this class of singularities has signature (U, 6, u ) = (2,0,04-2) (cf (5.7.4)).

(2.4) The minimal good resalution T: g;-—é Xo of the singularity Xo (2.1.1) is

described in (5.6)(cf [61,0141,0191,[213). The exceptional set ﬁ&O) defines a
star shaped dual graph (5.6.1), whose central curve is denoted by EO' The dual
graph is numerically determined by the data: i) the genus of Eo= g(Eo). which is

always 0 in this case ((5.6.3)) so that it will be omitted, ii) the self intersection

n

number Eo = -(1 + B( eefa,b,c) ¢ e = d+1 )») (cf (5.6.4)), iii) the set

A = (o,....,pr) of the aorders of the cyclic isotropy subgroups of the Fuchsian
group ' at the branching points on Ep (5.6.5), iv) the number d:= h-a-b-c = -&,
(The pi'svfor the 14 exceptional singularities are well known as Dolgachev numbers.)

)
Al

Furthermore the anlytic data of the resolution is determined by the positions

of the branching points on Eo =IP‘. Hence we give a rational parametrization:

P E, ( (x:y:z)elP(a,b,c) @ fi(x,y,z,A) = 0)
t > (x:y:2z)
of the central curve Eo .

We shall describe in the TABLE 3. the following data for every regular

systems of weights (a,b,c:h) aof the TABLE 1..

i) The set A = ( pl...f.p»).

ii) Polynomial presentation (x(t),y(t),z(t)) of the parametrization:tP'~9 Eo'

iii) The values 1 aof t at the branching points p; on Eo.

iv) The order of zeros (nxa,ny;,n};)_gi (x(t),y(1),z(1)) at the branching point: p;.

v) The dual graph of the exceptional set T (0).

( We used p;'sea as for the identification of the branching poinis oan Eo')
Note. In the TABLE 3. the polynomials f(x,y,z,)), x(t), y(t) and z(t) are normalized
as.follows. (Recall that the branching points lie on the coordinate axis (5.6).)

i) (the values of t at branching points of E,? = (the roots of x(1)y(t)z(t)=0>YV (00).

P 0 Cnyy £a, 0 <, <D and 0 <y & ¢ for pigh = (p,....p ).
iii) N ”gm and ny, are defined by the following relation.

25 Ngp a [a

: Nyof= tmy+ 1D for €= -1, or = (m + 2)|b| for £5 -2.

= nz«.‘ c c

10
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TABLE 3.

“(a,b,cih) A:=(p‘ ,...,pr) parametrization of Ea dual graph

€= - Type I.

(2,2,3:8) 2,2,2,2,3

t = 0.1, 019 %))

=21 1 11 x == tH =1 Ct= A t=4,), D ED

ny= 1L L2y == DA (= A, &3)

4 - 4 2

na=22221 z=it-Dic-a¥ -0 (7 <)
(2,2,5:10) 2,2,2,2,2

t = 0,1,MA,®

ne= 2 1 111 x ==t2(t=-1)(t- ApCt-Aa), £D )

ng= 11112 y == t(t=1)0t- A (t- A, 9

ng= 33333 z =23 t-19 (- A% (- A £3)
(2,3,3:9) 2,3,3,3

t = 0,0,1,2

ng= 111 x = - t(t-1)(1=1), Q) £3)

ny= 3111 y = Tt(t=1)(t=2), &)

ng= 3211 z =1t2(t-1)Ct- 1) & )
(2,3,4:10) 2,2,3,4

t = 1,24,2,0

ne= 1111 X =-t(t-1)(t-)1), ) ~3)

ny=221 1 Ly o=tt(t-1 (t-a7, )

ng=2213 z = t30t-17 (t-1)%, <) D
(2,3,6:12) 2,2,3,3

t =0,0,1,4

n= 1111 X = tit-l)(t—k). 9 @ @

n,= 22 1 1 y =ttt -1 (t- ),

¥

ny= 4332 z = AP (-1 (t-ak ) &
(2,4,5:12) 2,2,2,5

t = 0'],}’00

ne= 1111 X ==t(t-1)C(t-3), £9 £2)

n,= 3221 v o= 3= (t-02

? 3-19 (120, ) 2

ng= 33 31 z =3¢ - - . s
(2,4,7514) 2,2,2,4

t=20,1,A,

ne= 1111 X ==t(t=1Ct=2),

ng= 322 | y = -1 -a", <) (2)

n= 44 42 z =3t%(t- ¥ (t-0*, 9 \@
(2,6,9:18) 2,2,2,3

t=0,1,1,%

= 1111 X ==t(t=-1)(t-3),

* O 3 12y} S /@

ny= 4332 y =-th (-1 -2y, )

n,= 555 3 z =#t5 -1 -2, 5
Type 11, 9
(3,4,4:12) 4, 4, 4

t=w, 1, 0

ne= 11 1 x =tt (t=1) , D)

ng=1 1 2 y ==tict-1)

n=1 2 1 z =-t (t-D)?%,

N
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(3,4,5:13)

(4,5,6:16)

(3,5,6:15)

(4,6,7:18)

(6,8,9:24)

(3,4,8516)

(4,5,10:20)

(3,5,9:18)

(4,6,11;22)

(6,8,15;30)

PR - 8w

cwN 8wm BN -8 w nwn 8N wNn - 8w e w8 w8 W - 8B w wwmn 8o

o0 &~ W8 N

-

-

-

-

-

41
)v
‘»\-

-

-

R o~ o — (1

-

NN — - W

-

NN — =

W R = W

-

WRN — — &

-

gy W N — W

— - — O O

W — —- O U

N = = O WU

- . — O O —_—_ — o o _——_— O

_— - O~

W - - O M~

N - - OO

RN - —~ O 0

X =ttt (t-1) ,
y ==t (t-1) ,
z =ttt (t-1)%.
X ==t (t-1) ,
y =it (t-1)
z =-t (t-1)~,
x =tt (t-1) ,
y =2t (t-1)%,
z =-t (t-1),
x ==t (t-1) ,
y =-t (t-1)%,
z =3t (t-1)*.

2

x ==t (t=-1)7,

<

==t (t-1)3,

z =4t (t-1)3,

<

N <

x

N

N < X

tt(t-1)
-t (t-1) ,
=-tI(t-1 #

-

.

-t (t-1)
2t (t-1)
=<3 (t-1)%,

-

-

=4t (t-1)
=4t (t-1)*%

=otl(1-1)
=zt2(t-1)%

-

-

=-1 (t=1)
=-1 (t-1)?
=+t12(t-1)3,

-

-

==t (t-1)%,

==t (t-1)%,
=112 (t-1)%,

12

()
9.
&) & ARE

)
o

£3)
D




(3,8,12:24) 3, 3, 4
t =0, 1,0
ng= 1 1 1 X =%t (t-1) , 6
ny=3 3 2 y = t3(t-1)7, @)
y v )~
ng=5 4 3 z ==t (t-1)7, C9
(4,10,15:30) 2, 4, 5
t =0, 1, 0
=2 1 1 z ==t (t-1) , 90
ny=5 3 2 y = tr(t-1), D
n,= 6 4 3 z =33 (t-1)1,
(6,14,21:42) 2, 3, 1
t=m, 1, 0 i
ng=3 2 | x ==t (t-1)*,
ny=7 5 2 v = 12(t-1)5,
ng=11 7 3 z =17 (t- )7,
€= -2
(3,3,4312) 3,3,3,3
= A
t=0.12, . Z
ng= 3222 x =t -1y (-7,
ny=2223 y=tttce-1t(-07,
ne= 3333 z=-t3ct-127 (t-2)3,
(3,5,5:15) 5§, 5, 5
t=0w 1,0 5
ne=2 2 2 x =tt2(t-1)°, (- 2D)—<=3)
ny=3 3 4 =;t‘*(t—1)1, - E—C2)—L2)
ng=3 4 3 z=330t-DF, CD—C3
(3,5,7517) 7, 5, 3
t_ 0, ,) w B
ny=2 2 2 x =tt2(t-1)%,
¥ 3
ny=3 3 4 y=F0ct-1)7, CO—CD—CD)
ng= 4 5 5 oz =rfee-1)7, C2D)—Y)
(3,5,10520) 5, 5, 3
t=0,1, @ ,
ng= 2 2 2 x =xt2(t-1),
ny=3 3 4 y= -0,
=1 6 1 z=tH(t-1)¢,
(3,7,9:21) 9, 3, 3
t=20,1, 0
2 2
ng= 2 2 2 x =ttf(t-1?%, C2—L2)
ny=4 s 5 y=2ttc-d,  COD—C2)—2)
ng=5 6 1z =mtfie-nb, C2)—Cs)
(3,7,12524) 1, 3, 3
t=0, 1,
ny= 2 2 2 x =sit-1?, CH)—(2
ny=4 5 5 y =tt*ce-1) -—C2)—(2)
n,=171 8 9 z =-tF(t-1)¢ , C)—C4)
(3,10,15;30) 5, 3, 3
t=0,1, 0
n=2 2 2 x =2t2(t-17%, £D—(D)
ny=6- 7 1 y‘t:(t~!)7, CO—LD)—C2)
[}
np= 9 10 11z =%tT (-1, C2)—C3)
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= -3

(4,5,7:19) 1. 5, 4
: t =0, 1, 00 )

np=3 2 3 x o= t3t-12, CD—D—D

ny= 4 2 4y =t —E)—2)

n=5 3 6 oz =3t5(t-1)3, C—C2)—C3)
(4,5.8:20) 8, 4, 4

t=o0. 1, 0 i

ng= 2 3 3  x = ti(t—\);, OO L)—CD—CD

ny= 2 4 4y =t2(1-DF, ‘

ni= 3 6 1 oz =-t3ct-DS, D—D—2
(4,5,12:24) 5, 4, 4

t =0, 1, 0 , ,

ny=2 3 3 x=t72~<t-r)?, G CD—C2—(2)

Ny= 2 4 4 y =:t2(t-1)%,

ni= 5 910 oz =_t5ct-17. C)—C2—C
(4,7,10:24) 10, T, 2

t = 0, 1, 0

ng= 3 3 2 x=-ti_(t—1>7, E)—L2)—L3)

n,= 5 5 4 y =#t’(1-1)7, 2

ni= 1 8 5 oz =-tT(t-1)7. C2)—2)—C9)
(4,7,14328) 1, 1, 2

t=o0, 1, @

ny=3 3 2 x=-ti(t-l)‘i_,' CD—( (3

ng=5 5 4y =ttf(t-1)%, C2—(2)

ng=10 11 1z = to(t-1), D—)—D
(4,10,13:30) 13, 4, 2

t= 0, 1, ®

ng= 3 3 2 x ==t3(t-1)3, 22— 2)—(2)

ny= T 8 5 y=-t?ct-1)8, C2)—C2)

ng= 910 7z =st?ct-1)l, D—)—C5)
(4,10,17:34) 10, 4, 2

t= 0,1, ® :

= 3 3 2 x =t3(t-1), CD—C—L(2

ny= 1T 8 5y ==t*ct-1)3, G2)y—2)

na= 12 13 9z =#12(1-1)3, D—(2—L9
(4,14,21:42) 7, 4, 2

t =0, 1, 0

=3 3 2 x = t3t-13, CD—)—C

ng=10 11 Ty = tAt-nY, C2)—C2)

ng=15 16 11z =tth(t-1k, D—CD—(3
£ = -4 N
(5,6,9i24) 9, 5, 3

t =0, 1,0

ny=4 4 2 x =it2<t-|)‘;. LD—C)—CD)—=2

ny=5 5 2 y=trt-0%, EB—C2

no=7 8 3 z=3t3t-18, CD—CED—C)—)
(5,6,15;30) 5, 5, 3

t =0, 1, 0 . . ’

=442 xo=at GenY, CD—(D—(D—D

ny=5 5 2 vy = t2(t-1>, (E3)—C2)

ng=13 12 5z =Ft"t-1)2, CD—CD—CD)—(2)

4



t=x -§
(6,7,9:27)
t =
nx=
ny=
nz=
(6,8,11,30)
t =
ﬂx=
n7,5=
nE=
(6,8,13:32)
t =
n}=
n,,j=
nz=
(6,8,19:38)
t =
nx=
n‘1=
ng=1
(6,16,21;48)
t =
Ny =
n-|1=
n;_=
(6,16,27:54)
t =
n,‘=
ng=
(6,22,33:66)
t =
Ng=
ny=
nz=
£ = -1
(8,9,12:36) 8,
t = 0,
n,= T
ny= 8
ng=11
(8,10,15:40) 1
1t =
nx=
n‘ji]
nl~
(8,10,25;50) 8
St =0
n1= 7
nyg= 9
Y
n =22

7, 6, 3
0, 1, ®
3 5 4
3 6 5
4 8 b =2
1, 8, 2
@, 1,0
5 4 3
1T 5 4
9 1 6
13, 6. 2
0, 1, ®
4 5 3 x=t‘;<t-1>§, H—O C)—L—C3)
5 1 4y ==t (t-1)7,
811 1z =xt3¢t-1)", CO—->—CD—C2)—<2)
8, 6, 2
0, 1. 0 _ .
45 3 x=t§_(t-l)7, Q@ D—2
5 1T 4 oy =-t°(t-1)", (2)
216 10z =2t 1-1f6, CD)—D)—CD)—(2D)—42
21, 3, 2
0, 1,
5 4 3 x=-t5(t-1):*,, D c—(2)
1311 8 vy ==thct-1)", €2)
17 14 11z =4t'%t-1)*% COD)—CD)—C2D)—C2)—(5)
16, 3, 2
0, 1, ® S
5 4 3 x=—t'§(t-l)”, S CD—CD
1311 8y ==t"(t-1), €2
22 18 14z =2 t-1)8, CD)—)—C)—(2D)—<=9)
1, 3, 2
0, 1, 0
5 4 3 x=-ty(t-l)7, C2—L2D ‘
1815 11y = tf-17, D—E) ~
27 22 17z =+ 1-1)*2 O—CD)—C)—(C2—<3)
4’ 3 ‘
1, 00 .
6 3  x =-t*(t-1°, 2D
13y =ttf-07?, —L(2) ,
9 4 z =-thce-n?, )—D)—(2)—CD—CD)—2)—<2
5, 5, 2
0, 1, 00
T 5 4 x=-tF(t-0)%, C2y—3)
9 6 5 y=-ttt-0f, D—Y
3 9 8 oz =#t"%t-17, D D)—()—(2)—CD)—(2)—E€3)
., 5, 2
, 1, ® ; ¢
DI e O | |
15 13z =#t2% -1 CD—CD—C2)—D)—LD)—C2)
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As a consequence of the above calculations, we obtain the following.

Assertion i) The number r of the branches of the resolution graph is given by

r=mg+ 3.

ii) The coordinates of the branching points on the central curve Eo can be chaosen

to be 0,1,0, Aly..., Ay where (A,..., A is the coordinates for the S,(= the degree 0 .
—_— == ! LY 0 —_—

part of the universal unfolding of f (cf. (5.7) i)) used in the TABLE 2. .
i) a Ny, Ny,
det.{ b nya ny, = 11

C Nzg Ny

iv) The shape of the resolution graph, forgetting about the self-intersections of

the components,depends only on the integers m_ , m, and €:= a+b+c~h (= -d).

v) The cannonical diviser Kg (5.6.7) depends only on the shape of the graph.
)

In the foliowing TABLE 4. we list the shape of the dual graph and the
coefficients of the cannonical diviser for the minimal good resofution above.

TABLE 4.

o
[}
'

3
n

3
f

L3S

- 0
-2 -1
-1 -2 -2 -1
€= -2, m_ = 3, my= 1 -3
-1 -2 ~ 2 -1
-2 -1
€= -2, m_ = 2, my= 0 -1 -2 -3
-2 -1
-3 -2 -1
€= -3, m_ = 3, my= 0 -1 -2 -4
-3 -2 -1
-3 -2 -1
€= -3, m_ =2, m=0 =20 -4
-3 -2 -
-4 -3 -2 -
€= -4, m_ = 3, my= 0 -2 -5
-4 -3 -2 -

16
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Note. Many of the above graphs have the figure of affine Coxeter graphs of types

54, E, (k=6,7,8). Such singlarities (called Kodaira sing.) are studied in [10].

(2.5) Compactifications.

The compactification‘?t‘of a Milnor fiber X; for t€S is described in (5.8).
Recall that Yt = KtU Dy, (5.8.3), where Q; is the minimal resolution of the affine

variety Xt(5.7.3) and Dm is the divisor at infinity (5.8.4)., The cannanical divisor

of it is K§t= Ko * EE&FZ where K, is the cannonical divisor at infinity and K, is

the cannonical diviser of the resolution f;——% Xtof a singular point.x on Xt(5.8.7).
In this paragraph in TABLEs 5,6. we shall describe Dy and Kg explicitely.

Before giving the TABLEs, we summerize some of their structures in the foilowing

~ ~r

Theorem, ‘which .implies that a minimal model Yt of Yt is a K3 surface for tGS;

Theorem Let (a,b,cih) be a regular system of weights of TABLE 1. Let (f;.D”)

for tES; v be a pair of the compact smooth surface and its divisor at infinity for

(a,b,cih) as described in (5.8). Then the divisor Dw has the follwing decomposition.

(2.5.1) : Dw= D'UDQUDS

with the following properties:

i) The divisor D, in X, can be blow down to a smooth point. Let us denote

~ ~

~

by T: it -_— i} the blow down map, where X := Yt/D‘ is the smooth surface.

t

17
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ii) The cannonical divisor Kw is equal to the cannonical divisar of the map@, (l.e,

Km=div(ﬁ}(uﬂ) for a nonvanishing holomorphic 2-form (can Q% near the point?UD').)

t

This is equivalent to say that the cannonical divisor K;fgi X, is given bv

(2.5.2) K

where the sumation is over singularities of the affine surface Xt( cf.(5.8.7)).

~ ~
~

iii Put D, := T Dy . Then D. is either one of the fallowings.

2

~~ ~
a) A system of smooth rational curves whose intersection diagram is D¢ or Ek (k=6,7;

b) Three smooth rational curves intersecting at a point normally each other.

c) Two smooth ratignal curves cantacting at a point of order 2 ar 3.

d) One rational curve with a cusp singular point of type (2,3),(2,5) or (3,4).

(Here (p.qg)-cusp is a plane curve singularity, locally given by a equation x?- %= 0.)

complete o ~ ~
v) The [l inear system'Dzliﬂ Xt defines a fibration of Xt over\P', most of which
A

are elliptic fibrations. (For exact descriptions, see (2.6).)

v) 63:= %(03) is a union of smoath raticnal curves of selfintersections -2, whaose

connected components are of types either Ay Al'QL Ag.

A A~
A A

Corollary The surface f} is a K3 surface with a curve configulation Dw/D = ozvo

Vs

for teSf(the rational double point part(cf (5.7)ii)). Hence the middle homoiogy

group  Hyp(xy,2Z) of a Miinor fiber of the polynomial of TABLE 2. is embedded in the

~r
~

A
fattice of the K3 surface as an orthogonal complement of the classes of DlUDs.

-~ o
} ~ g ~ 1
(2.5.3) Hy (4 1) T ¢ 2[Dyu 5]

A proof of the theorem is done, if we have explicitely determined the divisors Do
and Ky >which will be done in the following TABLEs 5. and 6.. An explicite excecution
of the calculations is as described in §5 and is omitted from this paper.

For a proof of the Corollary, see (5.9).

The following TABLE 6. describes the dual graph of Dn and its decomposition

D,UDLUD3 foar each (a,b,c:h) Ei TABLE 1, These data together with that af the
position of branching points on E, E;, and A:= (B vveesp ) in the TABLE 3.,

completely determine the divisor Dw at infinity.
i8
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X
In the following TABLE 5. we summerize the data: 0,UD, and DZ’

Here DI (resp. DZ ) is described by dotted (resp. real) lines.

TABLE S.

g= -1 The configulation D,

is always void. The configulation Dy is a

union of smogoth rational curves whosg inteLsection diagram is aone of
the affine Coxeter diagrams of type 0, or Ey (k=6,7,8) (cf TABLE 6.).

€= -2, m_= 3 and 2.

-4 -4 2E,
1
q V) DL = :
I O A
. Ep
Ko = 2 Egt E
&= -4, m_= 3. 2E,
\
- v 72E,
\\/
O, V0, = 5
__________ Lo
/' ER:

-6 -3g, -2
= IE,
|
q U QL = ' :
N 1
S R

-2 )
= -4 EJ.
0,V 0o, gy 2
\ \Y] E,
\ ¢
B I TR
./ Ewm

Koy = 6 Egut 4 Ej+ 2 Ep% E5 .

4
z 2.
7TMD,) = D, % 0 = o.

Three smooth rational curves,
intersecting transversaly at a point.

WD,) = D, X by = 0.

Two smooth rational curves,
contacting at a point with order 2.

N Yy '
7(D,) = D, 0, = 2.

Two smooth rational curves,
contacting at a point with order 3.

X
D, = D,

A rational curve with a (2,3) cusp.

7 e
T(Dy) = D, D, = 4.

A rational curve with a (3,4) cusp.

{

o

2 -
, = o.
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3.
.l-\t3 -3 -
N —
\\\I/t:z /E)
A
7\
S D SR
7= -
/ Eeg

(The subdiagrams

TABLE 6.

T(D,) = Dy
A rational

<

curve with a (2,5) cusp.

subdiagrams surounded by a dotted square describes D, .)

(a,b,cih)
E:-]
(2,2,3:8)
(2,2,5:10)
(2,3,3:9)
(2,3,4;10)
(2,3,6:12)
(2,4.5:12)
(2,4,7514)
(2,6,9:18)
14 systems
of weights
of type 11
= -2

(3,3,4:12)

(3,5,5:15)

(3,5,7317)

(3,5,10:20)

(3,7,9:21)

(3,7:12:24)

(3,10,15:30)

(m_,mo)
(1,2)

(1, 1)

(3, 1)

(2,0)

. (2,00

(2,0)

(2,0)

€2,0)

(2,0)

dual

graph

(::1\\ /:gﬂ_,/l:——~s
@ é‘—@@ :

’

Here p =

Here (p,q,r?

@3

|f
CD7TTTTTED

P O o G2
~ED— !

TTONGCO—ED

- - CI—C
SOy

ST I—E—CD
>ty @

A4 . .

I X

TTTINED CO—CD—CD

S SX)
CD—-CIY;

T O—o—@

tppnitay’ Q -
=D

ST

surounded by a real square describes D,V D2 of (2.4.1) and the

2 or 3.

(3,3,3),02,3,4),
(2,3,372,(2,2,5),
(2,2,4),(2,2,3).

Here (pr)r) =(3v303('(2i4l4)'
or (2,3,6).
(p,,pz,ps) = the set of

Dolgachev numbers.,
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€= -3
(4.5,7519) (3.0)
(4,5.8:20) (3,0)

(4,5,12:24) (3,0)

(4,7,10:24) (2,0)

(4,7,14:28) (2,00

(4,10,13;30) (2,0)

(4,10,17:34) (2,0

(4,14,21:42) (2,0)

£= -4

(5,6,9:24) (3,0)

D
(5,6.15:30) (3,0 ' — DE

R e e oo

1 ‘

E= -5

(6.7,9:27) (4,0)

(6,8,11:30)  (3,0)

(6,8,13;32) (3,0)

(6,8,19:38) (3,0)

(6,16,21:;48) (2,0)
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(6,16,27:54) (2,0)

(6,22,33:66) (2,0)

= -7

(8,9,12:36) (4,0)

(8,10,15:40) (3,0)

(8,10,25:50) (3,0)

As a consequence of the above explicite description of the divisor D, at

infinity, we have the following:

Assertion Except for the case: m_= 1 an my = 0 (corresponding to 14
exceptional singularities), the triple (&,m ,m;) determines D, , D, of Dy .
Note 1. It is quorious to observe that the cannonical divisor and the

resalution graph aof the singulérity Xy is also determined by the same triple
(€ .m_,my) (cf. (2.4) Assertion iv), v) and TABLE 4.). Since these numbers
¢,m_ and m, are well defined for all Gorenstein singularity with a Ctaction, it

may be reasanabie to ask the following:

Conjecture Let Xobe a minimally elliptic singularity with Cx-action. Then

a smoothing thi Xoover a positively graded part of the parameter, is naturally

compactified by a K3 surface, whaose Structure such as described in (2,4) Assertion

iv),v) and (2.5) Assertion deepends only on the triple ( €,m_.m,).

Note 2. There are 9 more reguiar systems of weights with £= -1 besides
those of the TABLE 1. The Miinor fibers are also compactified by K3 surfaces.
. a
In & cases of them, the divisor Dw is a smooth elliptic curves with Dm = 0.

~
~

Hence the surface Xtadmitts a siructure of elliptic fibrations (cf §13L

22
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~
9 3 The classs having one negative exponent with 0 exponents

In this paragraph we study surfaces for regular system of weights (a,b,cih)
which has € as the only negative exponent and 0 as an exponent. If €= -1 then the
corresponding singularities are Fuchsian and hence the corresponding surfaces
are K3 as stated in the introduction. Otherwise we shall see that the surfaces

are of Kodaira dim 1 with elliptic fibrations overIP'( see (3.5),(3.6)).

(3.1) System of weights. There are 9+2+1 reduced regular systems of weights

which has one negative exponent and some 0 exponents according as £€=-1,-2 or -3,

which are listed in the following TABLE 8. ( The case £= -1 is already treated

in (23] so that we shall omitt the case fram the consideration in this paper.)
(Proof. For a system (a,b,cih) after the smallest exponent £, the next small exponent
is + min(a,b,c). Hence the condition on the sysstem implies £+ min(a,b,c) = 0.
Further if £€§ -1, then 1 must be an exponent for the system (cf (5.5),Eé4]), which

implies - &+ 1 e(a,b,c)., A calculation similar for the TABLE 1 shows the result.)

TABLE 8.
(a,b,cih) exponents
€= -2
(2,3,5:12) -2,0,1,2,3,3,4,4,5,6,6,6,7,8.8.9,9,10,11,12,14
(2,3,7514) -2,0,1,2,3,4,4,5,6,6,7,7,8,8,9,10,10,11,12,13,14,16
£= -3
(3,4,5;15) -3,0,1,2,3,4,5,5,6,6,7,8,9,9,10,10,11,12,13,14,15,18

Note that the multiplicity ao of zero exponents is 1 in all cases.

(3.2) Polynomial f(x,y,z,A), For each system of weights (a,b,c:h) of the TABLE 8.,
we associate! i) a weighted homogeneous polynomial f(x.y,z,A) with a parameter }

for the weight (5.5,2), ii) the Milnor number/¢ and the signature (P#PW}Q of the

Milnor fiber (5.7.4), iii) the dimentions (m_,mo.m+) of deformation of f (5.7.2),
TABLE 9. . '
(a,b,ci) M Mo Mo m_ omy m, polynomial restriction
(2,3,5:12) 21 2,2,17 3,1,17 xb + y¢ +xz% + % x2yz J?~64¥0.
. 4 .
(2,3,7:14) 22 2,2,18  3.1,18 xF e xy* 4+ 22 + Ax¥yz X -6440.
(3.4,3:13) 22 2,2,18 4,1,17 x5+ xyd + 23+ axtyz I?*iT"fO-
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Note that the number my of the parameter L ( =dimension of homogeneous deformation

of f ) is always 1. Another normal form will be given in § 4 TABLE 14..

(3.3 Resolution. The minimal good resolution of the singularity X,:= ((x.y,z)ecsi
fix,v,z,1)=0) is described in (5.6). Numerically it is determined by the data:
the genus g(Eu) and the self-intersection number Eg of the central curve Eo
, the set A of the order of cyclic groups and d := -€ .,
In the TABLE 10., we give such numerical data and the resolution graph

with the coefficients of the cannonical divisor near by for polynomials of TABLE 9~g

TABLE 10.

(a,b,cih) g(EO) Eg A resolution graph

(2,3.5:12) | -1 5 E C2—(3)
) g -3 -2 -1

(2,3,7:14) ! -1 3 g C2) 2)
g -3 -2 -1

(3,4,5318) R ' E—(2—(2)
g -4 -3 -2 -1
Note. The shape of the dual graph and the cannonical divisor depends

only on the triple (€.m_,m,). (Compare (2.4) Assertion iv),v).)

(3.4) The compactification. The unfolding of the polynomial f, thevcompactifications

A

;t of their Milnor fiber Xt for teS (ar S,) are described in (5,7),(5,8). The sur-

¥

~ Xt
face Xi is a union of the open part ?; (the resolution of the Milnor fib;Epjand the

diyisor at infinity Dm . The cannonical divisor of Yﬁ is a sum Km+ 2: Ky, where
suno(Km)c D and the second term Ky vanishes away for teS; .
In the TABLE 11., we describe the dual graph of Dm and the cannonical divisor WD.
TABLE 11,

E

E,

(2,3,5:12)
&
(2,3,7:14) .—-. g

an
Eoo
Ei EOO
(3,4,5:15) D g ‘ K oo

n
N
m

2.
o Ea) 0 .

In the above table, the vertex in the right terminal of the graphs denotes the curve

Em’ which is an elliptic curve of self intersection zero., Note that the cannonical

2¢



divisor K, is determined by the triple (g,m_,m,)(Compare (2.5) Assertion.)

(2.5) Now we have the following descriptions of the surface X, for teS; (cf(5.7)ii)).

t T

i) The surface Y% is minimal:

ii) The geometric genus %(XQ is equal to 1. The second Chern number c% is equal to 0.

iii) The Kodaira dimension of the surface is equal to I.

~Ar

iv) The complete linear system |-£Ew[ defines an-eltliptic fibration of X_ over i?' such

t

that -~ &€, is a multiple fiber and g, C in the notation of the TABLE 11.) is a -§ ~ple

section of the fibration. (See (3.6) for details.)

Proof, i) Since Km is an efective elliptic curve, the adunction relation

shows that It is minimal and that Yt is not a ruled surface.

ii) The first Chern number c, = Euler number of X = 1+ u+ H(irreducible components
of D_\NE.> = 24 (TABLE's 9 and 11) The second Chern number c¥* = Kl'= E:L =0

pow ’ ' ! v Fe T U
Hence the Noether’s formuta Py + 1 = (cF + c,)/12 implies %}='\.

'
iii) K; = 0 implies that kX 2. Since X, is not ruled, X is only possible to be 1.

(3.6) As was stated in (3.5) iv), we see in this section that:

The compliete linear system {-¢ Ew] defines an elliptic fibration of %; 0ver|P';
First tet us see that the f(-¢E,) = 2 and |- CE,| is spanned by the constani

t=w/w and x/wt ., where (x:y:ziw) is the homogeneous coordinate for the ambiant

weighted projective'spacelP(a,b,c,l) of Yf. (Recall that ﬁ; is the resolution of

Yt and Ew is the strict transform of the divisor in X, defined by w = 0 (cf (5.8)).

t

Since deg{w) = 1, homogeneous polynomials in (x,y,z,w) of degree less or equal

than -£& is either one of I, w,--», W%, x. Hence the complete linear system |- € Egl
is contained in the space spaned by 1 and x/wE. In fact we shall see by explicite

calculations of each cases, the function x/w™% is holomorphic on the exceptional set
of the resolution Yt - Yt . Before. we describe each individual cases, we summerize

some generality of the fibration as a statment, which are verryfied by case by case.

i) The rational function x/w® on Y% for te3, defines a flat morphism:

i

~

T= x/w¥ X,

L — !,
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-
ii) The fiber 7 (ceo) is —EE,

. - ) (c{'TABLIi)
iii) The restriction of 7 on the curve E|C;:IE;;T;;;/3 - -fold covering

gij' which is branching at (0 of order -£ and at some Gther points.

iv) The general fibers of T are elliptic curves.

~— \ *Es
7

24

v) In the following we figure the singular fibers of the fibrations T
for te S/\(Oxe%,O) = the degree zero part of the parameterspace S.
) -
(2,3,5:12)  equation: xf+ v¥e xz% « 1x%yz - W= 0.
case A =
location singular fiber
x/w = 0 a union of 5 smooth rational curves,intersecting
(x/wlf = 1 . two smooth rational curve contacting at a point.
x/w¥= 0 . 2 multiple of the eltiptic curve E,
0 Co
case A% 0 .
location ! singular fiber
x/w = 0 ‘ a union of 5 smooth rational curves, intersecting
(x/w2)t = 1 : a rational curve with a node.
3\" FI) > . = .
(l-z;)(x/w~) =1 two smooth rational curve crossing at two points.
x/w = © : 2 multiple of the elliptic curve E
6 5
(2,3,7:14)  equation: X'+ xv¥+ 22+ 4x%vz - w'* = o,
case A= 0 .
location ] singular fiber
x/wt= 0 ] two smooth rational curves contacting at 0 on E,.
(x/wl);= i f two smooth rational curves contacting at a point.
x/wZ= 00 ¢ 2 muitiple of the elliptic ecurve E,
Q
/ X

X, — P

¢

~
in Dg diagram.

in Dydnagram.
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case A% 0
focation ; singutar fiber
x/w = 0 two smooth rational curves contacting at 0 on E,.
(x/w ) =1 | a ratignal curve with a node.
' : .
(I-Z;)(x/w ) = 1 two smooth rational curve crossing at two points.
X/w =

5 .

(3,4,5:15)  equation: X + X9+ 23+ Ax2yz - w

0.
case A= 0
location | singular fiber
x/wi= 0 three smooth rational curves crossing at 0 on E,.
(x/w‘);= 1 three smooth ratignal curves crossing at a point.
x/w=® - 2 multiple of the elliptic curve Ej.
&
case A% 0 “Y;/’J 3E,
location ! singular fiber
x/w=0 three smooth rational curves crossing at 0 on El’
(x/w3f.= 1. a rational curve with a node.
x’ _;f_ 2 . . . :
(‘_Ii)(X/w yo= 1 7 three smooth rational curve forming a triangle.

x/w= g . 2 multiple of th

elliptic curve Em.
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§4' The class for the smaliest exponent £ eaquals to -2

[n this paragraph we study surfaces for reguiar system of weights (a,b,cih)

such that

0, 1

(4. 1) In
(Due to the
three cases

According to the multiplicities of exponents,

(a,b,cih)

(3,10,15:30)

(3,7,12:24)

(3,7,9:21)

(3,5,10:20)

(3,5, 71T

(3,5,5:15)

(3.3,4:12)

(2,3,7:14)

(2,3,5:12)

(1,6,9:18)

(1,5,8:16)

(1,5,7315)

(1,3,6:12)

(1,3,5:11)

(1,3,3:9)

(1,2,5510)

(1,2,3:8)
(1,1,4:8)

(1,1,3:1)

or >i,

= a+b+c-h = -2. .According as the multiplicity a, of zero exponent is

the surface is K3, of Kodaira dim 1 or general type (see (4.5)\

the TABLE 13., we list up reduced regular system of weights with €= -2,
general inequality - €+1 > min(a,b,c) (cf (5.5.7),[241), we have only
1,2 or 3.

min(a,b,c)= Detailed calculations are cumbersome and omitted.)

they are divided into groups.
TABLE 13.
exponents

-2,1.4.7,8,10.11.13,14,16,17;19,20.22,23.26,29,32
-2,1,4‘5,7.8,10,11.12;13,!4,16,]7,i9,20,23,26
-2,1,4,5,7,7,8,10,11,13,14,14,16,17,20,23
-2,1,3,4,6,7,8,9,10,11,12,13,14,16,17,19,22:
~2,1,3,4,5,6,7,8,9.10,11,12,13, 14, 16,19
=2,1,3%2,4,6%2,7,8,9%2,11,12%2,14,17

-2,1%2,2,4%3,5,5,7,7,8%3,10,11%2,14

-2,0,1,2,3,4%2,5,6%2,7%2,8%2,9,10%2,11,12,13,14, 16

-2,0,1,2,3%2,4%2,5,6%3,7,8%2,9%2,10,11,12,14

-?.;1.0.l,2,3,4*2.5*2,6*2.7*2‘8*2.9*2.10*2,11*2,12*2,13*2,14*2,15‘16.17,
17, 19,20 : ; :

-%.-1.0.l.2.3.3.4*2,5*2.6*2.7*2,8*3,9*2,10*2,11*2.12*2.13*2.14,15.16.17.
Y .
-g,-l.o,l.2.3*2.4*2,5*3.@*2.7*2,8*2,9*2.10*3,11*2,12*2,13,14.15.16,17
~2,-l,0,1*2,2*2,3*2,4*3,5*3,6*3,7*3,8*3,9*2;10*2,11*2,12,13,14
-2,-1,0,1%2,2%2,3%3,4%3,5%3,6%3,7%3,8%3,9%2,10%2,11,12,13

-2,-1,0,1%3,2%3,3%3,4%4,5%4,6%3,7%3,8%3,9,10, 1!

-2,-1,0%2, 1%2,2%3,3%3,4%4,5%4,6%4,7%3,8%3,9%2,10%2,11,12
=2,-1,0%2, 1%3,2%4,3%4,4%5,5%4,6%4,7%3,8%2,9,10
=2.-1%2,0%3,1%x4,2%5,3%6,4%7,5%6, 6%5,7%4,8%3,9%2, 10

=2,-1%2,0%3, 1%5,2%6,3%7,4%7,5%6,6%5,7%3,8%2,9

28
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(1,1,2:6) -2,-1%2,0%4,1%6,2%3,3%3,4*%8,5%6,6%4,7%2,8
(151,135 -2,-1%3,0%6,1%10,2%12,3%12,4%10,5%6,6%3,7
Here recall the convention that u%v means u,....u (v-copies),

(4.2)  The polynomial fix.y.2, 00, (n_\ my s my ) and C v s Jo y

Let (a,b,cih) be a system of weights of TABLE 13. In the TABLE 14., we shall
give a weighted homogenous paolynomial f(x;y,z,x) with mc-number of parameters for
the weights, where My ome and m_ are the numbers of parameters of an uinversal
unfolding of f with positive, zero and negative weights respectively(5.7.2).

The first 7 systems of TABLE 8. is already treated in TABLE 2, and are omitted.

TABLE 14,
(a,b.cih) H M Ao po m_ my my poiynomial
(2,3,7:14) 22 2,2,18 3,1,18 xS -y5 03 - vy + 22 A% 0,1
(2,3,5,12) 21 2,2,17 3,117 (3-yDr(x3- v2) + 2 A+ 0,1
(1,6,9:18) 34  4,2,28 4,1,29 vxb-yrxbeayy + 2% A+0,1
. - £ s 2 ,
(1,5.8:16) 33 4,2,27 4,1,28 xy(x”-y)(x’=Ay) + z At 1
(1,5,7:15) 32 4,2,26 4,1,21 y(xy;y)(xxlly) + xz2 A%,
(1,3,6:12) 33 4,2,21 5,2,26 y(x3-y)(x3-Ly)(x3-ly) A Aty A0
(1.3.5510) 32 4,2,26 5.2,25 Ay A0 -hyy v vPz v xz® ata; 40,
(1,3,3:9) 32 4,2,26 6,3,23 Xy +y +z+ (y + yz + z )X
(1,2,5510) 36 4,4,28 6,3,27 y(xz-y)(xz-Ay)(x2~Ay)(xlz%y) +z2 ﬁdﬂ%iﬁgTQ1
: ‘ Y _
(1,2,3i8) - 35 4,4,21 7,4,24 Sz Ty-Axh v 2%y Al A0,
vl
(1,1,4:8) 49  6,6,37 10,5,34 XY (x=y)(x=Ay). .. (x=Ay) + z% M43y, Aco.T
(1,1,3:7) 48 6,6,36 11,6,31 Z*x + g(x,y)z + h(x,y) where g,h are
homogeneous of degree 4,7 respectively,
(1,1,216) 50 6.8,36 13,8.29 23 + g(x,y)z + h{x,y) where g,h are
: homogeneous of degree 4,6 respectively,
(1,1,1:;5) 64 8,12,44 20,12,32 f(x,y,z): homogeneous of degree 5

(4.3) Resoiution. The minimal good resolution of the singularity X0:= ((x,y,z)eCB:
fix,y,z,A)=0) is described in (5.6). It is numerically deteremined by the data:

n EO
the genus g(EO) and the self intersection number EJ of the central curv%ﬁ)the set A

(o .....0,) of the order of cyclic groups and f:= -£= 2.  (See TABLE 15.)

29
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1
For a S)‘Stem (a,.b,cih) of IABLE 13., the set A COIISiStS of Odd l”tegels due

" 10 (5.6.5). Hence the dual graph for the minimal good resolution of the singutarity

and the coefficients of the cannonical divisor Ko of the singularity are as follows:

r-branches,

where Kk-= (p- b= -E%= l1+a -a ,and gi=genus(E, )= I+b-r.
v v ¢ [ Y
TABLE 15.
(a,b,cih) A resclution graph © dual graph of Dg
0
(2,3,7:14) 3 E, —-@——@ @-—Q Eon

n

om
()
(&)
(O
()

S

m
g

(2,3,5:12)

(1,6,9:18) 3 Eo Ex
Geae s : o
(1,5.7.15) 7 Ea CD)—2—3 g Ero

Eo Eoo
(1,3,6:12) 3,3
(1,3,5:11) 3,5 (-2—2) Q 2—(3) 3) g B—>

(1,3,3:9) 3.3.3

(1,2,5:10)

(1,2,3:8) 3

20
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(1,1,4:8) EO Em
(1,1,3:7) 3 EO -2—(-2 @Ew

(1,1,1:5) EO‘!iI’ ‘IEI"EOC

Note. The shape of the dual graph and the coefficients of cannonical divisor are
determined by the tripie (&,m-,mo) except for the pair (1,3,3:9) and (1,2,5:10),

which are already distinguished by ao(=the multiplicity of zero exp.)(cf (2.4) Ass.).

~

(4.4) Compactifications. The compactifications Yt af the Milnor fiber X, (ttESCrSf)

i ; —
are described in (5.8). Xt is a union XtUDm of the resolution

2

<

+ of the Milnor

drR

is a sum Kg* 25 Ky

fiber and the divisor Dy at infinity. The cannonical divisor of
xeXz

such that supp(Ky) CDy, and the second term Ky is zero for tGSf.

Let us describe more details for the case of = -2.

Assertion i) The dual graph of the diviser Dy is the following (See TABLE 15.):

r-branches
» where k3 :=(p.-1)/2 for peA.
—_ L —_—

i) K= Ey and Ky, = Eg = g-1 , where gi= 9(Ey) = 8(Eg) = a,.

Proaf. i) Since peA is an add integer, it has the folliowing continued fraction: .

1 1 1 1
p/{(p-2) = 2 - — —_— — _— ,» where p = 2 k +1,
2 - 2 ...- 2 - 3
8 o
-1

This gives the intersection numbers for the curves on the branches of Dg,.
ii) Let us put Ky= E,* K’ , where K' is a diviser with support on the

branches. k The adjunction formula KxpE + E = 2g(E)-2 vimnlies‘that K’E

= 0 far all curves E on the branches of D,. Since the intersection matrixes

on branches are nondegeneréte. K’ = 0 and hence Ky= En. Again applying the

adjunction formula 29(Eg)-2 = KyEe v+ Eu, » we obtain ii) ., QED

7/
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(4.3) Summerizing those calcutations above, the surfaces Yt (tES;) are as follows.
We distinguish three cases according to a, -1 = g(Eo)*l .
1. g(E -1 < 0.

In this case Kg® Eg ié an _exceptional curve of the first kind. The cannonical

x ~ 7
bundle of the blown down surface XL = XJD/Ebo is trivial for teS+. so that Xt is a K3

surface with a configulation of three lines crossing normally at a point.

This case is already studied in §3 , SO that we omitt further details.

[1.  g(Eg)-1 = 0.

In this case Ky,= Eyn _is a smooth eliiptic curve with self-intersection

- ~ .
zero and -hence the surface is minimal. Xy for t€S4y is of Kodaira dimension 1,

which has a structure of elliptic fibration over P' with En as_a regular fiber.

( That Ky, is an elliptic curve implies %; is min?mal. Then K; = Obimplies
that the Kodaira dimension. of %; can not be 2, Since %1 can not be a ruled surface
( Kp is effective), the Kodaira dimension of %& is only possible to be 1. The fact
the irregularity q of the surface is zero k5.9) implies that %; has a structure of
aﬁ elliptic fibration over Pf according to the classification of surfaces [ 1. aed)

An explicite description of the elliptic fibration is given in (4.8).

II1)  g(Eg)-1 > 0.

In this case Kgp = Egw is_a smooth curve of genus > 1 , whose selfintersection

number Ké = g(Ey)-1 is positive.

The surface Yﬁ for tESF is minimal and of general type, which satisfy the

i

numerical equality: P3= L cf/2] + 2 where % is the geometric genus and c? is the

second Chern number of the surface (cf (4.6.2)). For this class of the surface, we

refered [ 1,0 1.
(For the same reasons as 1], 7£ is minimal and cannot be ruled. Then the positivi

-ty Kt) 0 implies that Y£ is of general type due to classification of surfaces [ 1.)

The numerical invariants Ps;cf and c, of the surface X, is calculated in (4.6).

(4.6) We calculate: the first Chern number C,» the second Chern number cf= K;
2 a4 .
and the geometric genus P51= h (6%) for the surfaces Xy (tEESf). They are easily

calculated by the following formula with the data in TABLE’s 14,15,16.

12
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cyi= Euler ® for X, =(Euler ® for f;)+(Euler # for D)

i

(1 #+ #)+(2 - 29 + #Cirreducible components of D -E ),

a5 _1.__ _
cri= Ko = 9 1
P3 + 1 = (c% + c, )/12 (Noether's formula) .

The following TABLE 17, gives the invariants of the surfaces and the number of

the weight (é.b.c) which is equal to | for an application in (4.7).

TABLE 17.
sysfém of weights c. cf % Hleeg(a,b,c): e=1)
(2.3,7:14) 24 0 1 0
(2,3,5:12) 24 0 i 0
(1,6,9518) 36 0 2 1
(1,5,8116) 36 0 2 1
(1.5,7515) 36 0 2 |
(1,3,6:12) 36 0 2 1
(1,3,5:11) 36 0 2 1
(1.3,3:9) 36 0 2 1
(1,2,5:10) 35 1 2 1
(1,2,3:8) 35 1 2 1
(1,1,4:8) 46 2 3 2
(1,1,3:7) 46 2 3 2
(1,1,2:6) 45 3 3 2
(1,1,135) 55 5 4 3

As a cansequence of the above table, we get the following formula.
g (Xf) =1 + B e (a,b,c): e=1 ) for te S&'
Another consequence of the table is the following equality:

(4.6.2) P‘}(Yt) = [ ct/21 + 2

for the last group of 7 systems of weights satisfying the condition a,> 1.

23
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(4.7) The cannonical linear system IKWl for the surfaces X

A <teS¥) are as follows.

. : by
Assertion The module for the linear system lel is spanned by w an&T{he coordinateg¢

(x, y, z)> such that the coresponding weight ¢ {(a, b, ¢) is equal to 1,

Proaf Recalling K, = E,, we have % = Hl<0f) = h%(06 (E,)) = dim(the space of

(/]
meromorphic function on %; which may have at most a simple pole along Eg.).

Let us show that if the weight (a,b,c) of a coordinate (x,y,z), say x, is |,
then the merom&rphic function x/w belongs to the space Ho(%;.é?(Em)). In view of
the equality (4.6.1), this proves the assertion. (%t is not linear.)

First recall that %1 is a resolution of the surface Yt injP¢a,b,c,1) by blowing
up the cyclic quatient singutarities an %;, which appear at the coordinate axis
LX\/L;JUL3 inP(a,b,c):= (w=0>C/P(a,b.c,1). Since Egp is the strict transform
of the curve itan(é,b,c) and hence x/w has simple pole.along E,» we have only
to show that x/w does not have poles an the exceptional set of the resatution
f; —> it' The assumption on the weight a=1 and the description of the points
XpatLULULy) (5.6.5) implies the singlar points of X, lie only on Ly. 1f, for
instance; z%0 at a singular point, Y% is lgcally at the point a quotient of smoaoth
Yiz ((x,y,w)eC: f(x,y,1) = wh 5 by the action of Qe?P, (x,y,w) > (4 x.gbyﬁg\uﬂ

Let (v,w) be a local coordinate system of Y at the fixed point, on which the action
af ez is (4£v,4 w) (cf ). Let us develop x into a power series Z;auiv[w;

7
in the local coordinates. Sicne ge Zbacts on x as 4x, the power se:ies is a sum
over the indixes (i,j)dN: such that -2i + j = 1 mod(p). In case j = 0, the
condition 2i + 1 = 0 mod(p) implies i = (p-1)/2 + n p for some neN,. If we

have shown that eryi/w

is holomorphic on the exceptional set of the resolution
of the quotient singularty, we have also shown that x/w is holomorphic on the

exceptional set. Let us give a sharper form for a later use.

*x) Let E‘,....Ek be the exceptional set for the minimal resclution of the

cyclic quotient singularity of the type (p,-2) with k=(p-1)/2, which are intersecting
wa0 V=0

- g,
Ei:$\:%><fa..7<j§<//. Then the rational function v k /w defnes a pole along w=20

B . a rational parametrization of E;, and a zero function on ElU..U Eg.(Proof omitted)

This complete a proof of the assertion. qged

¢
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(4.8) We shall describe the cannonical map %1——) P!, for each systems of weights.
The details of the calculations are omitted.
(2,3,7514), (2,3,5:12)
PG;(%&) = ] for theSe two caseé. Hence the cannonical maps are constants.
(Note that the muitiple -EK;_(' defines elliptic fibraiion (3.6).)

(1,6,9:18), (1,5,8:16), (1,5,7:15), (1,3,6:12), (1,3;5:11), (1,3,3:9)

(.\—’%) = 2 and H (f(', O(K = [1,x/w] for these’cases. The cannonical
map W= (xiw)i X, —> P! defines an elliptic fibration of Yt as follows:

‘-C—D

i) The map W is a flat morphism.

)
i) Tl = E,

iii) The -3 curves of Dw (in the TABLE 15) are giobal sections of the map &.

iv) The general fiber of W is a smooth elliptic curve.

v) Singular fibers for tes(\(o;c"‘aon (the degree 0 subsapce of S) are follows.

(1,6,9:18)  eauation: v(xb- vaxb-av) + 22— wi¥ = o,
case A=A+ 1 =0
location ! fiber
x/w = 0 B smooth ettiptic curve.
¥ . . N
(x/w) =% ’ a rational curve with a (2,3)-cusp.
X/w = A p Ep ( a smooth elliptic curve)
&
0, (xewl =8, w
E L ] 1 | ,
smooth elliptic / < \ Eg SMOOth elliptic curve
L e
15
b .
case A7-2 + 130
location . fiber
x/w = 0 smooth elliptic curve.
¥ . . : .
(x/w) =« . a rational curve with a node.
(x/wﬁ=(3 +  a rational curve with a node,
x/w = 0 E ( a smooth elliptic curve)
(x/w) =, (x/w)l'?‘/-5 00

smooth ell'ptnc/ O{ O{ O{ O( msmooth elliptic

25
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, : 2 b
(1,5,8:16) equation: Xy 06 - Y)(Xy—}‘() + 77— W = 0.
case - + 1 =0
locatian ; fiber
x/w =0 ) a union of 3 smooth rational curves intersecting at a pont.
it s
(x/w) = . a rational curve with a (2,3)-cusp.
X/w = o . Eo ( @ smooth elliptic curve)
, (x/w)‘ =7, °°
,_4 < < \ o smooth elliptic
7.
case A
Iocatnon f;ber
x/w = 0 a union of 3 smooth rational curves intersecting at a point.
T
(x/w)‘ = X a rational curve wi'th a node.
-Je . .
(x/w) =[3 ) a rational curve with a node.
X/W = E- ( a smocoth elliptic curve)
1 16
0, (x/w) =a, (x/w) =p,
/ / y IR A
494 904 oth o1t iptie
P ~77 Ew sm h ellipti
(1,5,7:15) equation: Y(XS-— Y)(X!‘- AY) + XZ?'~ N/-"= 0.
2
case A-2 +1=0
location . fiber
x/w = 0 : a union of 5 smooth rational curves intersecting
(x/w)$= Y . a rational curve with a (2,3)-cusp.
x/w = (0 ' E ( a smooth eiliptic curve)
o, xwf=7, e '
£ 1 1 1 |
>% Ewsmooth elliptic
a U‘
case A3 + 1 %o
location ; fiber
x/w = 0 : a union of 5 smooth rational curves intersecting
(x/wf = . a rational curve with a node.
(x/w)/f= ﬁ ) a rational curve with a node.
x/w = 00 - Ew( a smooth elliptic curve)
C o =a, /5 po

é°< T R e

Af
>{
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(1,3,6312) equation: wa-L\MxS—Aﬁw<x S+ 2t - wRe o
case
location fiber
x/w = 0 a smoo;h ellibtic curves.
(x/w;;= 1 two smooth rational curves contacting at a pont.
X/w = 0 Ew (= a smooth elliptic curve).
case
iocation fiber
X/w = 0 ‘a smaoth e{lidtic curves.
(x/wid=
(x/w)n=
Xx/w = W Ey (= a smoath eltliptic curve).
case
tacation fiber
x/w = 0 a smooth elliptic curveg.
(x/w)it= |
(x/w)n=
(x/wy2=
X/w = 0 Eg (=’a smooth elliptic curve),
ATV R o
T 7 \

3 . i
(1,3,5:11) equation: Xv(X3-Av (X7 -2x) + vz + xz? - u' = o,

case )
lacatian fiber
x/w = 0 two smooth rational curves contacting at a point.
(x/wf'= ! two smooth rational curves contacting at a pont.
x/w =0 E = a smooth elliptic curve).
case
locatiaon fiber
*/Q =0 two smooth rational curves contacting at a point.
(xswt=
(xswl' =
x/w =0 Em (= a smooth elliptic éurve).

37
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case
focation - fiber

x/w = 0 a smooth elliptic curves.
(x/w) =
(X/w) =
(x/w) =
X/w = E (= a smooth elliptic curve).
[74]
[

[

c ) L
za /
[t [ [

h

(1,3,3:9) equation: XY(X = ¥Y)X(X - ¥XX - ¥)Y + 27 =-W =0,
case
location fiber
x/w = 0 a smooth elliptic curves.
(x/w;?= 1 three smooth rational curves crossing at a pont.
x/w = ® Eco (= a smooth eiliptic curve).
‘case
location fiber
i/w = 0 a smooth elliptic curves.
(x/w)?=
(x/w)q =
X/w = 00 EDo (= a smooth elliptic curve).
case
location fiber
x/w = 0 a smooth elliptic curves,
(x/wﬁ=
(x/w) =
(x/w)q=
X/w = @ E (= a smooth elliptic curve).
Figure Do
0 / AN
\ Q a?
/ Wt v ] TTTTTTTTTTISTIoSoosSssss s s s s s s s s s s
/ | | e
b—yw

?
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(1,2,5:103,¢1,2,3:8)
P (X ) = 2 for these two cases, The tinear system 1K i has a fixed paint
on E ; By blowing up X --> X at that fixed pbint, whose exceptional set will
refered as E, we obtain a fibration of X -=> P . The general fiber of

is a genus 2 curve and the exceptional set £ is a global section. The singutar

fibers for the special point is as follows
(1,2,5:10) | |

(1,2,3:8)

(1,1,4:8),(1,1,3:7),(1,1,23586)

P (X ) = 3 for these 3 cases and H (X , (K )) [1,x/w,y/wl. The cannonial map
(x,y,w): X =-=->P defines a covering, whose degree and descriminant are as foilowS:
(1,1,4:8) equation: Z + g(X,Y,W) = 0 ,where g is homogeneous of degree 8.

is a doubie covering branching along g = 0.
The discriminant 1= ~4g is homogendus of degree‘B.
(1,1,3:7) équationf XZ + g(X,Y,W)Z + h(X,Y,W) = 0, where g and h arehomogenous
of degree 4 and 7 respectively,
is a double covéring of P branching along a degree'8 curve.
The discriminant := g - 4xh is homogenous of degree 8.

(1,1,2:6) equation: Z + g(X,Y,W)Z + h(X,Y,w) = 0, where g and h are homogenegus

of degree 4 and 6 respectively.
is a triple covering af P branching along a degree 12 curve.

The discriminant = h - g is homogenous of degree 12.

(1,1,1:5) equation f(X,Y,Z,W) = 0, where f is homogenous of degree 5.
P (X ) =4 and H (X , «(K)) [I,x/w.y/w,z/w] for this case. The cannpnical map

{xiyiziw)! X ==-> P defines an embedding of X as a quintic surface in P .

jf
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‘§:} l.UEthted omogenous si Igulal it)‘ of dimension two

(5.1) This § is a review on the weighted hOmogeneﬁus singularitiés Of’dimension
two, studied by V.l.Dolgachev, E.Lopijenga, P.OrlikF H.Pinkham, P.Wagreich, J. Wahl
and the auther. Qe describe uniformization, resolution, comapctification of Milinor
fibers for mainly‘hypersurfacé cages in connectiﬁﬁ with regulfar system of weights

to fix notations for §°s 2,3 and 4. Many of the results are well-known or elementary

sa that we give only references or sketchy proafs.

(5.2) Cvclic extensions of PSL(2,R) and their action on [H{.

In the foliowing, we present a weighted homogeneous singularity Xg as a quotient
variety by a splitting factor for a cyclic extention of a Fuchsian group (5.4.1),
This is a reformulation of a presentatian of a quasi-hamogneous singultarity by a
use of automorphic forms by Dofgachev [T7], Wagreich [351].

i) Let H = (zeC : Im(z) > 0) be the comiex upper half plane. As usual Aut(H) is
isomorphic to PSL(2,R)=SL(2,R)/<(+1) by g(z):=(az+*b)/(cz+d) for z¢H and g=[%§}mod(tl).

ii) Since FﬂPSL(Z,R)) = 2, the universal covering map defines a cyclic extension,

. ~
(6.2.1) | —> Z —— PSL(2,R) —> PSL(2,R) —> 1| ‘(exact).

‘ ~
an element 9 of PSL(2,R) is represented by a pair (g,9(z)) of an eiment g of

PSL(2,R) and a branch ¥(z) of the function log((cz+d)z)/2EJ-l on H. The product is
given by §oN = (gsh,¥(z)+P(h(z))) for § = (g,9(z)) and h = C(h,¥z)).

laSd .
PSL(2,R) acts on the infinite cycliic covering Hy, of the cannonical Cx-bundle of H.

(5.2.2) F(z.x) = (9(z), A+P(z))  for  (z,X) € H,T HxC
and ¢ = (g,4(z)) € 651(2.R).

iii) For a positive integer d, (5.2.1) induces a finite cyclic extention,
(5.2.3) | —> 2/3d ——> §§L(2;R)/Zd —> PSL(2,R) —> 1 (exact).

~/
An element g'of PSL(23R)72d is represented by a pair (g,9(z)) of an

element 9 of PSL(2,R) and a branch ¥(z) of the function (cz+d§d

on H.
The product is goh = (goh,¥(z)P(h(z))) for 3 = (g,9(z)) and_K = (h,¥(z)).

The group PSL(2,R)/Zd acts on the Cx-bundle Hy = Hs/Zd aver R .

&a
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(z,v) = (g{z),vy(z)) for (z,v)eHy ¥ HeCx ,
: o and  § = (g, ¢(z))e PSL(2.R)/Zd.
The action of PSL(2,R)/%d on lH does not have a fixed point. ¢ If (z,,v) were a
fixed point of (g9,%(z)), then z,is an elliptic fixed point of g such that ¢(z,)=1.)
-2
Note. Recalling the fact dg(z)/dz = (cz+d) , it is easy to see that the

d-th power of the C*-bundle H; over H is the cannonical C*-bundle of H.

(5.3) A splitting factor for -a finite cyclic extension of -a Fuchsian group.
Let Mc PSL(2.R) be a co-compact Fuchsian group of the first kind.

Let T& be the inverse image of /' in PSL(2,R)/Zd by the map (5.2.3) so that

r

(5.3.1) 1 > 2/7d —> T; > — (exact).

A splitting factor of the sequence (5.3.1) is a subgroup [7* of PSL(2,R)/%d which
is bijective to its image I' . The projection map from g=(g,Pze T+ to its
second factor ¥(z) define’s an automorphic factor, discussed in [81,[35,(3,1.2)13.

Note 1. The sequence (5.3.1) does not split in general. Even it does split, the

splitting is not unique, but depends on d-torsions of the Picard variety of lH/f.

Note 2. [f d=2, the sequence (5.2.3) and the C*-bundle Mz are rewritten as,
(5.3.2) 1 — (£]) ~—> SL(2,R) —> PSL(2,R) —> 1  (exact),
(5.3.3) M Hacx 2 0 :=¢ (u,voe €8 Imtuzv) > 0)

(z,v) +F— (zv,Vv)

~
so that the linear action of SL(2,R) on{H induces the action (5.2.4).  Hence the

splitting facter is nothing but a co-compact subgroup [ of SL(2,R) such that 71%(1ﬂ] .

(5.4) The Gorenstein singular point with good C*-action ([81,[211,[0341).
Let "¥¢ PSL(2,iR)/%d be a splitting factor of (5.3.1), which acts onliH proper

and fixed point free so that Hy /* ié a complex two manifold., 'By adding a point, put
(5.4.1) C Xg i= (OU I/ TTE.

i, Xy has natural[y a structure of affine aigebraic variety with an

isoclated normal singular point at 0 such that

*/
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i) X, admitts a good Cx-action (lg 0 \p is in the ciosure of every orbit [19].)

i) Xo is normal Gorenstein variety so that there is no-where vanishing

holamorphic 2-faorm w on X, -¢0} such that the C*-action induces,

(5.4.2) tx(w ) = t“"‘w , for te €-4(0),

2. Conversely if Xs is a two dimentional variety with an isolated singular

paint 0 satisfying the above i), ii) and d > 0, then it is expressed as (5.4.1)

for a suitable Fuchsian group f and its spiitting factor [7*.

Proof. i) Let " be a finite index normal subgroup of T’ , which has no fixed
point on H (cf [31,[101) and let [7'* be the corresponding subgroup of T’*.Thenin/F'*
is a Cx-bundle over |H/[" ' whose associated line bundle OHQw')UQHd/r'*) is negative,
since its d-th power is the cannonical bundle of the curve H/p’ (cf (5.2) Note.),
Hence the zéro-section H/7’ ot the bundie can be blow down 10 a point 0, to obtain
an affine variety (0)UHy/p’*, on which still the finite group F/p’=7*qﬂ'* acts in a
natural manner where 6 is the only fixed point of the action. Thus (O)Ulﬂ;/[7*
= ((0)U|Hd/r’*)/(f’/r’) naturally obtains a structure of an affine variety with
an isclated singular point at 0, which is normal by definition.

ce
ii) The C*;action on the bundle Hy/[7* naturally induces t¢é§f;{action on X, .
iii) The holomorphic two form on Hd of the following form:

(5.4.3) wi= dzdysvd

is invariant by the action of §§L(2JR)/Zd (5.2.4), Hénce it induces a nowhere
vanishing holomorphic two form on X,-(0) = H{/r7 *, denoted again by W ., Since the
singularity X, is normal two dimensional, it is Macaulay. These imply that X, is
Garenstein, The (5.4.2) follows, since the form (5.4,3) satisfies the same formula.
The fact that expénent -d in (5.4,3) is =< 1 implies that‘Xocansot be smooth.

2. Due to Pinkham [21] (compaire also [4].[1f1), there exists a finite covering

X; of X,ramifying only at 0, s.t. X/ is obtained by blowing down of the zerc section
section of a negative |line bundle over a curve C. ?' is still Gorenstein and the
existgnce of a non-vanishing holomorphic two form implies that a power of the line
bundie is the cannonical bundle of the curve C([8,Prop.11, [23,(5. )1). That d > 0

implies that Euler number of C < 0, Uniformizing the curve C by [H gives the proof.
3.e.d,

7



(5.5) Hypersurface case.

1. i) The germ of Xg(5.4.1) near at 0 can _be analytically embedded in E% iff Xo

is globally embeded’in 63 as a hypersurface for a weighted homogeneous polynomial f.

(5.5.1) e 1= (xuy.zde €30 f(x.y,2z) =0 ),
(5.5.2) fxy,2) =25 egpxty zf
ai+bj*cfi=h

Here weights a.b,c and h are positive integers such that

(5.5.3) 0 < a,b,c ¢ h/72 , GCD(a,b,c,h) = 1 and d = h-a-b-c .

ii) Up to a constant factor, the form w (5.4.3) is identified with the form,

(3.5.4) W = Resldxdydz/f(x,y,z)1

2. For given weights (a.b,cih), there exist at least one polynomial (5.5.2) having

an isolated critical point at 0, iff the following rational function %(T), may have

pales only at T=0,. Its Laurent expantion at T=0 has non-negative coefficients [23].

(5.5.5) Xy = TN (" T T T

SLEEIRYS CAIDYS IR
Prcof. 1. Suppose the germ (Xg»0) is given by the hypersurface g=0 for a ge€(x,y,z).
The existence of a C*-action on X, implies that g belongs to the ideal (994x.,39/9y,
3g/3z) in €{x,y,2z). Then there exists a local coordinate change, which brings g to a
potynomiatl of the form (5.5.2) (£2581). The local isomorphism of the surface X,
(5.4.1) and the hypersurface (5.5.1) extends to a global isomorphism since
both surfaces admit unique good C¥ actions, Since Xy is normai, the proportion
Res[dxdydz/f(x,y,z)]/u{, which is holomorphic nowhere vanishing on X;-(0),
extends to a unit function on X,. Hence atb+c+d-h = 0.

Note. For a fixed (a.,b,cih), the set of polynomials having isolated critical

point at 0 is Zariski gpen in the set of all polynomials of the form (5.5.2).

Definition [231 1, A system of positive integers (a,b,c:;h) with max(a,b,c) { h

is called regular if the function X(T7) (5.5.5) may have poles at most at T = O.

11 is called reduced if gcd(a,b,c,h) = 1 except for the type A'(cf [24,C .5)1),

2. Let us develop X(T) in the finite Laurent series of the faorm,

&3
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(5.5.6) ATy = T ¢ THe 0+ T7= 20 a7

e call Mveeeamy the exponents for (a,b,cih) and a, the multiplicity of the
exponent m . we have u= 2 ay . The smallest exponent (= atb+c-h ) is denoted

O —————————— — m D —
By €. In case § < 0, we shall also use a notation d:= - = h-a-b-c (cf (5.53) 1, i)).

Let (a,b,c;h) be anv reduced regular system of weights. Then there exists always
an exponent either egual to 1 or -1 [24]. Hence if £4%1, we have an innequality

(5.35.7) d+ 1 %2 minta,b,c).

(5.8) Resotutions of the singlarity.

The minimal good resolutionﬁ:%——) X,0f Xpat 0 is described as follows(61,0191,[21]
i) Let[and ['* be the Fuchsian groﬁp and the splitti<ng factor for X, (5.3). There is
a natural map from the quotient variety §o§=UHUtHd)/F* =iH4,Uin/r# to Xo= (O)WHd/V*,
which is the yeighted blowing up of X, at 0 and H/r is its exceptional set.Then Qahas
a cyclic quotient singularity. of type (p,d*) at deAvcgo.where x is a fixed point of I”
by an isotropy subgroup of arder p and d 'is an integer s.t. d*= d mod(p) and O(d_).‘(p.
By resolving such cyclic quotient singularities on glninimally, we Obtain the minimal
good resolfution ’)2;7 of X;. The strict transform of H/r in F(VD is denoted by E, and
called the central curve. Let A:=<p,,...,pr) be the set of the orders of isotraopy

subgroups. Then the dual graph of the resolution (defined in [191) is as follows."

Obviously the graph is branching at the fixed points on \H/rr'=v E

0"
% @ v~ branches
(5.6.1) R ’
E, OO @
1 1 I
(5.6.2) p; /d*i,= b;‘- —_— _— (continued fraction), (=1}, I,

bia = Biyees = by

s

In case X, is a hypersurface for the weights (a,b,c:h), Ep is identified with
the curve in |P(a,b,c) defined by the equation f = 0 and the branching points set is:
a subset of the intersection of E, with the coordinate axis of IP(a,b,c). Then,
(5.6;3) é(Eo) = a,, (Here g(E, ) means .the genus of E;.) ‘

(5.6‘;4) - EO’E0= a, —a, *i . (Here EO-EO means the self-intersection number of E,.)

(5.6.5) A = (eela,b,c): elh YU (ged(e, f)*(N(e,f)-1)! (e,fle(a,b,c)-diaganal subset)

Here 1 3 h 1
N(e,f):= —(—) —_— and s*t = t-copies of s.
he It -185a-18) | oT=0

¢q
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(Exactly the set A (5.6.5) presents the set of orders of isotropy groups at the point

of Ey,n(coordinate axis of P(a,b,c)). Hence 1 must be deleted from A if it appears.)

The Vol( [P )/ag:= 2(g(Ey)-1) + ﬁi(l-l/pb) of the fundamental domain for [T is given by
_ =1 . )

(‘5.6.'6) v Vol([ Y/ap:= d reys .

(The formula is shown similariy “to the case d = 1 [23]1.)

tad
i) Let the cannonical divisor K, an X, of the singularity 0¢€X, be defined as,
(5.6.7) Ko := div(T*(w)) = the zeros minus poles of the lifted 2-form Jt*(w) on Xoe

In fact 7*(w) does not have zeros for a minimal good resolution so that ~-K, is

effective (Tomari, unpublished). The coefficients of E; in Ky is equal to &- 1.

(5.7) The universal unfolding for f(x,y,z) and the Milnor fiber,

i) The universal unfolding of f(x,y.z) (Thém [ 1) is defined as a paolynomial

(5.7.1) F(x.y.z,t,,tz,...,tﬂ)

IF(x,y,2,0,....0)
such that f(x,y,z) = F(x,y,z,0,...,0) and the partial derivatives 3t

(i=1,....0) form a C-bases of the Jacobi ring €Ix,y,z1/(9f/3x,9f/3y,3f/Jz).
Since the Jacobi ring is-graded ring, whose Poiﬁcare polynomial is equal to
T'%XT), we may assume that F is a weighted homogeneous polynomial of degree h
with respect to deg(x)=a, deg(y)=b, deg(z)=c and deg(tl)=ml¥£_(i= [N 1§ N

Denote by m_,m, and my the number 'of parameters t whose degree is

negative, zero, and positive respectively. By definition,
(5.7.2) m_ = Z am', m, = a_g > m+=z,z?m and M= m_+m o+ m,
m<-¢ m>-£

The equation F = 0 defines a family of affine algebraic surfaces
(5.7.3) A= (v, € FOxyax,t) = 0) for t:=(t,,...,tﬂ>ec”.

m : N n
Particularty (Xv,O) for tétm’x €°x0 defines a family of equisingularities. The
. 3 m meo . ) . '
family Rt for tQOXC OX €% is studied by many authers since the surfaces are naturally
completed by adding a divisor at infinity as we see’ in (5,8),
m

. m
i) Let us denote by S (resp. Sf) the Zariski open subset of OKCOK ¢‘+fconsistin9

of points t s.t. Xt has at most finite number of (resp. rational) sihgularities.

s
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te
A smoath fiber xt ove%jg is called a Mitnor fiber, whose middle homotogy HZ(XL’Z)
is a free abelian group of rank 4 with the intersection form | of sign (U, ue M),
(5.7.4) Me= 2L ay = 21 ay, Me= 2a,= 2ay , M= 2 ag.
. o<m< fL

mn, ; ’
iii) The geometic genus p (Xt.O) of Xt at 0 for te@"Lxc‘ko is defined as H(f%,qtg for

3

a resclution Yt —> Xg of the singular point 0. Then, we have a formula ([271,[91),
(5.7.5) Pg(Xg 00 = WFMd/2 = 2 ay .

- mel
iv) a) Xt is rational.;;? pa(xt.O) = 0 <=> All exponents are positive.<=> €= 1|,

b) Xt is minimally elliptic.;:g P,(Xg,0) = 1 <(=> £ is the only non-positive exponent.

%

(5.8) The family of compact surfaces over S .
i) Define the weighted homogneous polynomial G(x,y,z,w) of weights (a,b,c.1),

and the compact hypersurface Kt in P(a,b,c,1) with parameter teS .

. . .= Wh o b c
(5.8.1)  G(x.y,z,w,t):= wh Fix/wh,y/w?,z/w ’0""‘0’tmtV”"tP) ,

(5.8.2)  T,:= ((xiyiziw)eP(a.b,c,1) : G(X,y.z,w.t) = 0 ) for t€s .

Xi is a C* equivariant comactification of X; such that the complement E':= Yl-xt
is a curve isomorphic to E,. The surface X¢ has cyclic quotient singularities
of type (p ,p -dy) for pea along E’, The family (5.8.2) is analytically trivial
near E’ so that the singularities can be resolved simultaneously for t € S ,
ii) Denote by ?{ the smooth surface obtained by resolving the singular
points of Yi minimally. Let us decompose it as,
(5.8.3) Xy = Xp UDg -
Here Q% is the minimal resolution of the affine variety Xt and Dw:= %%;Yt' called
the divisor at infinity. The strict transform of E’ in i; will be denoted by E,
and called the central curve of Dg.

The dual graph of the diviser D is as follows,

(5.8.4)  r-branches O Ew

& G

4
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(5.8.3) b /(p -d¥;) = ¢y - — —  (continued fraction). (=, p)
19

(5.8.6) - EZ‘O =ro-oaroa-

0

tii) The cannonical diviser Kx of Yt is calculated as follows.

(3.8.7) Ky = Kp+ 2Ky o
Xe 2€X,
where a) K. is the cannonical divisor of the singufarity x of the affine surface Xt.
b) Ku)is the diviser having the support on qm, whose coefficients of Eoois d-1
satisfying the adjunction relation: 2g(E)-2 = Ka’E + E for the curves E on qm.
(5.3)i1)
Particularlty for t:EEF—TFé second term vanishes so that we obtain,
(5.8.8) Kae = K for teS, .
X0 e *
t
2
(Proof of iii). A cannonical divisor Kg of xt is given by the zeros and poles of
+ .
_ (axdydz + bydzdx + czdxdy)dw + wdxdydz
a two from on xt induced from Res -
- 1+€
Xp w G(X,y,zZ,w, 1)
. which is regular and non-zerd on Xtand is zero of order d-1 along E;:.)
(5.9) Middle homology groups of Xt and Yt .
Let it be any smooth surface obtained by blowing down some exceptional
curves contained in Dw and let us denote by 5 the bliow down image of Dm in ?}.
1. The surface Yf for tES+ is simply connected. Hence the first Betti number
b' and the irregularity g:= dim H'(ff,cyd of the surface are zero.
¢
2. The natural inctution th.ft induces an isomorphism of tattices,
~ X .4 .
(5.9.1) X, 2/eaac) = atd 17, fr teS-
Here rad(1):= ¢ eel, (X, ,2) : l(e.x) = 0 for xeH, (X, . 7)) ,
¥ ~ .
7LD ) = the submodule of,ﬂl(xt.l) generated by the homoiogy
classes [Eil for irreducible components Ei of D .
3. Homology classes for irreducible components of D are linearly independent.
. ~ ~
(5.9.2) disc Z(D 1 = t disc ﬂL(Xt.Z)/rad(I) ,
(5.9.3) rank H,(X;.2) = p- ki + #{irreducibie components of O J.

K7
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. g -
Progf. 1., Due 'to a theorem of Brieskaorn [2], the resoiution Xt of rational dauble
point is homeomorphic to a smcoth fiber., say X, . Hence we have only to prove for the
case when X, is a smooth Milnor fiber. Since D = X.~ Xghas real codimension 2 in X¢,
one has an epimarphism E(xﬁ) ———97Q(§;). The Milnor fiber xfis sinply connected.
2..3. We have only to consider the case Yé = Yt due to the follwing:

Let S be a smooth surface with an exceptional curve E of the first kind.

~ J—
Put S = S/E. Then we have isomorphisms H,(S,Z) = (ZLE1) of tattices.

The natural inclution map XtCLYt = ,‘({EUD"0 induces a homomorphism,

(5.9.4) HL(X{.Z/) —> H, (X, D)

, which is a part of the foilowing long exact sequence,

0=H3(& ,Z)‘~—9 Ha(Xt,Xt,Z) _— ﬂz(X*.Z) — H, (X 7)) — HL(Xt’Xt’Z) —> H; Xz, 2) =0.

~

e

Here HJ(Yt,Xt.Z)

HU(Dg, 2) ¥ H'(Ey 20 and Hy (K, Xp,2) & HE(D,, 1) = 2(D,).
The map H (E;Z) = H (E ,2) — Hl(Xt,Z> is obtained by associating to
a cycle ceH (E ,Z) the total space of a S'-bundle I(c) over ¢ ( = the

boundary of- the normal disc—bundlé of ¢ in X, ).

t
The map Hz(%t‘Z) -—_ Hl(Dw.Z) = Z[pJ)is obtained by taking the cap products
with the homology classes [EiJ of the irreducible componenfs E; of Dy. Hence
the kerne!l of the map is (Z[Dw]TL. The surjectfvity of the map implies the
linear independence of irreducible components of D, and hence rank(Z[DwJ)‘L
= rank Hz(iz,ﬂ) - # irreducible components of Dw.k
Since the map (5.9.4) is metric preserving so that its kernel H (E, . Z) is

contained in rad(l). Thus we obtain a surjection, (Z[DW])L —>> Hl(Xt,l)/rad(I) .

The Euler number qz(ft) of the compact surface Yf is calculated.as

q&(ik) Euler number of xt + Euler number of Dw

C1 s B}y + (2 - 29(Ey) + ﬂ{irreducible components of Dy- E,}

Recalling cl(f;) = 2 + the second Betti number of %} andlé(Ew) = g(Eé). we get an

equality rankHo(Xy,Z)/rad(l) = rank(Z[Dw])f which'implies the isomorphism (5.9.1).qed
_Note. The above calcutation shows also the bijection of the modules,

(5.9.5) rad(l) = HI(EW'Z)

a5
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