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Algebraic Independence and Transcendental Numbers

By Michel WALDSCHMIDT
Université de Paris VI

(written by Noriko HIRATA)

We introduce 4 methods for algébraic independence, and
mention recent progress concerning problems on large transcend-

ence degrees,

§1. Algebraic independence.
We begin with recalling what means algebraic independence.
DEFINITION 1. Let 61,---,6t be complex numbers. One says
that 81,"',9t are algebraically independent if for all non-
zero polynomials P in X1,---,X with rational integral co-

t
efficients, we have P(61,---,6t) £ 0.

DEFINITION 2. Let E be a subfield of C and t be a non—u
negative integer. We define the transcendence degree of E by
trd Ez t
r egQ |
if there are t elements of E which are algebraically independ-

ent.



REMARK. If E is a finitely generated extension of Q, then
trdegQ E is the largest number of algebraically independent

elements of E.

Now, the question is to find concretely some numbers which
are algebraically independent. For this purpose, we have 4

methods.

First method: Liouville's method (1844).

The first example of a transcendental number was given by
J.Liouville, by using some series which converges very quickly.
The same type of argument yields some examples of algebraically
independent numbers; one can even construct some subsets of C
with large transcendence degree (power of continuum). Recent
progress with this method has been achieved by K.Nishioka (see

these proceedings).

Second method: Mahler's method (1929).
K.Mahler got several examples of algebraically independent

2
. -n .
numbers; for example, some series Iz or some functions

n

like this which take algebraically independent values.

Third method: Lindemann-Weierstrass method (1882).

C.L.F.Lindemann and K.Weierstrass proved the following:



THEOREM 1 (Lindemann-Weierstrass). Let a1,--’,an be
algebraic numbers which are linearly independent over Q. Then

a a
n . .
the numbers € ,***,¢€ are algebraically independent.

The method of proof of this result uses very deeply the
properties of the exponential functions. A development of this
method was given by C.L.Siegel in 1929, which generalizes the
résult to more general functions which he called E functions.
These functions satisfy differential equations and also have
some nice properties. This theory has been developed by the

russian school (A.B.Shidlovsky etc.), and they work for certain
generalizations of the exponential function which are entire

functions of order one.

Fourth method: Gel'fond's method (1948).

Th.Schneider gave another proof of the Lindemann-

Weierstrass theorem for the case n = 1, by using "Gel'fond's
method".

THEOREM 2 (Hermite-Lindemann). Let ®« be a non-zero

. (¢
algebraic number, then € 1is transcendental,

This method arose from Hilbert's seventh problem which was

solved in 1934 by A.0.Gel'fond and Schneider.



THEOREM 3 (Gel'fond-Schneider). Let a and B be algebraic
numbers where o # 0, o # 1 and B is not rational. Let log «

be any determination of the logarithm of d. Then the number

8

a~ = exp(Blog a) is transcendental.
The proof involves several tools. The first one is the
construction of an auxiliary function. Such a construction

ocurred also in the work of C.Hermite, but here one uses a
lemma which deals with systems of linear homogeneous equations;
this lemma was introduced by A.Thue and Siegel.‘ Another tool
is connected with Gel'fond's sﬁudies of integral valued entire
functions. This work of Gel'fond is a development of previous

works by G.Pblya in 1914 and S.Fukasawa in 1924.

Now, let us consider the question whether it is possible
to prove the complete version of the Lindemann-Weierstrass
theorem by using Gel'fond's method. The first step was provid-
ed by G.V.Chudnovsky in 1978. He proved in that way the
Lindemann-Weierstrass theorem for n = 2,3 and he showed also
an elliptic ‘analog. The elliptic function which shall be
considered is Weierstrass' elliptic function, denoted by Pr
satisfying ?.2 = 4&3 - 9P - 95 where 9, 93 are algebraic
and g23'# 27g32 . It is known that there is only one meromor-
phic function which satisfies such a differential equation and

has a double pole at the origin. This function is periodic in

the plane with two periods . wer Wy which are 1linearly



independent over the field of real numbers. Schneider, in
1937, proved that if a is a non-zero algebraic number, then «
is not a pole of P and that p(a) is transcendental. Further
results on the algebraic independence of the values of p are
given by Chudnovsky in 1978.

THEOREM 4 (Chudnovsky). Let o be three alge-

17 %20 O3
braic numbers which are linearly independent over Q. Then at
least two of the numbers P(a1), p(az), P(a3) are algebraically

independent.

§2. Large transcendence degree.

Now, the following more general guestion arises: if
Qqrtoyay are linearly independent over Q, then afe the
values p(a1),-°-,P(un) algebraically independent?  In fact,
this is not true because of the complex multiplication. We

define k = Q(wz/w1) if wz/w1 is algebraic ("withk complex
multiplication'") and k = Q otherwise ("without complex
multiplication"). It is known that if wz/w1 is algebraic, then
k is of degree 2 over Q.

The conjecture is the following:

CONJECTURE 1. If Qppccc,0,  are algebraic numbers which
are linearly independent over Kk, then P(a1),"°,y(un) are

algebraically independent.



Theorem 4 shows that for n = 2 or 3,
n
trdegQ Q(P(aj),...’p(an))‘g 3
which is the half of what is required. Recently, in 1984,
P.Philippon and G.Wustholz proved the conjecture in the case
k # Q, and later, Philippon and E.M.Jabbouri proved the half of

the conjecture for all n in the case k = Q.

THEOREM 5 (Philippon-Wustholz). The conjecture 1 is true

if k # Q.

THEOREM 6 (Philippon-Jabbouri). Under the assumption of
the conjecture 1, we have

trdeg, Q(p(a,),=--,pla_)) = 3 .
Q 1 n 2

Hence the conjecture is not yet completely settled. We

now state another problem on algebraic independence.

CONJECTURE 2. Let a be a non-zero algebraic number with

a £ 1. Let log o be any determination of its logarithm and

let B be an algebraic number of degree d 2z 2 over Q. Then
g B8 gd~"
the numbers o , 0 ,***, O are algebraically independent,
a-1 d-1
where aB = eBlog @ PR aB = e6 log a .

This conjecture 2 means that the transcendence4degree over



| 5 p? gd~"
Q of the field Qo™ ,a" ,***,0 ) is d - 1. We know

already that if d z 2, then

2 a-1

t = trdegQ Q((xB,aB B ) 2 1

J
B (1 =

because each number o j £ d-1) is transcendental by the

Gel'fond-Schneider theorem. Gel'fond showed in 1949 that if
B

d z 3, then t 2 2. For instance, if B is cﬁbic, then « and

B2

o are algebraically independent;

This problem has been studied by A. A. Shmelev, W. D.
Brownawell and Chudnovsky and others, who showed that there
exists an explicit constant dO su¢h that if d z d0 then
t 2z 3. In fact, the value found for do was 19, then 15, then
7, and may be 5. A fundamental breakthrough was provided by

Chudnovsky in 1974.

THEOREM 7 (Chudnovsky, 1974, preprint of Kiev Univ.).

Under the assumption of the conjecture 2, we have

2 d-1
B B~ ... .B log (d+1)
trdegQ Q(a" ,a" , s O ) 2 [ Tog 2 .
Until 1984, this preprint was not published and some parts
of the proof were not clear. P.Warkentin, Philippon, E.
Reyssat, R.Endell and Yu.V.Nesterenko have tried to understand
it and they succeeded to get  the result'with essentially the

same kind of estimates. Nesterenko's proof involved some quite



different ideas using commutative algebra and he obtained also
a measure of algebraic independence. A very important progress

has then been achieved by Philippon:

THEOREM 8 (Philippon, 1984); Under the assumption of the

conjecture 2, we have
2 d-1
trdegQ Q(ozB,oeB ’ B ) 2 [d].
Philippon's proof is completely different from that of
Chudnovsky, but it relies on some of Nesterenko's ideas. Also
it enables one to get a complete version of the Lindemann-
Weierstrass theorem by using Gel'fond's method.
Next, we shall mention the elliptic analog of the conjec-

ture 2.

CONJECTURE 3. Let p be a Weierstrass elliptic function
with algebraic invariants 92,93. Let u be a complex number
which is not a pole of &, such that P(u) is algebraic. Furthef
let B be an algebraic number of degree d 2z 2 over k. - Then
the numbers p(Bu),P(BZu),---,p(Bd_Tu) are algebraically inde-

pendent.

Define t, = trdeg, Q(p(Bu),p(Bzu),-u,p(Bd"1u)), so the
conjecture 3 is ty = d - 1. It has been proved by Schneider

in 1937 that d 2z 2 implies tk z 1, and the work by D.W.Masser



and Wistholz in 1981 gives that d 2 3 implies t, 2z 2.
Chudnovsky's proof cannot be adapted to this elliptic case.

However, Philippon succeeded to prove the following result:

THEOREM 9 (Philippon, 1982). Under the assumption of the
conjecture 3, we have

ty

v

[%1] if k # 0,
and

Cp

v

[%l] if k = Q.

His result was proved in the case of any abelian variety,
and for this, it is important that the abelian wvariety is
compact and complete. However, the multiplicative group is not
compact, so the multiplicative case is more difficult and was

proved later.

§3. Transcendence criterion.

The main tool in the proof of the above mentioned results

is a transcendence criterion. For a polynomial P(X) =
n n-1 .
a X +a_ .X + **+ + a,, we define H(P) = max Ja,]|.
n n-1 0 .
0=zisn

&

THEOREM 10 (Gel'fond's criterion, 1949). Let © be a

complex number. If, for all N >> 1, there exists PN € Z[X1,

PN 2 0, such that deg PN £ N, H(P) = eN and
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2

IPN(G)I ¢ e 10N ; then we have PN(G) = 0 for all sufficiently

large N.

The idea of this proof is the following: if PN(G) is very
small, then 6 is close to one of the roots of PN(X), denoted by

If we compare a, and o then we can find that they are

N°® N N+1'

very close. For two algebraic numbers Uy and o

a

N+1’ Liouville's
theorem shows that they are equal when they are very close.
Then we have ay = @ = +++ which converges to 68, that means

= +++ = 9, therefore we get PN(G) = 0.

All the difficult points to get some results for 1large
transcendence degrees, are to generalize this criterion for

algebraic independence.
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