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Metric Diophantine Approximation

on some Fuchsian Groups

BRI if8 ¥

(Hitoshi Nakada)

Let T be a finitely generated Fuchsian group acting on the

upper half complex plane H?, L the set of limit points of T and

P the set of parabolic cusps. We assume that « € P.

An element ge I' can be viewed as a 2x2 real matrix
a b
c d

We write a =

0f determinant 1.

a(g), b = b(g), ¢ = c(g) and
4 =

d(g) for convenience.

In Lehner [4], he proved that there exists a pdsitive number
k depending on T such that

Hg=) o= g@)| < ooy, geT = =
for any a € L\ P,

He also proved that if I' is of the first kind

(L = R), then for any sequence {e_ } of positive numbers and

almost all a€ L~P, there exists a sequence {gn}C.F such that
n
|Ol.-g‘n()|<-é-z—('gn—).

Moreover, Patterson [7] proved a kind of Khintchine theorem when

I' is of the first kind: for example, his result implies that

B og(®) : o - g(=)] < L

c?(g)+log [c(g) |’ geT } ==

for almost all a € R\ P.

In this note, we shall calculate the asymptotic number of
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g(®)t |a = g(o)] < EJ%ET r gET

for some positive real number k and almost all o€ R\NP. To do
this, we consider a relation among the Diophantine inequality,
geodesics of H? and geodesics of H?/T. We show that the ergod- :
icity of the geodesic flow on H2/T with the hyperbolic measure
is closely related to the gquantitative theory of the Diophantine
approximation on T. The relation between the Diophantine
inequality and geodesics‘of H?2 also have been considered by

Haas [2] and Haas and Series [3] to determine Lagrange spectrum
of the approximations on I'. They have pointed out that the
spectrum is related to the "height" of a I'-congruent family

of geodesics.

1. Main Theorem We assume that T is of the first kind and

oe P. 8ince &e?’, there exists
1 A
U = EF, >\€R+p

such that
{u i xez}=r
where T'  denotes the subgroup of T that fixes ». We define the

fundamental region F of T by

F=‘{z==x+,w':-%<x<%, y>0 1}

4 [ N {z: |c(g)rz + d(g)| >1 ﬂ.

geTNT
It is well-known that the hyperbolic metric ds = /dx?*+dy?/y

and the hyperbolic measure dpy = dxdy /y? on H? are invariant
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under T-action over HZ2.

Theorem. Let

o
N

k., = min |c(g) !I
GeTNT,

then we have for almost all a€ R\P,

#{ g(e) : o = g(»)] < ET%ET,, lc(g)|sN, geT }

lim
N--c0 log N
_ 2X*k
meu(F)

for any k, 0<k< koo

In the sequel, we outline the proof of this theorem.

2. Some lemmas We denote by vy (o, B) the geodesic curve which

starts from o and ends at B8 for (a, B) € (RV {x} )2 \ {diagonal}l.
We also denote by
Fp(g(=)), k>0,
. ' . a(qg) . . k
the circle tangent to the real line at c(g) with the radlus LA

for g¢I'_  and { x + iy + y = 1/ 2k} for geT_.

,»~‘\\\\ Fk(g(w))

0 g ()

It is possible to show the following:

Lemma 1. If we fix k>0, then
g' (Fk(g(“’))) = Fk(g'g(“’))

for any g' and ge T.
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This lemma implies that { Fp(g(=)) : geT } is an invariant

family of circles under T'-action. The next lemma is essential.

Lemma 2. For any k>0,
: k
[oc-g(°°)l <-c7-('§')*
holds <1f and only <if

Y(=, @) N Fy(g(=)) % g
Y (e, a)

p(g(°))

0 o g(«)

If k < ky, then we see that { F,(g(=)) } is a disjoint
family of circles, that is,
[o.e] ' [ee) =
F(g( )) N F,(g' (=) g
if g(») X g'(»). Thus we have the following:

Lemma 3. If 0<<h'<k0, then every point of Fh(g(W))\ (RU {~l})
18 congruent to some point of Fk(m)ﬂ(:F\{W}), that is, if pPé€
Fk(g(w))\.(RL){w}), then there exists g' €T such that g'(p) =

X + Ly, —%<x<%— and y = 1/ 2k.

3. Sketch of the proof Let T(H?) and T(F) be the unit tangent

bundles of H? and F, respectively. We consider the geodesic
flows f£_ and f_ on T(H?) and T(F), respectively. For w*ée T(H?),
there is a unique geodesic (a, B) passing tangentially through

w¥., If a X » and B X «», then we denote by 4 the (directed)
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hyperbolic length from the top of the geodesic arc (a, B) to w,
which is the base point of w*. If a=w(or B=«), then we denote
by 4 the hyperbolic length from the point 8 + 4 (or o + {) to w,
(respectively). Thus we can parametrize w*é& T(H?) by (a, B, 5)
(RU{=}) 2\ {diagonal}) xR. So if 0<k <h0, we see from lemmas 2
and 3 that
#1 g(=) = o - g(=)| < gz—'f—g—)—, lc(g) | <N, geT }
fé(w' o, —log (k0+l)) crosses a circle Fk(g(W))
= #ys from outside at time 4, 0 < 4 glog(k0+l) - log hi
+ 2 log N

4

f (w*) crosses Fk(w) from below at a time 4,
= #1454 :
0 <A_glog(k0+l) - log k + 2 log N

where w*e T(F) is the congruent point to (~, o, ~log (ko+1))é T(H?).
Now we apply the individual ergodic theorem for (T(F), %, ﬁ)
to our problem. Here, the hyperbolic measure ﬁ on T(F) induced

] .

(o - B)?

if we parametrize a point in T(F) by (a, B, 4).

Proposition 4. If we fix k, O<:k<<k0, then

#{ 45 : fb(w*) crosses Fk(w) from below, 0 <4 < u}
lim
u->co u

u{ x + diye F : y>1/2k }
2meu (F)

for almost all w*€ T(F).
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Moreover, by using an approximation method on k, we have

Proposition 4'. For almost all w*é€& T(F),

_ #{ 5 : %A(w*) Crosses'Fk(m)‘fromvbelow; 0.<4<ul
lim = :
U+ u

Wl x + dyeF : y>1/2k }
2meu (F) ~

for any k, 0<k< ho.

Furthermore, it is possible to show that if w* = (o, B, 4) € T(F)
has the above property, then for any a'€ RU{x} and 4'€ R, w**
= (a', B ,4"') also has the same property. Since the hyperbolic

length between o + (k0+l)i and o + li is equal to log N + log &0+D,

N
we have
#{ g(») = o - g(®)| <=7=+ | c(g) | £ N, gel' }
lim c” (g)
N->eo log N
_ o . ulx+ iyeF : y>1/2k
- 2meu (F)
2X ek
Teu (F)

for any k, 0<k< ho and almost all ae R\ P.

4, Some remarks It is possible to apply the theorem to

Hecke group Gn’ n > 3, and its principal congruence subgroups Gn(m).

Let Gn be the group generated by
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where An = 2ecos % for n2 3, and Gn(m) be the subgroup of Gn
defined by

t1 0

G (m) = {gé&Gn : g= [ } mod.(m-An)}

0 r1
where (m-kn) denotes the ideal generated by m-An with positive
integer m .

A fundamental region Fn of Gn is given by

Fn= { x + iy = ﬂms%<xgcm;%,)¥+y2>l,y>0L

Thus we see that G is of the first kind and

n
P = Pn = Gn(oo) = { g(=) : geGn

}
if n¥~., In this case, we have
L
. . - o i< <
Lin #1 g(») = geG , |a - g )I‘:ET—ET EEIC )N IS A,
N->o0 log N

2-n'kn-k
(n=2) +m?

for any k, 0<hk<1l/2and almost all ae R‘\Pn. By using the
normality of Gn(m), we can prove that the above inequality holds
for all k>0.

It is also possible to prove a theorem of the same type

for some Kleinian groups of the first kind acting on

H? = { (x, Yy, 2) : X, YER, z>0 } .
For example, we can prove the following: Let d be a square free
negative integer and (J(d) the set of integers in Q(/d). Then
we have for almost all complex number a,
k
#1{ P : |0‘_g‘l<m21 P:qéﬁ“(d), Iq,éNr (p, 9)= 1}

lim d
N-—oo log N
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= oh?
- .Cd R

all k>0, where Cd is a constant depending only on d.
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