Metric Diophantine Approximation on some Fuchsian Groups

慶大理工 仲田 均 (Hitoshi Nakada)

Let Γ be a finitely generated Fuchsian group acting on the upper half complex plane \mathbb{H}^2 , L the set of limit points of Γ and P the set of parabolic cusps. We assume that $\infty \in P$.

An element $g \in \Gamma$ can be viewed as a 2×2 real matrix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

of determinant 1. We write a = a(g), b = b(g), c = c(g) and d = d(g) for convenience.

In Lehner [4], he proved that there exists a positive number k depending on Γ such that

$$\#\{g(\infty): |\alpha - g(\infty)| < \frac{k}{c^2(g)}, g \in \Gamma\} = \infty$$

for any $\alpha \in L \setminus P$. He also proved that if Γ is of the first kind (L = R), then for any sequence $\{\epsilon_n\}$ of positive numbers and almost all $\alpha \in L \setminus P$, there exists a sequence $\{g_n\} \subset \Gamma$ such that

$$|\alpha - g_n(\infty)| < \frac{\varepsilon_n}{c^2(g_n)}$$
.

Moreover, Patterson [7] proved a kind of Khintchine theorem when Γ is of the first kind: for example, his result implies that

$$\#\{\ g(\infty)\ :\ |\alpha\ -\ g(\infty)\ |\ <\ \frac{1}{c^2(g)\cdot \log\ |c(g)\ |}\ ,\ g\in\Gamma\ \}\ =\ \infty$$

for almost all $\alpha \in \mathbb{R} \setminus P$.

In this note, we shall calculate the asymptotic number of

$$\tilde{g}(\infty)$$
 : $|\alpha - g(\infty)| < \frac{k}{c^2(g)}$, $g \in \Gamma$

for some positive real number k and almost all $\alpha \in R \setminus P$. To do this, we consider a relation among the Diophantine inequality, geodesics of H^2 and geodesics of H^2/Γ . We show that the ergodicity of the geodesic flow on H^2/Γ with the hyperbolic measure is closely related to the quantitative theory of the Diophantine approximation on Γ . The relation between the Diophantine inequality and geodesics of H^2 also have been considered by Haas [2] and Haas and Series [3] to determine Lagrange spectrum of the approximations on Γ . They have pointed out that the spectrum is related to the "height" of a Γ -congruent family of geodesics.

1. Main Theorem We assume that Γ is of the first kind and $\infty \in \mathcal{P}$. Since $\infty \in \mathcal{P}$, there exists

$$U_{\lambda} = \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix} \in \Gamma, \quad \lambda \in \mathbb{R}_{+},$$

such that

$$\{ U^k : k \in Z \} = \Gamma_m$$

where Γ_{∞} denotes the subgroup of Γ that fixes ∞ . We define the fundamental region F of Γ by

$$F = \{ z = x + iy : -\frac{\lambda}{2} < x < \frac{\lambda}{2}, y > 0 \}$$

$$\bigcap_{g \in \Gamma \setminus \Gamma_{\infty}} \{ z : |c(g) \cdot z + d(g)| > 1 \}.$$

It is well-known that the hyperbolic metric $ds = \sqrt{dx^2 + dy^2}/y$ and the hyperbolic measure $d\mu = dx dy/y^2$ on H^2 are invariant

under Γ -action over H^2 .

Theorem. Let

$$k_0 = \frac{1}{2} \min_{g \in \Gamma \setminus \Gamma_{\infty}} |c(g)|,$$

then we have for almost all $\alpha \in R \setminus P$,

$$\lim_{N\to\infty} \frac{\#\{g(\infty): |\alpha - g(\infty)| < \frac{k}{C^2(g)}, |c(g)| \le N, g \in \Gamma \}}{\log N}$$

$$= \frac{2\lambda \cdot k}{\pi \cdot \mu(F)}$$

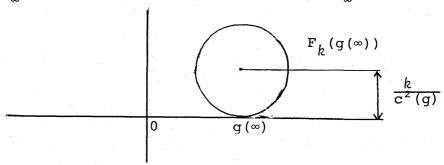
for any k, $0 < k < k_0$.

In the sequel, we outline the proof of this theorem.

2. Some lemmas We denote by $\gamma(\alpha, \beta)$ the geodesic curve which starts from α and ends at β for $(\alpha, \beta) \in (R \cup \{\infty\})^2 \setminus \{\text{diagonal}\}$. We also denote by

$$F_k(g(\infty)), k > 0,$$

the circle tangent to the real line at $\frac{a(g)}{c(g)}$ with the radius $\frac{k}{c^2(g)}$ for $g \notin \Gamma_{\infty}$ and $\{x + iy : y = 1/2k\}$ for $g \in \Gamma_{\infty}$.



It is possible to show the following:

Lemma 1. If we fix k > 0, then

$$g'(F_k(g(\infty))) = F_k(g'g(\infty))$$

for any g' and $g \in \Gamma$.

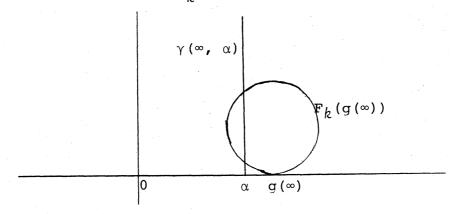
This lemma implies that $\{ F_k(g(\infty)) : g \in \Gamma \}$ is an invariant family of circles under Γ -action. The next lemma is essential.

Lemma 2. For any k > 0,

$$|\alpha - g(\infty)| < \frac{k}{c^2(q)}$$

holds if and only if

$$\gamma(\infty, \alpha) \cap F_b(g(\infty)) \neq \emptyset.$$



If $k < k_0$, then we see that { $\mathbf{F}_k(\mathbf{g}(\infty))$ } is a disjoint family of circles, that is,

$$F_k(g(\infty)) \cap F_k(g'(\infty)) = \emptyset$$

if $g(\infty) \neq g'(\infty)$. Thus we have the following:

Lemma 3. If $0 < k < k_0$, then every point of $F_k(g(\infty)) \setminus (R \cup \{\infty\})$ is congruent to some point of $F_k(\infty) \cap (F \setminus \{\infty\})$, that is, if $p \in F_k(g(\infty)) \setminus (R \cup \{\infty\})$, then there exists $g' \in \Gamma$ such that g'(p) = x + iy, $-\frac{\lambda}{2} < x < \frac{\lambda}{2}$ and y = 1/2k.

3. Sketch of the proof Let $T(H^2)$ and T(F) be the unit tangent bundles of H^2 and F, respectively. We consider the geodesic flows f_s and \hat{f}_s on $T(H^2)$ and T(F), respectively. For $\omega * \in T(H^2)$, there is a unique geodesic (α, β) passing tangentially through $\omega *$. If $\alpha * \infty$ and $\beta * \infty$, then we denote by δ the (directed)

hyperbolic length from the top of the geodesic arc (α, β) to ω , which is the base point of ω^* . If $\alpha=\infty$ (or $\beta=\infty$), then we denote by δ the hyperbolic length from the point $\beta+\dot{\iota}$ (or $\alpha+\dot{\iota}$) to ω , (respectively). Thus we can parametrize $\omega^*\in T(\mathcal{H}^2)$ by (α, β, δ) $(R \cup \{\infty\})^2 \setminus \{\text{diagonal}\}) \times R$. So if $0 < k < k_0$, we see from lemmas 2 and 3 that

where $\omega^* \in T(F)$ is the congruent point to $(\infty, \alpha, -\log (k_0 + 1)) \in T(H^2)$.

Now we apply the individual ergodic theorem for (T(F), \hat{f} , $\hat{\mu})$ to our problem. Here, the hyperbolic measure $\hat{\mu}$ on T(F) induced from μ is defined by

$$\hat{\mu} = \frac{d\alpha \ d\beta \ ds}{(\alpha - \beta)^2}$$

if we parametrize a point in T(F) by (α, β, δ) .

Proposition 4. If we fix k, $0 < k < k_0$, then

$$\lim_{u\to\infty} \frac{\#\{\text{ s : f}_{s}(\omega^*)\text{ crosses }F_{k}(\infty)\text{ from below, }0< s< u\}}{u}$$

$$= \frac{\mu\{x + iy \in F : y > 1/2k\}}{2\pi \cdot \mu(F)}$$

for almost all $\omega^* \in T(F)$.

Moreover, by using an approximation method on k, we have

Proposition 4'. For almost all $\omega * \in T(F)$,

$$\lim_{u\to\infty} \frac{\#\{\text{ s : } \hat{f}_{s}(\omega^{*}) \text{ crosses } F_{k}(\infty) \text{ from below, } 0 < s < u\}}{u}$$

$$= \frac{\mu\{ x + iy \in F : y > 1/2k \}}{2\pi \cdot \mu(F)}$$

for any k, $0 < k < k_0$.

Furthermore, it is possible to show that if $\omega^* = (\alpha, \beta, \delta) \in T(F)$ has the above property, then for any $\alpha' \in R \cup \{\infty\}$ and $\delta' \in R$, $\omega^{**} = (\alpha', \beta, \delta')$ also has the same property. Since the hyperbolic length between $\alpha + (k_0 + 1)i$ and $\alpha + \frac{1}{N}i$ is equal to $\log N + \log (k_0 + 1)i$, we have

$$\lim_{N\to\infty} \frac{ \#\{ g(\infty) : |\alpha - g(\infty)| < \frac{k}{c^2(g)}, |c(g)| \le N, g \in \Gamma \} }{\log N}$$

$$= 2 \cdot \frac{\mu\{ x + iy \in F : y > 1/2k \}}{2\pi \cdot \mu(F)}$$

$$= \frac{2\lambda \cdot k}{\pi \cdot \mu(F)}$$

for any k, $0 < k < k_0$ and almost all $\alpha \in R \setminus P$.

4. Some remarks It is possible to apply the theorem to $\label{eq:congruence} \mbox{Hecke group } \mbox{G}_n \,, \, n \geq 3 \,, \, \mbox{and its principal congruence subgroups } \mbox{G}_n \,(m) \,.$ Let \mbox{G}_n be the group generated by

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & \lambda_n \\ 0 & 1 \end{bmatrix}$$

where $\lambda_n = 2 \cdot \cos \frac{\pi}{n}$ for $n \ge 3$, and $G_n(m)$ be the subgroup of G_n defined by

$$G_{n}(m) = \{g \in G_{n} : g \equiv \begin{bmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{bmatrix} \mod (m \cdot \lambda_{n}) \}$$

where $(\mathfrak{m}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}\lambda_n)$ denotes the ideal generated by $\mathfrak{m}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}\lambda_n$ with positive integer \mathfrak{m} .

A fundamental region F_n of G_n is given by

$$F_n = \{ x + iy : -\cos \frac{\pi}{n} < x \le \cos \frac{\pi}{n} , x^2 + y^2 > 1, y > 0 \}.$$

Thus we see that G_n is of the first kind and

$$P = P_n = G_n(\infty) = \{ g(\infty) : g \in G_n \}$$

if $n \neq \infty$. In this case, we have

$$\lim_{N\to\infty} \frac{\#\{\ g(\infty)\ :\ g\in G_n\ ,\ |\alpha-g(\infty)|<\frac{k}{c^2\left(g\right)}\ ,\ |c\left(g\right)|\leq N\ \}}{\log\ N}$$

$$= \frac{2 \cdot n \cdot \lambda_n \cdot k}{(n-2) \cdot \pi^2}$$

for any k, 0 < k < 1/2 and almost all $\alpha \in \mathbb{R} \setminus P_n$. By using the normality of $G_n(m)$, we can prove that the above inequality holds for all k > 0.

It is also possible to prove a theorem of the same type for some Kleinian groups of the first kind acting on

$$H^3 = \{ (x, y, z) : x, y \in \mathbb{R}, z > 0 \}$$
.

For example, we can prove the following: Let d be a square free negative integer and $\mathcal{O}(d)$ the set of integers in $\mathbb{Q}(\sqrt{d})$. Then we have for almost all complex number α ,

$$\lim_{N\to\infty} \frac{\#\{\frac{p}{q}: |\alpha - \frac{p}{q}| < \frac{k}{|q|^2}, p,q \in \mathcal{O}(d), |q| \leq N, (p,q) = 1\}}{\log N}$$

= $C_{d} \cdot k^{2}$

for all k > 0, where C_{d} is a constant depending only on d.

[References]

- [1] L.V. Ahlfors: Möbius transformations in several dimensions,
 Univ. Minnesota Lecture Notes (1981).
- [2] A. Haas: Diophantine approximation on hyperbolic Riemann Surfaces, Acta Math. 156 (1986), 33-82.
- [3] A. Haas and C. Series: The Hurwitz constant and Diophantine approximation on Hecke groups, preprint.
- [4] J. Lehner: Discontinuous groups and automorphic functions,
 Math. Surveys 8, A.M.S. (1964).
- [5] J. Lehner: Diophantine approximation on Hecke groups, Glasgow Math. J. 27 (1985), 117-127.
- [6] R. Moeckel: Geodesics on modular surfaces and continued fractions, Ergod. Th. and Dynam. Sys. 2 (1982), 69-83.
- [7] S.J. Patterson: Diophantine approximation in Fuchsian groups, Phil. Trans. Roy. Soc. London, 282 (1976), 527-563.
- [8] D. Sullivan: Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Math. 149 (1983), 215-239.