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Nonlinear Problems in Geometry

J. L. Kazdan
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I. Conformal Geometry (Yamabe Problem)

Prescribing Curvature

Given M2 : compact 2-dimensional manifold without boundary
& K : function on M.

Seek a metric g on M so that K = Gauss curvature of g.
Rem. By Gauss-Bonnet theorem
%. RKdA = 27 x(M).
M 9

So we have a sign condition on K. For example, on Sz, we

have X(Sz) = 2 so that K must be positive somewhere.

When we seek the unknown metric g, we often pick some metric
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99 and try to deform it to the desired metric g.

The most simplest deformation is "pointwise conformal" one.

Def. We say g & g, are pointwise conformal if there

exists some positive function o on M such that g = P9 -

Or more generally,

for = (M, g), (N, gO) : Riemannian manifolds q): M — N

a diffeomorphism.

We say s) is a conformal map if for some positive function

*
p on M we can write g = Py (go).
So id : (M, g) —> (M, go). is conformal map if and only if
g & g, are pointwise conformal.

It turns out one should write o = e2u for some function u

on M2.

So the equation which we want to solve is

_ _ 2u
(1) Aou = KO Ke
where AO : Laplacian of 99
K0 : Gauss curvature of 90°

Special Case

Want g with K = constant

(According to the sign of x(M), we can assume K = +1, 0, or
-1.) |

(The Uniformization theorem for Riemann surfaces states that

there is a conformal map giving a metric with K £ const.
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example for (Sz, go) : given metric solve with K = 1.
By Uniformization theorem, (1) must have a solution. But no

direct proof is known.

Higher Dimensional Case

Given

(Mn, go) : compact n-dimensional Riemannian manifold

S : function on M.
Seek a metric g pointwise conformal to g, Sso that

S = scalar curvature of g.

u4/(n-2)g

We set g = og, = 0

for u > 0, the equation is

- - _ a
(2) Lu = yAOu + Sou Su
._ 4(n - 1) ._n 2
where Yy == —E~:—§—— a = n = 2
bg ¢ Laplacian of 99
S0 : scalar curvature of 9q-

Special Case

S = constant

This case is called "Yamabe Problem".

When we discuss P.D.E., there are two cases, the "easy" case
and the difficult case.

If P.D.E. 1is

T(u) = F(x, u, Du, D2u) =0

F

Brij

where F(x, z, p. ) 1is a pos.

ll

. 1
rij) is Cf—func. and (
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definite matrix (so the equation is an elliptic type) then the
easy case 1s

3F <o (or <0 when we consider the equ. on @

3z -
(domain) with bdry).
In the easy case, we can prove the uniqueness theorem.
i.e. if u, v € (:Z(M) are solutions, so T(u) = 0, T(v) = 0,
then u = v on M.
For the proof one uses the mean value theorem to write

1
0 = T(v) - T(u) =S %T(u + (v - u))dx
0

li

b + zb.wj + cw,

a. . W, .
1 1] J
where w = v - u, the matrix aij is positive definite, and

c < 0. Since c¢ < 0, the function w can not have a positive

maximum or negative minimum, so w = 0.

Example
Lu = Aau + cu = £(x)
(F(x, u, Du, D2u) = Au + cu - f)
(3F>=(l.'o E oo
arij 0 1 3z
The easy case is if ¢ < 0. If ¢ =0 or c > 0 then it can

occur that Ker L # 0.

So the eigen value of operator on A occurs only on

{teR

t > 0t.

Example

For equation (1) easy case is X< 0.
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For equation (2) easy case is S < 0.

Returning to equation (1), in general there are three cases

depending on the sign of KO = (S KOdAo)/Area(M). It is
M

simplest to make a change of variable and let =z Dbe a solution

of bpz = Ky - EO' Then v = u - z satisfies
_ = 2z, 2v
on = KO (Re" " )e™ 7,
which is of the some form as (1), but with K0 = const. Thus,
without loss of generality we will assume KO = const. in (1).

1) The case KO < 0 is easiest to discuss, so we ignor
it. (cf. [KW1l]) |

2) Next simplest is the case K0 = 0.
If K = 0, then (1) is linear equation, so we can soive it

easily.

So we assume K £ 0, then'(l) has a solution if and only if

K : changes sign

Kda, < 0.
SM 0

(Proof of necessity)
For the proof of sufficiency see [KW1l].

Integrate the equation (1),

2u
A udA K.dA —S Ke™ "dA
SM 0 0 SM 0 0 M 0

- g KezudA
M

i

0°

On the other hand, left side equals 0 by divergence theorem.
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So right side integral equals 0, K must changes sign.
Since KO = 0, we can rewrite equation (1) as K = —(Aou)e"2u

so, after an integration by parts we obtain

Kda
SM 0

—S e—zquudAO
M

- 2e—211 x Idulszo < 0.
M //

\Y4

Case 3°) KO 0.

This case has some terrible troubles.

Th. On (Sz,ycanonical metric)

a) (Kazdan-Warner [KW1]) 3AK > 0 function on 82 so

that there is no solution for (1).
b) (Moser, Chen [Mo][chl][ch2]) Let G C 0(3)

subgroup, F the fixed point set,

G

F. := {x €8" : gex = X for VYg e G}

If either my < 0 (or FG is empty) or m; > 0 but

AK(p) > 0 for some p € FG with K(p) = me then equation

(1) has a solution.

Higher Dimensional Case

There are three cases:

i

Let A be the lowest eigenvalue of L -yA . 4+ S

Case 1) A, < 0 easy case

2) A, =0 semi-hard
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3) A, > 0 hard.

It is easy to reduce these cases where

1)' s, <0

0
2)! SO =0
3)" S0 > 0.

In fact, take (5) so that L(f =9 4
~ -2 -
We can assume C > 0. If we set g, := ?ﬁ' 9gr then 5,5 =

SO §0 -has the same sign as Al'

Say S, >0 (then A, > 0). Then

0 1

gMcy'Su av

s‘M CP *‘Ludv

Xlg (j)-udv > 0.

M

= SM LCJO «udv

So S must be positive somewhere.

From now on we assume for simplicity that S > 0 everywhere
(Yamabe case : S =1). -
Standard method to prove the existence of a solution uses the
calculus of variations.

Seek a critical point of

%S [y]VuIz + Su2]dV
M 0

Y(u) =

(S Sua+1dv)2/(a+l)
M

or equivalently

F(u) = %—S [y|vu|® + Souz]dv
y :
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with the contrait

Solutions of (2) are the critical points of Y.

(:) As a variation we take u

£ 3= u + tn (n : any function
on M)
2 vy )|, . =c (vu, ¥n) + S undvV - c su®.nav
at t’ 't=0 1 YAVE, 0 2
M M
for some positive consts Cyr Cye
So Euler-Lagrange equation of Y is —YAOu + Sou = CZSua.

Let v = c3u for an appropriate cy > 0 then v is a

solution of (2).‘ //

Let o(M, 9y S) = inf{Y(u) : u € Hl(M)’ u>0, & ufg?ol
Because Y(u) is always positive, o(M, Igr S) 2 0.

We take minimizing sequence uj (i.e. Y(uj)\x o(M, 9o S))

with \ su*lav = 1.
i

We want a convergent subsequence.

Since S, > 0, then

0

N =

2 2
> . = Vu. .
Y(u;) =Y(u3> SM (vl uJI + Souj)dv

> < S (IVujl2 + u?)dv for some ¢ > 0 const.
M

independent of j.

Thus ”uj“H < const. independent of j.
1
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So we can take a subsequence (we use the same letter uj) 1)
that uj converges weakly in Hl to some u € Hl'
By Sobolev imbedding theorem HlC'.,Lp is cpt embedding if
P < 2n/(n - 2).
So uj —3—9 u for P < 2n/(n - 2).

P
Thus if o + 1 < 2n/(n - 2) we get S Sua+ldv = 1.

M

Especially u >0 & u £ 0 so Y(u) > o(M, 997 S).
On the otherhand, by the lower semicontinuity of Y with

respect to the weak H,-convergence,

1

Y(u) £ lim Y(uj) = o(M, 9o s).
J e
Thus u is a minimizing function of Y. But unfortunately in

our situation

_n 2 _ 2n
o+ 1= n-32 " 1= n - 2

so this does not quite work.

Theorem (S0 >0, S >0).

0) o(M, 9o S) 1is a conformal invariaht!

1) (Trudinger, Aubin [Aul]).
n 1 n : .
o(M", g5, S) < (S, canonical, 1)
0 (max 52/ (atD) |

(we will call the right-hand side of this the "standard
constant".)
2) (Trudinger, Aubin [Aul]).

If strict inequality < holds above then the equation (2) has
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10

a solution.

3) (Schoen, Escobar [Sc], [ES]).
If (M3, go) is not conformally equivalent to (S3, can)

::>-strict inequality holds in 1) (So has a solution.).

4) (Schoen, Escobar [ES]).
If (Mn, go) is locally conformally flat (i.e. the Weyl tensor
is identically zero) and not simply-connected and satisfies
"annoying condition"

—strict inequality holds and there exists a solution.

* Annoying Condition

There exists a point p € M where S has its max and

(pIs)(p) = 0 for |j] <n - 2.

=

(’So n = 3 = this condition is always satisfied )

Yamabe case

5) (Aubin [Aul]).
If (M7, go) is somewhere not locally conformally flat (i.e.

Weyl tensor £ 0), and n 2 6

::§>strict inequality holds and there exists a solution.
6) (Kazdan [Kw2]).
On (Sn, gO) with 90 conformal to the canonical metric.
a) A3S >0 so that (2) has no solution.

b) If S # const and if there exists a solution, this

solution can not minimize Y.

Hints about proof

Bad case is if S Su;+ldv =1 but u. —> 0 (weakly).
M
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This appears when u. "bubbles )
J figure

of f".

u.
i.e. uj(p) —> +* at some pt J

p € M and elsewhere Uy vééy “th‘
becomes smaller and smaller with b

S Su;+ldv = 1. (See figure.)
M

We examine what happens in these phenomena, thus we can prove

above theorems.
Part 1)

2) in R.
€ +|X|

Using a normal coordinate around p we lift u, to M.

Then by calculation

_ ojsn, can, 1)

Y(us) + higher order terms in ¢«
+
we get the result, if we take S(p) = max § and e —> 0.
Part 2)

Show S Sua+ldv = 1, enough to show g Sua+ldv > 0 (divide
M M

] ©or simply

show u Z 0, one can give many different proofs, but we skip

u by some const) or show uy —> u in strongly H

this because of lack of time.

Part 5)

Let u_ be as in Part 1).

- K11 -



12

' 2
Show Y(ue) = std - const + ( eT + ...

T;neg. such as *HWHZ.
Part 3) Want a clever (F so that Y( CF) < std const.
4)
In Part 1) we use u_ such that Lu€ = Dirac's & + higher

order.
To get more precise result, Schoen used G = Green's function
of L = =Yy + SO (since S0 >0, L is invertible so

we set G = L-1

Lv =f —» v = Gf
’ v(x) = S G(x, y)f(y)dy. )
M

Schoen showed the following using the positive mass theorem.
n =3

G(x, y) = T§~%-§T + A + higher order terms in x - vyl

and A > 0

A =0 if and only if M —Z s3.
conf.
Part 6)
a) If u is a solution of (1) :€> S (VS'VF)ua+1dV =0
n
S
for any 1lst order spherical harmonic F : -AF = nF.
On (Sn, can) i.e. s ¢ Rn+l
— . 2 n+l — LK I 3
F = (linear func. in R )lsn = (alxl + + an+lxn+l)lsn'

If S is monotonic in the direction of F, there exist no

solution.



Example S = F + const, F = linear func.

(If we choose const appropriately so that S > 0.)

b) We show if 31%): minimizing func. Y(uo) L ¥Y(u)

all u, then

:::é> S = const.

() By Part 1)

s(s", std, 1)

—_ n ¢
Y(UO) = o(S, 9’0, s) 2 2/(@+1) "

(max S)

On the other hand, if S £ const

S Sug+ldv < max S S ua+ldv.
st st

So

1 2 2
ES . YIVUOI + SOuOdV
1 S
> p) . )
(max S)°‘+l ( ug+ldv)a+l
Sn

From the definition of (s, 9qgr 1)

-K13 -
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1

Iv

s~ o(s", gg. 1).
T (- )
I

(max S)OL+

o(s™, std, 1)

These two inequalities on Y(uo) contradict each other. //

Quite recently Bahri and Coron [BC] show the following result
using the Morse theory.

On (S3, std)

Assume S has non-degenerated critical pts {yl, ooy yk}

with AS(yj) # 0 for' Vij.

Let kj = Morse index of S at Yj'

k.
If ) (-1) J # -1, there exists a solution.
j: AS(yj)<O

Sketch of the proof

Show bubbling off appears only at critical points of 8.
Seeking critical point of Y, they use a finite dimensional
analysis at these finite poiﬁts Yir ceer Yy

Essential difficulty is to analyze loss of compactness.

(i.e. For Y : Yamabe's functional Palais-Smale condition C

fails.)

ITI. Counting Lattice Points

Lax-Phillips : The Asymptotic Distribution of Lattice Points in
Euclidean and Non-Euclidean Spaces, Journal of

Functional Analysis Vol. 46 (1982), pp. 280-350.

The Purpose of this section is to show the very easy idea used
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in the above paper.

Although their results hold in all-dimensional Euclidean spaces
and hyperbolic spaces, we treat only R3 to save troublesome
techniques. |

The Main idea is same in the other situation.

Let T be a lattice in R3
i.e. T : discrete subgroup of euclidean motion group and
has no fixed points.
Let M = R3/P be the quotient manifold, assumed compact.

Lattice points are the orbit of o € R3 under T,

We set
N(s; x) = N(s) := ¢ {te€Tr: |x -1(0)] < s}
= the number of lattice points contained in the
ball of radius = s and center = Xx.
Theorem
445> 3/2
N(s) = + O(s ) as § ——>
3|M|
where |M| = vol of M.

Idea : Put firecrackers at all lattice points and explode them

all at the same time.

Listen carefully and count explosions which you can
hear.

In mathematical words solve the wave'equation with

"little bombs at lattice points" as the initial
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condition.

And investigate the solution.

First we set initial condition f.

Pick h e C,llxl < 1)
s.t. h2 0, Jhdx =1

B, (x) :=—=h&) & Cgllxl< a)

o

. o g .
Thus J hu(z)dz sS 1 if |x 1.0] £°T .
|t.z-x|<T Lo if Ix- .0l 2T+ a
| -1
Let  f(x) := ] h ( © 7x)
T€T

So f 1is invariant under the action of T .

Wave equation:

= A
utt u

with initial condition

S u(x, 0) =0

Lut(x, 0) = 4nf(x)

For any f the solution is given by the basic formula

u(x, t) = 1 f(x + y)dA clearly, if £ 1is invariant

Tt
lyl=t

under T , then so is u(x, t) as a function of x.
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Conservation of Energy

Let E(t) := %‘j (ui + |vul?
M

vu) = u,Au + vu.vu then by the devergence

t t t’

theorem (since M has no boundary)

Since V(u

dE _
T = JMut'utt + vu.vutdx

J u, (u - Au)dx

1l

So E must be constant, i.e. "energy is conserved". This will
allow us to estimate E(t) in terms of the initial data.

We have also proved the uniqueness theorem. Namely if we have
two solutions Ujr Uy, Vo= u; - ou, is also a solution of
wave equation with initial data vi(x, 0) = 0 & vt(x, 0) = 0.
By conservation of energy, energy of v is constant, but at
time t = 0 energy of v = 0, so energy of v 1is zero at all
time. Then v must be zero. Consequently, our solution u

is the unique invariant solution.

T
Let I(T, o) := j tu(x, t)dt.
0

Then from the formula above for the solution,

= \j f(x + y)dy = ‘S f(y)dy
ly|<T ly-x]|<T

-1
) h (r ~.y)dy = Z S h (z)dz
T jly-XI<T * lt.z-x|<T ®

- K17 -



18

By (1) N(T - «) £ I(T,0 ) £ N(T + a)
I(T - a, a) £ N(T) £ I(T + o, a)

So to estimate N(T), we estimate I(T, o)

Main Lemma

3
_ 4 T T
I(T, a) = 3 TM] + 0(5-)
3
_ 4=T 2 ‘ T
I(T +a, o) = 31M] + 0(T%a) +0(-a—)
Pick a so that Tza = g i.e. T2a = T3/2

We get the Main theorem.
(Proof of Main Lemma)

Let u(t) := T%T J u(x, t)dx = average of u over
: M

_ 1
then ()., := Tay jMutt(x, t)dx

= T%T J Au(x, t)dx = 0
M

.. T(t) = at + b

= 14(0) =0
_ = _ 4n _4q
a = ut(O) =TT Jgf(x)dx = T™T
JooTU(t) = %—rt
dn

Write u(x, t) = TMTt + v(x, t)
S jMv(x, t)dx = 0, vtt = AV

l’ vix, 0) =0

Moreover
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T
I(T,a) = J t [T%th + v(x,
0
3 T
= AeT tv(x, t)dt
3|M]| 0
T
We set V(x, T) := J tv(x, t)dt
0
T
and show |V]| = O(;)

We use the Gargliardo-Nirenberg inequality.

Since j vdx = 0
M

2

vl < C] vV"l/ZUAV“l/ in L2(M)—norm

Claim
3
1) |av] = 0(Ta 2)
-1
2) v vl = o(ra %)

t)] dat

We only prove 1). The proof of 2) is similar, but a little

more technical.

JT T
AV = tavdt = J tv, , dt
0 0 tt

T
joutvt)t - vlat

T
= Tvt(x, T) -.jovtdt

T
o vl 5 hol ey + [ Mo

By conservation of energy, some V(N,

- K19 -
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no
(W}

W2 2 2
v I© < 2E(t) = (vi + lvv])ax
M
2
= 2E(0) = jvil ax = Jlv I
M t=0 t =0
On M
0) =-2In (%)
ut(x, =—h(5
83
-3
<
So lut(x, 0)] =< SCOI’ISt X o for |x| o
L 0 ‘ elsewhere
Now u, = const + v, & jMvtdx =0 (i.e. Vt_L_COHSt)

so by the Pythagorean theorem

2 -2 _ 2
S&vtdx < jgutdx = j- u, dx

x| <a
2
< const £3a3 _ const
= a3 3 0‘3
3
lavl] = 0(Ta 2)

e

1V. Unique Continuation Property

Model case

If uecz(sz) A

I

0 in Q(connected)
in some nonempty open set %)C Q
=» u =0 1in @

Problem : Generalize this to solutions of more general

linear elliptic

<~In the Laplace equation case

we use
u : analytic

Aronszajn & Cordes

equations & systems!

1957

Proved "Yes" in some cases independently.
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1960 Plis gave an example "No"
Until now, all proofs are complicated and not much know for
systems. We give a simple proof, covering "all" cases of geo-

metric interest.

Th.[K2] u = (ul,...,uN) satisfies the elliptic system

= A ___Bu = i Q
L, gur+ ) Aj(x)an + Bu = 0 in (connected)
where Ag: Laplaciau of metric ge& El(ﬂ)
Aj’ B: N X N matrices Ajé El(ﬂ)
Be &%2)

& Aj = Aj (self-adjoint)

=» unique continuation property holds
In fact we can prove if u has a zero of infinite order

at Xyr U must be zero in a neighborhood of XO'

Applications

l. Say - au =;,u u: eigenfunc. of ,
= u 1 0 on any open set

= if e, § @

1 Ap@y) <ag(ay)

2!

1
Dirichlet condition on an

= i f 2 o q 12 = ]
@ )\l(QJ) lnfljﬂjlvy)l dx : lfé Hl(Q])’ JQJ'SDI dx 1 J

We take an eigenfunction u for 11(91)

where (ﬂj) is the smallest eigenvalue of -4 with

i.e. -Au = Al(ﬂl)u in Ql

u =0 on 891
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fﬂllvulzdx = rp (%)

° . .
We extend u to Hl(nz) puttlég Zero 1in 92\ 91

\( lvulzdx = Al(ﬂl), JF wldx =1
a, 92 ,

By definition of 11(92) Al(ﬂz) < Al(Ql)
If "=" holds, then u 1is also an eigenfunction for Al(ﬂz)
i.e. f -su = A, (2,)u in 9,
l u=0 on 30,

But this is contradiction to the unique continuation property,

since u = 0 in 92\ 2, hence u =0 in g, /

2. Let F:M —> N be a harmonic map.
i.e. F 1is a critical point of energy integral

E(F) = f |aF | %ax
M

thus  F satisfies

* . . i k
~aaF = a_F o+ g*P ool (rx)) 2 EEE =0 in M
g j ax® ax
*
d : adjoint op. of d
where (xa) : coord.-of M
(yh) : ” N
Ag : Laplaciau of- (M,qg)
Nr;k ¢ Christoffel symbol of (N,h)
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say

Q =
F(%,) {p}
for some nonempty open set QOCZ M

F(M) = p (constant map)

ince dF satisfies AdF = 0

(where A 1is Laplacian for

and dF| _ = 0,
9

so by unique continuation theorem dF = 0

F must be constant map. 4/

Probl

Idea:

More

then

em : If we take S: submfd of N instead of p,
can we say F(@,) C s —> F(M) < § ?
Sketch of proof
Say H(t) = ct® + higher order (c # 0)
then k is characterized by
1
k = linm S8
t+0
)
generally, if H(t) > 0 for 0< t< T and E%Té%l
H has a zero of finite order at t = 0.

For simplicity

(i.e.

Say N=1

955 = 647 A; =0 B =0

1-form)

in M

< const,

We treat classical case Au = 0, but do not use the

analyticity of u)

Let

vix, t) := u(tx)

2aa

It
e
<

H(t) := —2 j u?aa

t |x|=t |x|=1

-. K23 =
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[x[<1

(since Av = ()

We have t3€ = I3z where r = |x|
ool g1 e
Ix|=1 Ix|=1

av

D(t) := ff IVV’IZdV = f|x|—]_v;__dA

ar

2
. 2;J 3V aa | 2 2
DH' = £ v—dA { < =( v~dA) (
ElUx|=1 % § T ¢ flx|=l

(by Schwarz)

But D' = 2JT Vv.V%%dV
Ix|<1
-of o Maa-zf gy
Ix]=1 Ix|=1
So we get DH' g HD'
i.e. 0 < HD' - DH'

If u§ 0 in a neighborhood of 0

H(t) > 0 for all t

4. ’
So dt(H) 0 from above

v

if t < T

D(t) < D(T)
H(t) = H(T)

= const independent of

D(t) _ tH'(t)

But  qEy T 2HM

H(t) has a zero of finite order.
hence also u.
Thus we have proved
If u has a zero of infinite order at

a neighborhood of XO‘ 4/

- K24 -
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IV. Compact Surfaces with Constant Mean Curvature

X : 229—9 R3 : immersed surface
k,+k
1 72
] =——

H := the mean curvature of = >

17 k2 : principal curvatures of 22.

We treat surfaces with H = const.

where Kk

Lemma Every compact surface has a point where
k. > 0
2

So const. is not zero in our situation.

Question (H. Hopf)
Are round spheres the only compact soap bubbles?
(i.e. compact surfaces immersed in R3

curvature)

Some Answers

About 1900 (Liebmann)
Yes if surface is convex
About 1905 (H. Hopf)

Yes if surface is SZ.

(This holds only assuming that x 1is an immersion.)

1958 (A.D. Alexandroff)

Yes if surface is embedded.

(this also works for hypersurfaces in Rn+l

1981 (W.Y. Hsiang [HTY])

3

No —nonstandard S39~—» R4

with H = const

with constant mean

This shows that the natural generalization of Hopf's theorem to
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higher dimensions is false.

1984 (H. Wente [Wel)

No 3T29——> R> with H = const
In H. Wente's constraction, he uses the special property of 7°
as rectangle in Rz, so far we don't know whether there are

higher genus counter examples.

Alexandroff's idea

Lemma Say J has a plane of symmetry in every direction,
then M = round sphere
C) Center of gravity lies on a plane of symmetries.
So it is characterized as the common point of all the planes.
Since any rotation can be viewed as product of two symmetries
leaving the center fixed, we get all the rotations.
So [ is invariant under the action of 0(n).

Thus J = round sphere.

To prove the Alexandroff's theorem, we use maximum principle
for elliptic equation.

Fix a direction and move plane which has normal of that
direction until the reflection of | intersects outside of
Theﬁ either

graph u
P

> graph v or
\-—/ ’ \_/P

case 1 case 2

For example for the first case, if we represent [ and

reflection of | as graphs of functions u and v (resp.)
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around p (common point of /| and reflection of | ).

Then u and v both satisfy the same elliptic equation since
) has constant mean curvature, and we have u 2 v in n.b.d
of p and wu(p) = v(p).

So by maximum principlevwe conclude u = v.

Thus ;| and reflection of | are coincide. The boundary point
version of the maximum principle used in the second case.

By Lemma J 1is a round sphere.

A more detailed discussion can be found in Spivak's book[Sp],

vol. 4.

Alexandroff's technique also applies to many other situations
(see Gidas-Ni-Nirenberg[GNN])
for example if u > 0 satisfies
bu = f(u) in |x| < 1
u=20 on |x]| =1,

then the only solutions are radial.

Hsiang's Idea

Look for "surfaces of revolution".
Here, hypersurface of revolution means one that is invariant
under a large subgroup of the orthogonal group.

For 0(4) uses the subgroup 0(2) x 0(2) ={[-§-}—S] € 0(4)}

If we view R4 as Cx C = {(z,w)}

ie eiy)

the group action is multiplying (e™ ,
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4
_ ’ _ o).
and R /0(2)x0(2) 7 o (i : 5. o> 0

Our hyper sphere is given by picking a clever curve in

(r.p) - plane and using group action. r
__J:::lu_p

Here we mean "clever" as satisfying two conditions.
1) H = const (this corresponds to that (r, p) satisfies
a ordinary differential equation.)
2) The constructed surface is compact.

(This corresponds to that the curve touches the axes.)

Background for H. Wente

X 229_9.R3 immersion

£ : unit normal vector.
We take a isothermal coord (u, v)
thus g = ds2 ='E(du2 + dv2)

2nd fundamental form

IT = -dX.df = Ldu® + 2Mdudv + Ndv2
Formulas
1
Gauss curvature K = - EEAlogE
Mean curvature H = E%%

Codazzi equation

- M_ = HE
u v

g L

v

I‘M - N = -HE
v u u

Or equivalently
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(—7—)u + M = EH = 0 (since H = const)
L-N _ _
(Z5=), - M, = -EH_ =0

Let ff(c) = (E%E) - /—lM where ¢ =u + J-1lv

So ff is holomorphic quadratic differential,

2

In the case [ =~ S° (homeo) (H.Hopf case)

P o

M

"
o
=

"
=z
H.
()
H
-

I
£

Thus [ is everywhere umbilic and hence is a round sphere.

Let T2 : 2-dim. torus.

X T29——>-R3 immersion

{(u, v) : we fix global isothermal coordinates on T2

g = ds2 = E(u,v)(du2 + dv2) : metric on T2
II = Ldu2 + 2Mdudv + Ndv2 : the second fundamental form.
L-N

Let P o= 5 - iM and ¢ = u + iv

as before. Then ¥ 1is an analytic function of ¢, and is

doubly periodic. 'So by Liouville theorem f = const. and if

const = 0 then the surface must be a round sphere, so const is

not zero. By rotation of coordinate (i.e. diagonalize the 2nd

fundamental form at one point) M= 0, L - N = const. Moreover

by a homothety and changing E by a factor

We may assume S M=z 0

L - N= -1
l{H = 1/2
2w

Write E = e"". Then
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N
3]

(-—./ Ny
~
(&)
+
w
N
I
[\
fay]
L]
=t

so that

kl = e Ysinhw

l’kz e_wcoshw

i

3 = —E =E
And since M =z 0 kl =5 k2 5
so y L = ewsinhw
L N = ewcoshw

By the Gauss equation we get

AW + Ke2w = 0 where K = klk2 : Gauss curvature
so
(1) Aw + sinhw coshw = OJ
i.e. A(2w) + sinh{(2w) = 0 (Sinh - Gordon equation)

Now we go backwards

Solve (1) for doubly periodic w, this gives us II

(i.e. L,M,N). And Gauss equation and Codazzi equation (in our
case since mean curvature = const. Codazzi equation is
satisfied) are satisfied.

Use the Bonnet's theorem (fundamental theorem of surfaces)

for Yo : open set, if the Gauss and codazzi equations are
satisfied, then 3lX P N—> R3

with ITI as its second fundamental form.

. . .. . . 3
By uniqueness, we mean unique up to a rigid motion in R".

Trouble This is only local. Does the surface close up?

We just need a "clever" solution w.
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We remark that since M z 0 and kl = % k2=%
- the lines u =z const and v = const are the’lines of
curvature.
We -assume vV = const are kl - lines of curvature.
and u = const vare k2 - lines . of curvature.
Note kl < k2 (since L - N = -1).
M
17 kl*line
o
k2—line

So far, everything we have said is rather old and was known to

many people.
where the fundamental region in BZ
it is a parallelogram) and seek solutions

in the rectangle

Q = { |u| < a/2, |v] < b/2 }
with w =0 on 890 .
‘I’

Mos2
2

—

7 U
a/2

One

a, |lv] <b 1}

- K31 -

is a rectangle (in general

w that are positive

extends such a solution to the larger rectangle

31

Wente's approach was to consider the special case



3%

by reflecting the solution across the lines J|ul] = a/2,
| v] ; b/2 as on odd function. The fundamental region for T2
is then Q. Wente shows that one can pick the parameters a
and b so that the solution w yields an immersed torus.
Subsequently, Abresch [Ab] made a computer graph of
Wente's solution and saw that the kl curvature lines looked
planar. This led him to seek special solutions of (1) which
have the additional property that the kl curvature lines are

planar (i.e. torsion = 0). For this, the function w must

also satisfy

coshw
uv sinhw u v

(2)

(Just last month, J. Spruck showed that in fact every positive

solution w of (1) in QO with w =0 on aQO automatically

satisfies (2). His proof uses the key computation that if we

let n denote the left side of (2), then n satisfies

2
pn=§1 4 2lwl®
.42
sinh wj
in Qo.)
Now it is guite easy to find the general solution of (2).

One approach is to make the change of variables

Z = -1ln tanh —g—
Remark.
How can we get above change of variable? For a system of
equations
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N
Awk+ ’ c..vwl"vw = 0 k=1,...,N

i,j=1

We think C?j as Christottel symbols of some affine

connection.
. i i, ., N
We want to choose new coordinates Z7 = F (W',eee,W ) ,

k

..= 0 1is the
1]

i=1,...,N, to simplify this; for example C
simplest case.

But we can do this if and only if the curvature determined by

Ctj is zero everywhere. Note that A is the "Laplacian" of
any metric, possibly with Lorentz signature etc. For our

single equation, curvature is zero since the space is
l1-dimensional. so we can take a change of variable so that
k

cijz 0. Then Z satisfies the simple single equation

whose general solution is
Jo2o= P(u) +y(v)

For our problem, it is strangthforward to find the change of

variables Z = F(w)

w = —lntanh% = =lntanh (.T(u)2+‘P(v))

Next, plug this into (1) and find
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. 2 2
(2) (Puy + Wy)Sinh(P+v ) = (P + v + 1) cosh(P+v ) =0

By a computation (not difficult, but not obvious either) this
implies that ¥ and ¢ satisfy the first order ordinary

differential equations

2— —-—
?u = D cosh2¢ - v
wz = -D cosh2y - §
v
for some constants D and vy, § with vy + § = 1

Thus, the problem of solving (1) is reduced to finding clever
solutions of these ordinary differential equations. V
Let £ = fu and g = Ve From above we get that £ and g

are elliptic functions since they satisfy the equations

g2 =t 1+ o - 8H)E2 + W%, £(0) =0, £°(0) = a
2 4 2 2, 2 2
g'" =g + (1 + 8 - al)g + g, g(0) =20, g'(0) =38
These elliptic functions depend on @ and B . We can assume

o,B > 0 . Note also that

fu + g,
(3) coshw = ——F—>

l+f2+g2
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It remains to show that the constants o and B can be chosen
cleverly so that the surface closes up. We shall only sketch
the ideas.

First note from (3) that
a + B = fu(O) + gV(O) = cosh w(0) > 1.

Moreover, if o + B =1, then w = 0, which does not give a
surface that closes up. Thus o + B > 1.

Next Abresch_shows that the only values of o >0, 8 > 0,

a + B > 1 that yield solutions w that are positive in some

rectangle QO with w =0 on BQO are

IG-B|<1,

in which case the rectangles Q0 are exactly those with

a—2 + b"2 > ﬁ_2. |

By reflection to the larger rectangle Q (see above) one
obtains a solution w which is doubly periodic with fundamen-
tal region @, having periods 2a and 2b.

We still need to pick the parameters a, B so the surface
closes up. It terms out that after one moves one period in the
u coordinate, the kl curvature lines lie in parallel planes.

We want the distance between these planes to be zero. This

gives the condition that (o, 8) be on the hyperbolic T

T = {82=(a+q)2+l-q2}

where g € R is chosen so that
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1
S t dt o
" 1 - 2k + @

This gives q = 0.652229...
Finally, we want the k2 curvature lines to close up. One can

show that the k2 curvature line X(0, v) 1lies in a plane as

dv all periodic translates X(0, v + 2b), X(0, v + 4b), ...

Let 62

curvature lines X(0, v) and X(0, v + 2b). If this angle

be the angle between the planes containing the k2

2
X(0, v + 2Nb) coincides with the plane containing X(0, V)

8 is a rational multiple of =, then eventually some plane

and the surface closes up. By a computation, 62 = ez(a, 8)
has the properties that it is monotone increasing along T,
that
6,(0, 1) = 7, and 1lim 92(a,a+e)=2n

Qo >
uniformly for 0 £ ¢ 2 1. Thus, there are infinitely many
points along T where 8, is a rational multiple of . Each
of these yields an immersed torus with constant mean curvature.

These are the surfaces we wanted.

The above construction is clearly quite special.
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V. Scalar Curvature on Non-compact Manifolds

) . . n .
In this section we assume (M, g) : is a non-compact
Riemannian manifold and g is a complete metric.

We denote Sg = 8§ scalar curvature of (M, g)..
§1. Topological obstraction
Certain M have no metrics g with Sg >0

Gromov-Lawson [GL]

If M0 is cpt and has a metric g with sectional curvature

R(M g) £ 0, then

Ol
i) MO x R has no non-flat 97 with Sgl > 0.

ii) M, x R2 has no 9, with Sg > const > 0.

0 2
iii) M ><R3 always has 93 with 8 > const > 0.

0 3

The last part is easy because the scalar curvature SMXN of

Riemannian product manifold M x N is sM + SN.

So if we has a metric on R3 which has sufficiently large
scalar curvature, Sg is bounded from below by a positive

3
constant .

Example 1 T2 x R2 has no metric g with S > const

Example 2 x R has no metric with S > 0.

On the other hand in case n > 3.

> 0.
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Green-Wu [GW]. There are no obstructions to negative S.

i.e. every non compact manifold has a complete metric with S < 0.

Bland-Kalka [BK]. For every non compact manifold M there

exists a complete metric g with S = -1.

For the proof enough to show the existence of complete metric
g with =-b < Sg < -a <o0.
Then using super & sub-solution method we can prove above.

In case n = 2

Cohn-Vossen showed "Gauss-Bonnet inequality"

KdA < 2mx(M)
M

for complete non-compact surfaces. We do not yet know any

useful generalization of this to higher dimensions.
§2. Prescribing scalar curvature

Question Given S, find g so S = scalar curvature of

g.
Simplest case (since there are no topological obstructions) :

given S <0 find g. Even here, we do not understand much.

One approach is to use conformal deformations. We take a nice

complete metric Jor and seek g = P9, with S =lscalar
curvature of g. If one has 0 < a < p <X B8, then g 1is also
complete, but this assumption on p is much to strong.
Proving the completeness of g is perhaps the most difficult

part; as we shall see, there may not be a complete metric.
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§3. Pointwise conformal deformations

Given Ig7 seek g = P9, for p > 0 with some property.

Simplest question Find p so g has constant scalar
curvature.

(In compact case this is called the Yamabe problem, which was

recently solved.)

n = 2. You can always do this (Uniformization theorem for
Riemann surface).

n > 3. No. (Recently showed by Jin Zhiren [J]). We sketch
his construction.

Find (M, gO) not pointwise conformal to (M, gl) with Sgl
= const.

Jin finds examples on any M which is obtained from a compact
MO of dimension n > 3 by deleting a finite number of points:
M = MO\\{pl, -«.s P }. The simplest case is of course R

= Sn\\{pl}. To find the metric g, one begins with the known
(and non-trivial) fact that any compact M0 has a metric 99

with scalar curvature S0 < 0. .Then one can easily find a

conformal metric (there are many of them)

4/(n-2)g

9= 9 0 (¢ > 0)

so that g is complete on M. This is our complete non-

compact Riemannian manifold (M, g).

Theorem (Jin). This manifold (M, g) is not conformal to

a complete metric 9 with constant scalar curvature.
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To prove this, we observe that if 9, = u4/(n—2)g' with u > 0,

then the scalar curvature Sl of 94 is given by the standard

formula

o

(4) Lu u ,

—YAgu + Su = Sl

where y=4(n - 1)/(n - 2), and « (n + 2)/(n - 2). If we
let v = uff, then we can write 9, = v4/(n—2)gO and the

general formula (4) becomes

o

(5) L.v = -yAOv + 8. v = S.v , v > 0.

0 0 1

We will show that there is no constant Sl for which (5) has

a solution v >0 on M so that 94 is complete.

Step 1 There is no solution if S1 > 0.
Here we do not need to use the completeness of g, or that

S, = constant, only the fact that one can not conformally

1
deform from negative scalar curvature to positive (or’zero)
scalar curvature. On a compact manifold this is just an
integration by parts. In the noncompact case we use £he
special fact that M is obtained from MO by deleting a
finite number of points.

One needs a technical device. Let Al denote the lowest
eigenvalue of the linear operator L0 on (MO, go) and
observe that S0 < 0 implies that Al < 0 (in faqt, the only
known construction of 99 actually first shows that Xl < 0,
although this is irrelavent to us). Let Bp(pj), j =1,...,k
denote the 99 geodesic balls of small radius ¢ about pj,

let
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k
Moo= M, - j&{ Bp(pj),

D

and let Al(Mo) denote the lowest (Dirichlet) eigenvalue of

L, on Mp with zero boundary condition.

Lemma If n > 3, then 1lim X?_(Mp) = A
p+0

1
The proof is not difficult.. The main observation is the simple
fact that if n € c”(MO) satisfies 0 <n <1, n=1 in

My » n = 0 in UBp(pj), and |vn| £ ¢/p, then n —> 1 in the
Sobolev space Hl(MO) for any dimension n > 3. If (f is

the eigenfunction corresponding to A normalized so that

ll
||<5>HL2 = 1, then set w = nY, so w = 0 on aMp. Now because
n—>1 in Hl(MO) then

2 n-2
fw - (fll < cp .
Hl(MO)

This implies that in L2(Mp), if p 1is near zero then because

w =0 in UBp(pj)

{w, L0w>p ~ {w, L0W>0 . S L()(Jo>0 .

2 2 = 2
lhwll® il Il

The variational (Rayleigh-Ritz) charaqterization of A?(Mp)

then shows that if »p 1is near zero (depe‘nding on €), then

D
(6) AJ(M) < Ay 4 e

On the other hand, if ¢ 1is the eigenfunction for x]i(Mp),

then we can extend V¢ to M0 by letting ¢ = 0 on M0 - Mp
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so the variational characterization of Ay gives

{vr Lgwd, b, Lgw)
(7) Ay < 0770 _ 0 7p _ x?(Mp)

2 2
el e

Q.E.D.

Now we can complete Step 1. By the Lemma since ‘xl < 0 we can
pick p > 0 so small that A?(Mp) < 0. Let ¢ be the eigen-
function corresponding to A?(Mp) and note that we may assume
v > 0 in Mp (this is a general fact about the eigenfunction
corresponding to the lowest Dirichlet eigenvalue).

If v >0 1is a solution of (5) on M then integrating by

parts we have

5 .
)<y, v)p (Low, v)p

' v _ )
<‘Pr L0v>p + 'YS ('Pa—N V-ETN)'
BMp

where N 1is the unit outer normal on BN%. Because ¢ > 0 in

Mp and ¢ =0 on aMp, then 3y/3N < 0 on aMp so the

integral on aMp is non-negative. Hence (recall ¢ > 0,

v >0).
D _ o
0 > a7 )Lvs vy 2 Lvr Lgv) = Lve 51V
This shows that S; 20 is impossible and completes case 2.

Case 2 There is no solution v > 0 of (5) on M with

const < S, <const <0 such that g, = v4/(n-2)g is

1 0

complete.
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In fact, by a general removable singularity theorem (see [Av,
Theorem 2.2]) any solution of (5) on a pﬁnctured disk D\{p}
can be extended to all of D — assuming const < Sl < const
< 0. But then in particular, v is a bounded function on MO

so the metric on M can not be complete (to be complete,
91

v must blow-up near the points Pys «+er P ). Q.E.D.

For these special manifolds, we now see that there may not be
complete conformal metrics with constant scalar curvature.
Thus we pose the following question..
What is the best one can do by a pointwise conformal change of
given metric?
We have almost no informations to this problem.
The only known informations for prescribing scalar curvature
problem on non{km@act manifold are
i) (R", std) [Nill], [Ni2]
i.e. -yagu = su®
ii) (H", std) [avM], [BK]
i.e. —onu - u = su®.
They showed both existence and non-existence results.

As we said above, the most difficult part is to prove growth

conditions on u insuring that g 1is complete.

For example

n =2

Au = —Ke2u on RZ

condition : - < K(x) <0 for some g > 2

- K43 -



44

. . s - 2 .
then for every b satisfying - L—~§——l < b < 0 there is

solution u with the asymptotic behavior
u(x) = -b log|x]| + u_ + o(lxl")
as |x| —D =
where u_ : constant
y > max(-1, 2 - & - 2b)
thus the metric g = ezug0 is also complete.

'§4. On manifolds with boundary

Converse of Gauss-Bonnet theorem

Gauss-Bonnet says

(M2, g) : 2-dim. Riemannian manifold with bdry &M then

K da +-S k ds = 27x(M)
SSMgg M 9

where Kg : Gauss curvature of (M, g)
kg : geodesic curvature of (&M, g)

x{(M) : Euler characteristic.

Converse Question:

Given any Q: 2-form satisfying

SS Q + S o = 2wy
M oM

? so that @ = K_dA = k ds.
32 g a g% ¢ T %g@s

o: l-form
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Theorem (Nakamura [Na]). Yes.

pProof is simple. One picks a metric 99 ‘and seeks g point-

wise conformal to 9o+

Other boundary value problems

Cherrier [Ch] treats the Neumann-problem.

Vi. Fully Nonlinear Equations

Graphs with prescribed curvature

Given 8 C RrR"

X4l = u(x) (x & @) : graph of u

then the principal curvature of this with upper normal are the

eigen-values of

u.u.u.u u,u, u, . u,u u.u, u.
[aiz] = % [Fim _ 1i73737% _ "% kki + 121 j kzjk
w(l+w) w(l+w) we (1+w)
where w = (1 + |vul?)l/2
u. = _?_ll_ u = ._a_zl.__
i ax, ig 7 o8x.8x
1 i 7

One gets various curvatures by looking at symmetric functions

of principal curvatures.

Ex. The mean curvature = H := % tr ai
the scalar curvature = S := ] klkj
i#j
the Gauss-Kronecker curvature =z K := detl[a..].
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Thus we pose the following question.

Question Given § € Cw(ﬁ) and K € E7(7), does there
exist a solution u € Cz(ﬂ) N CO(E) such that
1) graph of u has a curvature K (such as mean
curvature, scalar curvature).
2) u=49¢g on 'an ?

Here we know almost nothing 11!

Note That here we have restricted ourselves to hyper-
surfaces in Rn+l.
If we treat general manifold M, the problem seems to be much
harder.
We have two difficulties

i) One may need to assume §Q has certain geometric

properties.

For example

Gauss—-Kronecker curvature case ... Q : convex, mean curvature
case ... (mean curvature of 38) 2 s—7 |H]|.
ii) @ can not be too large relative to the prescribed

curvature.

Typical situation

w
n-1
n

(1) S K dx < if K = Gauss curvature of graph u.
Q

Theorem (Trudinger-Urbas [TU], [U])

Assumption K > 0

(i) if < holds in (1) then there exist a solution.
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(ii) if = holds in (1) then there exist a solution if and only

"if the surface is a hemisphere.

Embedding convex complete surfaces into R3
2

/ry (R, g) : complete metric not necessarily
5 > x standard on R2 assume K = (Gauss
| curvature of g) > 0.

Problem (non-compact Weyl problem). Embedded this into

R3 as a convex graph.

Theorem (Pogorelev). Yes.

There is a new proof is given by Corona [Co]. His proof

involves solving the Monge-Ampere equation

det u"

= _ 2 ;
(2) W—K(l IVuI ) on R,

where u" 1is the Hessian of u in the g metric. This
equation says that the metric g = g - (du)2 has Gauss

curvature R 0. The after a diffeomorphism, g = dx2 + dy2

SO
g =§ + (au)? = ax? + dy? + du(x, y)°
so z = u(x, y) gives the embedding.
Key step in solving (2)
Solve the Dirichlet problem for det u" = f(x) in e C R2

where & : convex with respect to metric g Since K > 0, the

equation (8) is of elliptic type.
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We know almost nothing if K changes sign (in this case the

P.D.E. is so called the mixed type, not of elliptic type).

Problem

Given T2C$.R3 isometric embedding.
Say its Gauss curvature K, we remark that K, changes sign.

Given K ==K sufficiently near.

0
Fined a surface in R3 with Gauss curvature = K.
There is a similar problem for (Sz, g0)¢:>R3. If one assumes
the curvature KO of (SZ, go) is positive, then the equation
is elliptic and is accessible to standard techniques (see
[CNS]). However, for equations that are not elliptic, the

only tool we have so far is the Nash-Moser implicit function

theorem.
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